5th International Forum of Sustainable Future in Asia/5th NIES International Forum – January 2020, Yangon, Myanmar

Dioxin Contamination in Vietnam, Risk Assessment and Health Effects

Vu Duc Nam, Nguyen Quang Trung, Le Truong Giang, Nguyen Hung Minh, Tu Binh Minh

- Center of Research and Technology Transfer (Cretech), Vietnam Academy of Science and Technology (VAST)
- ✓ VNU University of Science, Vietnam National University Hanoi
- Ministry of Nature Resources and Environment E-mail: vuducnam@gmail.com

 Role of environmental analysis & current demands

Dioxin emissions status in Vietnam

Risk Assessments and Health Effects

Environmental pollution in industryrelated areas in Vietnam

- Official/major industrial zones (parks): > 300 industrial zones
- Informal trade/industrial sites: craft villages, recycling villages in sub-urban areas, landfill dumping sites
- Historical pollution areas: POPs pesticides stockpiles, Agent Orange (AO) Dioxin
- Newly identified issues: new chemicals, potential areas for releasing new chemicals

Dioxins & Furans

Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans (Dioxins; Dioxin: 75 congs, Furan: 135 congs)

Formation of Dioxins:

- Burning processes (waste incineration, open burning ...)
- Thermal processes from industries
- By-products of chemical manufacturing industries

Impacts of dioxins to human health

- Evidences for toxic poisoning in the world
 PCBs/PCDD/Fs
 Japan ("Yusho")
 Taiwan ("Yucheng")
 TCDD
 Seveso, Italy
 - Ukraine
 - Vietnam

Research programs on dioxins in industry & environment in Vietnam BAT-BEP Project supported by GEF-UNIDO and VEA, MONRE: demonstration of dioxin reduction in selected

- industrial sectors
- AO/Dioxins Project supported by UNDP and MONRE: baseline surveys for dioxins emissions in potential sectors
 Surveys programs conducted by Dioxin labs (VEA, CRETECH...)
- Several research programs collaborating with international labs: Japan, Korea

PCDD/Fs in flue gas samples from some industrial sectors in Vietnam

Dioxins emission (in flue gases) from selected industrial sectors and guideline values

Dioxin from industrial solid samples (fly ash, bottom ash) from different industrial sectors in Vietnam

Dioxin in ambient air

Standard values: Japan: 0,6 pg TEQ/m³ US: 0,045 – 32 pg TEQ/m³ Canada: 0,1 pg/m³

Stack gas emissions of PCDD/Fs from different industrial facilities in Vietnam

Stack gas emissions of PCDD/Fs from different industrial facilities in Vietnam

- 1. Industrial Waste Inc (973 μg TEQ/year) >
- 2. Coal Power (682 µg TEQ/year) >
- 3. Steel Making (666 µg TEQ/year) >
- 4. Zin Production (395 µg TEQ/year) >
- 5. Cement production (141 µg TEQ/year) >
- 6. Craft Boiler (28.7 µg TEQ/year) >
- 7. Medical waste incinerator (12.6 μg TEQ/year) > Industrial boiler (9.44 μg TEQ/year) >
- 8. Cooper Production (1.76 µg TEQ/year) >
- 9. Municipal waste incinerator (0.306 µg TEQ/year) >

10. Tin Production (0.058 µg TEQ/year)

Total annual stack emission for 20 Facilities belong to 10 sectors:

4.89 – 11.4 g TEQ/year

Comparison of annual TEQ emissions in flue gas among different countries

Canada, waste incinerators (CCME 2001)

UK, ferrous production (DEFRA 2009) UK, non-ferrous production (DEFRA 2009) UK, coal domestic combustion (DEFRA 2009) UK, cement kilns (DEFRA 2009)

France, large MWIs (Nzihou et al. 2012)

China, iron production (Lv et al. 2011) China, copper production (Ba et al. 2009) China, aluminum production (Ba et al. 2009) China, 19 MWIs (Ni et al. 2009)

Korea, secondary copper production (Yu et al. 2006) Korea, aluminum production (Yu et al. 2006) Korea, lead production (Yu et al. 2006) Korea, zinc production (Yu et al. 2006) Korea, steel production (Yu et al. 2006)

Vietnam, 20 facilities of different sectors

Demonstrations of the emission reduction BAT-BEP: Best available techniques/Best environmental practices

Techniques that are able to implement by operators

□ BAT: The latest stage of development of processes, of facilities or

of methods of operation which indicate the practical suitability of a

particular measure for limiting discharges, emissions and waste".

□ BEP: the application of the most appropriate combination of

environmental control measures and strategies

Demonstration of BAT/BEP in waste incineration

Type of	BAT/BEP measures	Dioxin levels		
Incinerator		Current	After BAT/BEP	
Industrial	-Classification of wastes: remove plastics,	4940	383	
waste	polymer wastes	pg TEQ/m ³	pg TEQ/m ³	
Incinerator	- Control temp. of secondary chamber			
	-Control air flow for cooling			
	-Better control & upgrade APCD			
Municipal	- remove plastics, polymer wastes	6120	15,0 ;19,03	
waste	-Cleaning, upgrading temperature cooling	pg TEQ/m ³	pg TEQ/m ³	
incinerator	-Provide oxygen to soaking chamber			
	-Maintain temperature > 850oC in both			
	chambers			
Medical	- Install the charcoal in APCD	* Flue gas:	*Flue gas:	
waste		437 ; 32,6	13,8 ;18,4 pg	
menator		pg TEQ/m ³	TEQ/m ³	
		^Ash	^Ash:	
		ng/g	22,9; 74,9 pa/a	
		P9'9		

Dioxin contamination in AO/Dioxin "hotspots"

IntensiveandcarelesshandlingsofAgentOrangecausedseriousleakingandspillsofAO/DioxininseveralUS former airbases

 Three airbases were well investigated and showed high contamination: Da Nang, Bien Hoa and Phu Cat

Dioxin contamination in AO/Dioxin "hotspots"

Remediation status in the three severe AO/Dioxin "hot spots"

	Phu Cat Da Nang		Bien Hoa	
Highest recorded levels of dioxin in soil	283,000 ppt TEQ	365,000 ppt TEQ	962,559 ppt TEQ	
in Sediment	5,970 ppt TEQ	8,580 ppt TEQ	201 ppt TEO	
Total volumes of the dioxin contaminated soil & sediment	7,000 m ³	94,000 m ³ (high conc.)	495,000 m ³	
Cleanup technology	Secured landfill	In-pile Thermal Desorption	To be selected	
Cleanup completion date (cost in USD)	2011 (5M)	2018 (110M)	2030 (390M)	
Cooperation agencies	MOD/MONRE & UNDP/GEF	MOD & USAID	MOD & USAID	

Completion of remediation Da Nang AO/Dioxin "hotspot"

Da Nang site (USAID photo)

Contamination of Agent Orange/Dioxin in Bien Hoa Airbase

Figure 1.1 Overview of all dioxin sampling locations in Bien Hoa, Viet Nam by Hatfield/10-80 Division/VRTC/Office 33, 2004 to 2010

Potential for the contaminated soil to be carried away by rain and flood water

Dioxin in selected foodstuffs near AO "hot spots"

Bien Hoa airbase: Fish > Chicken > Egg > Pork/Beef > Veget > Rice Da Nang airbase: Fish > Egg > Chicken > Pork/Beef > Veget > Rice

TEQ profile in chicken and egg samples

PCDD/Fs Profile of egg samples (*n* = 4)

70 60 (pg/g f.wt.) 50 40 Mass Concen. 30 20 10 0 2378-TCDD 12378-PeCDD 123478-HxCDD 123678-HxCDD 123789-HxCDD 1234678-HpCDD OCDD 123478-HxCDF 123678-HxCDF 234678-HxCDF 1234678-HpCDF 234789-HpCDF OCDF 2378-TCDF 12378-PeCDF 23478-PeCDF 123789-HxCDF

PCDD/Fs Profile of Buu Long chicken/duck samples (n = 2)

PCDD/Fs Profile of Buu Long egg sample (n = 1)

Dioxin Levels in the mother milk in several areas

Location	Year of sampling	TEQ-PCDD/Fs (pg/g lipid)	Reference		
Vietnam					
Thach Hoa (Hanoi)	2008	1.7	Tue et al., 2014		
Trang Minh (Hai Phong)	2008	1.8	Tue et al., 2014		
Bui Dau (Hung Yen)	2008	1.4	Tue et al., 2014		
Kim Bang (Thai Binh)	2008	4.3	Manh et al., 2015 (control site)		
Bien Hoa (2014)	2014	9.6 (1.8-26)	Hue et al., 2018		
Bien Hoa (2010)	2008-2010	9.3	Manh et al., 2015		
Quy Nhon (near Phu Cat airbase)	2008-2010	14.1	Manh et al., 2015		
Da Nang (near DN airbase)	2011-2012	19.2	Hue et al., 2014		
Asian countries					
China	2006-2007	4.2	Sun et al., 2010		
China	2008	2.8	Shen et al., 2012		
China	2007	3.73	Li et al., 2009		
Japan	2002-2004	7.4	Tokada., 2008		
Taiwan	2001	7.37	Chao et al., 2005		

Dioxin profile in mother milk near AO hot spots

Different TEQ contribution of 2,3,7,8-TCDD and 1,2,3,7,8-PeCDD in hot spots and other areas

Dioxin related compounds in e-waste processing sites

Surface soils Footpath		n rice paddies ($n = 19$)		Open-burning sites $(n = 3)$		E-Waste-processing workshop ($n = 10$)			
	Median	Min	Max	Median	Min	Max	Median	Min	Max
PCDDs	0.72	0.076	1.1	13	1.2	13	0.84	0.070	4.6
PCDFs	0.46	ND	13	64	2.6	120	3.7	0.21	13
Co-PCBs	0.32	0.00078	1.7	4.8	0.55	6.6	1.3	0.29	5.8
PBDDs	ND	ND	ND	ND	ND	3.2	0.013	ND	15
PBDFs	0.025	ND	5.4	14	0.19	83	20	0.83	270
Sum of target compounds	1.5	0.29	20	100	4.5	230	28	1.7	310
River sediments		Upstream area $(n = 1)$		E-Waste-processing area $(n = 3)$		Downstream area $(n = 4)$			
				Median	Min	Max	Median	Min	Max
PCDDs		0.92		1.0	0.79	9.2	1.2	0.38	1.6
PCDFs		0.011		6.3	2.2	42	0.043	0.025	4.6
Co-PCBs		0.0050		0.89	0.67	4.9	0.0055	0.0027	0.54
PBDDs		ND		0.0050	ND	0.0063	ND	ND	ND
PBDFs		0.028		4.3	2.2	8.9	0.33	ND	1.0
Sum of target compounds		1.0		13	12	58	1.6	1.1	7.1

WHO-TEQs (pg/g dry weight) of PCDD/Fs, Co-PCBs, and PBDD/Fs in surface soils and river sediments collected in Bui Dau, Hung Yen province, Vietnam, January 2012.ª

^a ND, not detected.

- In open burning sites, the level is from 12 58 pg TEQ/g dry wt
- In ewaste processing workshop, the level is from 1.1 7.1 pg TEQ/g dry wt

G. Suzuki et al. / Emerging Contaminants 2 (2016) 98-108

Future perspectives

Groups of chemicals under concerns:

 Dioxins unintentionally produced,
 AO/Dioxins in Bien Hoa airbase,
 Halogenated persistent substances: brominated dioxins, diphenyl ethers, PAHs, PFOS

 New chemicals in current use & continuously releases:

 Intervention

✓ phthalates, bis-phenolic compounds

✓ pharmaceuticals & personal care products

vuducnam@gmail.com