
Japan's Experience in Compiling and Reporting the National GHG Inventory

Naofumi Kosaka Greenhouse Gas Inventory Office of Japan

18th Workshop on Greenhouse Gas Inventories in Asia July 2021

Revision of the IPCC Guidelines

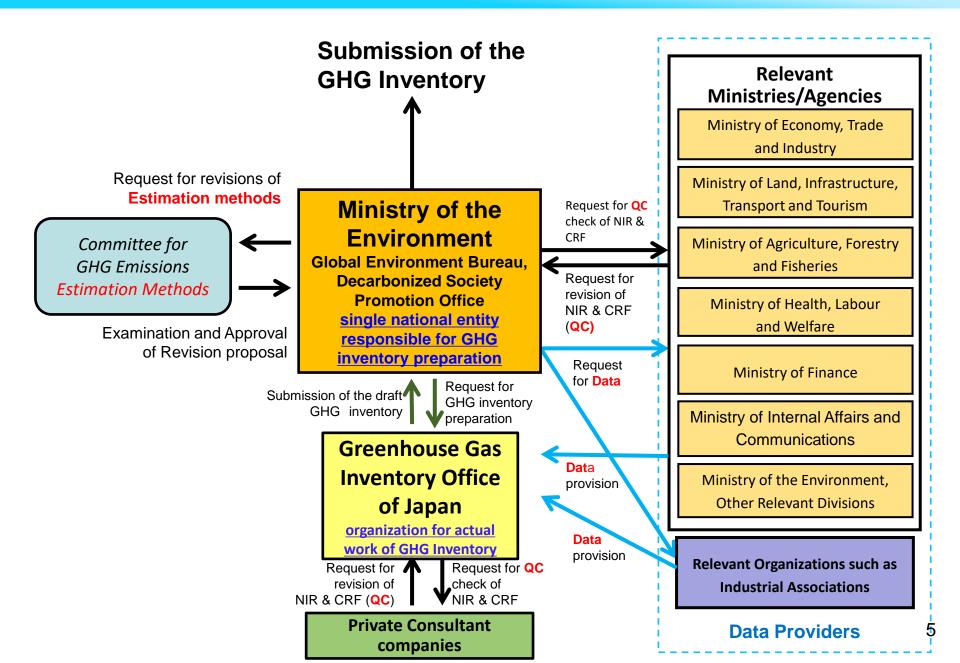
Annex I Parties must use until 2014 submission

Currently, Non-Annex I Parties use these under the UNFCCC.

2006 IPCC Guidelines Annex I Parties must use from 2015 submission All Parties to the Paris Agreement must use from 2024 submission **New Supplementary** Guidance in 2013 (encourage to use)

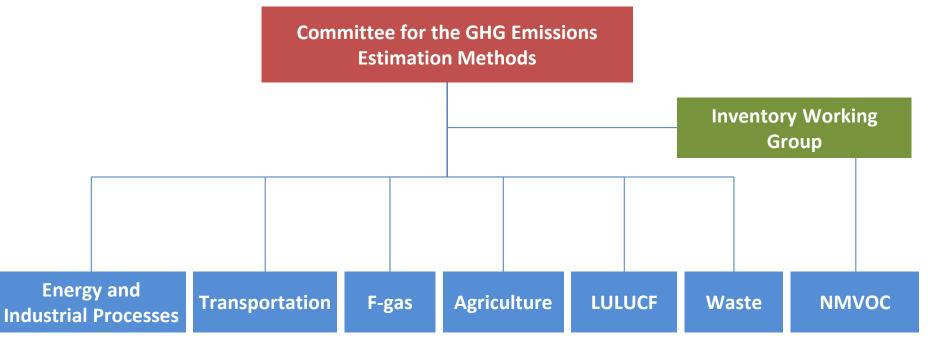
JAPAN'S EXPERIENCE ON TRANSITIONING TO THE REVISED GUIDELINES

Revision of UNFCCC Reporting Guidelines


• COP19 adopted the revision of the UNFCCC inventory reporting guidelines for Annex I Parties to incorporate the 2006 IPCC Guidelines. (Decision 24/CP.19)

Date	International	Domestic
Jun. 2009	SBSTA made the Work Plan for 2015 submissions applying 2006GLs	
Dec. 2011	COP17 decided Reporting Guidelines (in. CRF), tentatively.	
2012	(Each party started to trial)	Initiated consideration of applying 2006GLs in the method committee
Nov. 2013	COP19 decided Reporting Guidelines (in. CRF), officially.	
Dec. 2014		Released preliminary 2013 inventory applying 2006GLs
Apr. 2015		NIR2013 submission applying 2006GLs
Dec.		CRF2013 Submission

4


Timeline

Institutional Arrangements

Committee for GHG Emissions Estimation Methods in 2015

- The Committee for the GHG Emissions Estimation Methods consists an inventory working group (WG) that examines cross-cutting issues, 6 breakout groups that consider sector-specific issues and the NMVOC taskforce under the Inventory WG that examines methodologies of NMVOC emission estimation.
- ✓ Improvement suggestions by each WG, breakout group and taskforce are considered once more by the Committee for the GHG Estimation Methods before approval.
- ✓ Over 60 experts from universities, industrial organizations, and relevant research institutes
- ✓ 19 meetings were held in FY2014. (Almost double than usual)

Updating Estimation Methodology for 2015 Submission

- 2006 IPCC GLs
 - Re-allocate sectors and categories (e.g., "Industrial Processes" and "Solvent and Other Product Use" are merged into "Industrial Processes and Product Use")
 - Estimate emissions/sinks from sources/sinks where methodologies are newly provided (e.g., harvested wood products)
 - Update the methodologies and emission factors
- Revised UNFCCC reporting guidelines
 - New gases (NF₃, HFC-245fa, etc.)
 - Change of Global Warming Potentials (SAR to AR4)
 - Indirect CO₂ and N₂O (See paragraph 29)
 - NE (considered insignificant) (See paragraph 37(b))
- Major update of country-specific methodologies
 - Update carbon emission factors on Fuel Combustion
 - Revise Energy Balance Tables (General Energy Statistics)
 - Apply model, Tier 3 (DNDC-Rice model, Roth C model for cropland)
- Address the annual Review under UNFCCC

General Consideration for New Methodologies

- New emission source or removal sink
 - Is the source/sink present or absent?
 - With the methodology we want to use, how will the CRF look like? How will it be filled out?
 - Do we have the necessary AD, emissions, and other information for the whole time-series? (Statistics, Company data [Confidential or not])
 - Can it be reported year after year?
- New emission factor (EF)
 - Is the default value in 2006 IPCC GLs updated or unchanged from Revised 1996 IPCC and GPG2000?
 - Is new country-specific EF better, comparing with previous one?

General Consideration for New Methodologies

- Disaggregated emission factor
 - Example: Methane conversion factors of manure management are disaggregated by temperature
 - Check national circumstances
 - Collect activity data
- Major update of country-specific methodology
 - Quality Assurance
 - Verify with lower Tier Method

RECALCULATION BETWEEN 2014 AND 2015 SUBMISSIONS

Main New Emission Sources and Removal Sinks

SOURCE and SINK (CRF number)	Emissions in FY2012 (Submitted in 2015) [kt CO ₂ eq.]			
Abandoned Underground Mines (1.B.1)	466			
Fugitive Emissions Associated with the Geothermal Power Generation (1.B.2)	266			
CO ₂ Transport and Storage (1.C)	NO			
Caprolactam, Glyoxal and Glyoxylic Acid Production (2.B.4)	822 (incl. confidential data)			
Titanium Dioxide Production (2.B.6)	51			
Ethylene Oxide Production (2.B.8)	С			
Carbon Black Production (2.B.8)	C			
TFT Flat Panel Display (2.E.2)	263			
Photovoltaics (2.E.3)	IE			
Urea Application (3.H)	162			
Indirect N ₂ O emissions (3.B.5.) from Manure Management	1180			
Harvested Wood Products (HWP) (4.G)	308			
Biological Treatment of Solid Waste (5.B.)	259			
Open Burning of Waste (5.C.2.)	NO			

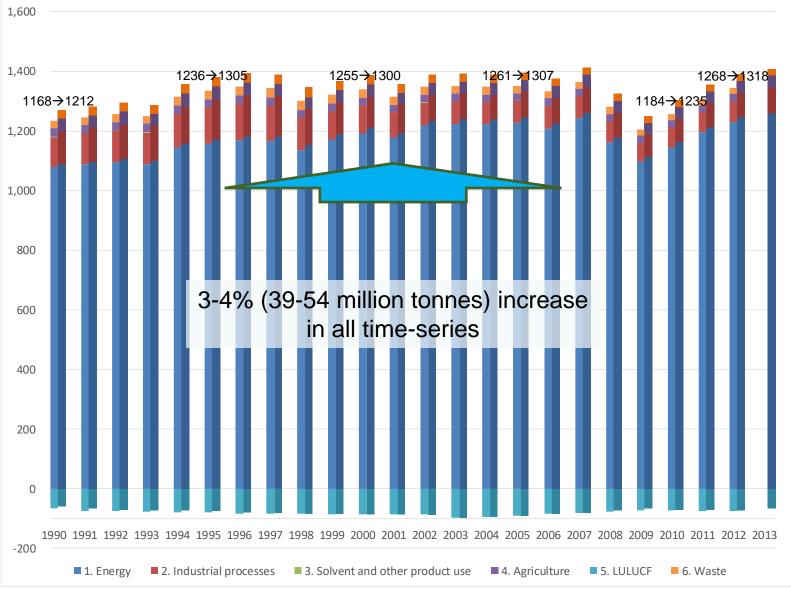
Estimates between SAR and AR4

GAS	GWP		Submitted in 2014	Estimate	Difference
	SAR	AR4	FY2012(SAR)	FY2012(AR4)	
Carbon dioxide	1	1	1275.61	1275.61	0.00
Methane	21	25	20.01	23.82	3.81
Nitrous oxide	310	298	20.23	19.45	-0.78
Hydrofluorocarbons (HFCs)					
HFC-23	11,700	14,800	0.10	0.12	0.03
HFC-32	650	675	0.78	0.81	0.03
HFC-125	2,800	3,500	3.36	4.20	0.84
HFC-134a	1,300	1,430	3.38	3.71	0.34
HFC-152a	140	124	0.14	0.12	-0.02
HFC-227ea	2,900	3,220	0.09	0.10	0.01
Mix			15.08	18.10*	3.02
Perfluorocarbons (PFCs)					
Perfluoromethane – PFC-14	6,500	7,390	0.01	0.01	0.00
Perfluoroethane – PFC-116	9,200	12,200	0.00	0.00	0.00
Perfluorocyclobutane – PFC-318	8,700	10,300	0.00	0.00	0.00
Mix			2.75	3.41**	0.66
Sulphur hexafluoride (SF ₆)	23,900	22,800	1.59	1.51	-0.07
Total			1343.11	1350.97	7.86

(Million tonnes CO_2 eq)

* Implied GWP of Commercial Refrigeration

** Average of PFCs


Trial Estimation, Amount of Change due to Update

1. $Energy$ +11.16 +10.99 +11.5 New Sources* +9.75 +10.34 +10.84 Revised Methodology* +1.25 +0.48 +0.52 Revised GWP +0.15 +0.18 +0.19 2. IPPU +5.50 +11.10 +14.55 Revised Methodology* +4.22 +6.26 +6.99 Revised Methodology* +1.65 +1.66 +1.25		
New Sources* +9.75 +10.34 +10.80 Revised Methodology* +1.25 +0.48 +0.52 Revised GWP +0.15 +0.18 +0.19 2. IPPU +5.50 +11.10 +14.50 New Sources* +4.22 +6.26 +6.99 Revised GWP -0.37 +3.18 +6.26	FY2012	
Revised Methodology* +1.25 +0.48 +0.52 Revised GWP +0.15 +0.18 +0.19 2. IPPU +5.50 +11.10 +14.50 New Sources* +4.22 +6.26 +6.99 Revised GWP +1.65 +1.66 +1.25 Revised Methodology* +1.65 +1.66 +1.25	-	
Revised GWP +0.15 +0.18 +0.19 2. IPPU +5.50 +11.10 +14.50 New Sources* +4.22 +6.26 +6.99 Revised Methodology* +1.65 +1.66 +1.25 Revised GWP -0.37 +3.18 +6.26)	
2. IPPU +5.50 +11.10 +14.50 New Sources* +4.22 +6.26 +6.99 Revised Methodology* +1.65 +1.66 +1.25 Revised GWP -0.37 +3.18 +6.26		
New Sources* +4.22 +6.26 +6.99 Revised Methodology* +1.65 +1.66 +1.25 Revised GWP -0.37 +3.18 +6.26		
Revised Methodology* +1.65 +1.66 +1.25 Revised GWP -0.37 +3.18 +6.26)	
Revised GWP -0.37 +3.18 +6.26		
	+1.25	
	+6.26	
3. Agriculture +4.46 +4.03 +4.02	+4.02	
New Sources* +2.71 +2.28 +2.28		
Revised Methodology* +0.48 +0.57 +0.72	+0.72	
Revised GWP +1.27 +1.17 +1.02	+1.02	
5. Waste +2.36 +1.88 +1.54		
New Sources*		
Revised Methodology* +0.50 +0.73 +0.75		
Revised GWP +1.86 +1.14 +0.79		
Total excl. LULUCF +23.48 +27.99 +31.57	,	

* Including GWP revision (Source: Committee for the GHG Emissions Estimation Methods) (Million tonnes CO₂ eq)

Recalculation between 2014 and 2015 submission

Incl. LULUCF 2014 submission→2015 submission

(Million tonnes CO_2 eq)

LINKAGE BETWEEN CALCULATION SYSTEM AND CRF

Calculation files: Japan's case (1)

- Microsoft Excel is used (offline)
- Each calculation file is named by sector/category and level of work it contains
 - Level 1: Files for data input
 - Level 2: Files for calculation of emission factors and activity data
 - Level 3: Files for calculation of emissions
 - Level 4: Files for summary of emissions/QC check, and transferring data to the CRF Reporter
 - Level 5: Files for output to NIR tables and graphs

For example: The file with the title of "**1B-L3-2020**" is the calculation file of the emissions from the 1B category (fugitive emissions from fuels) prepared for the 2020 submission

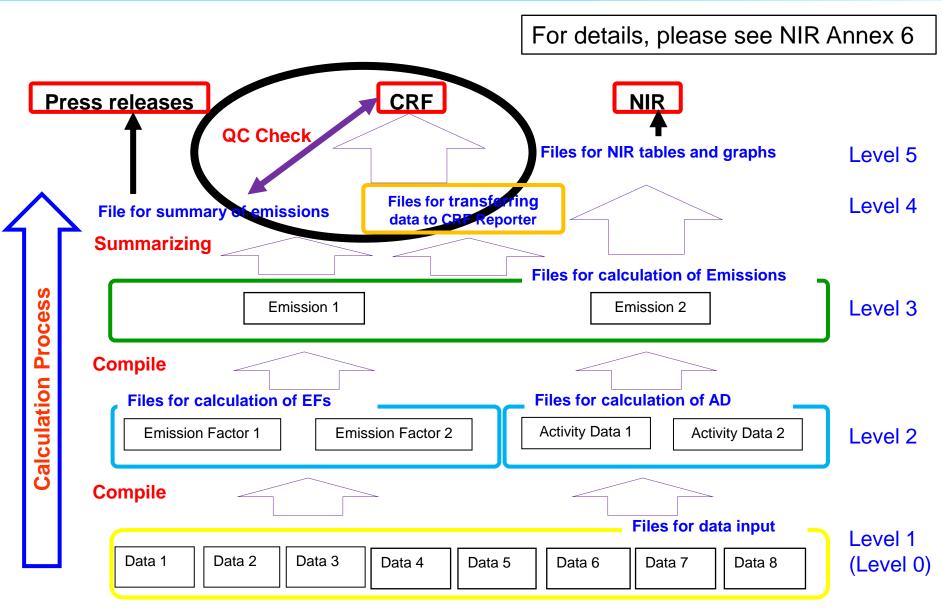
Calculation files: Japan's case (2)

Each calculation file covers the whole time-series, enabling the compiler to see the trend, and also align data with the CRF entry format

	Unit	1990	1991	•••	References
Activity data of source i					Statistics of
Emission factor of source i					Default
Emissions of source i					EF*AD

Sample of Level 3 file

Calculation files: Japan's case (3)

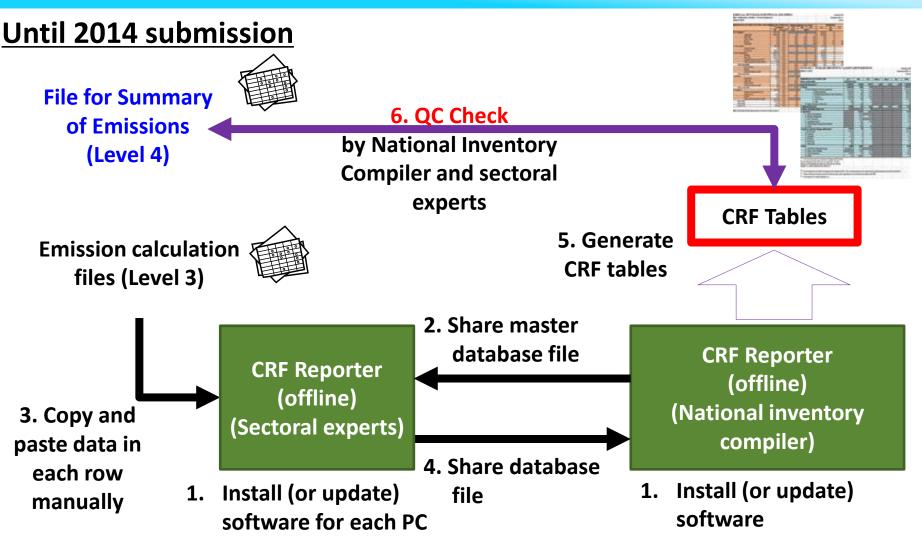

- Calculation is automatically carried through from Level 1 to Level 5, by links
 - emissions are calculated in the L3 files, and then summarized in the L4 file and utilized in the L5 files

• Each year, the calculation files are updated to reflect:

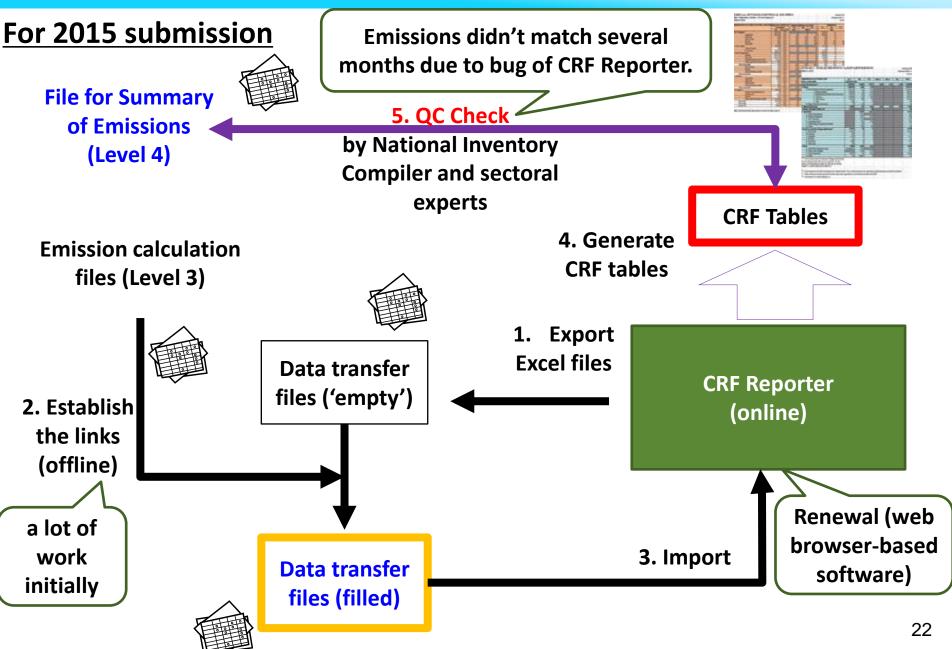
- a new inventory year and any change in methodology (by changing e.g. links, calculation formula)
- most recent year data are added, and older data are modified (if needed)
- The calculation files generally look similar across all sectors with:
 - the whole time-series displayed in a similar manner
 - cells shaded in a similar manner
 - font colored in a similar manner

Helps to intuitively avoid mistakes

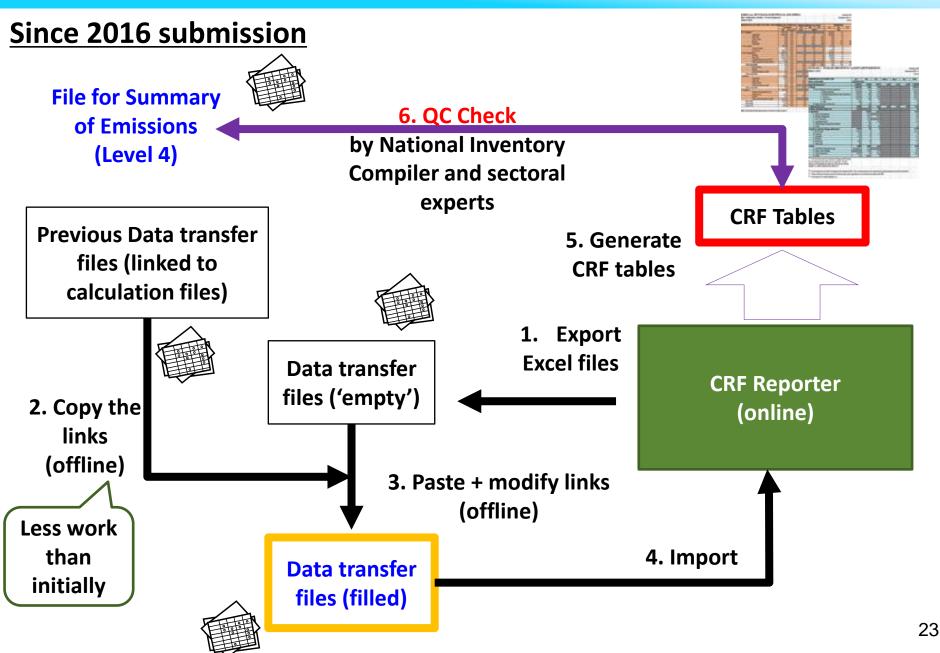
Structure of the Excel File System


Common Reporting Format (CRF)

 The CRF tables are designed to ensure that Annex I Parties report quantitative data in a standardized format and to facilitate comparison of inventory data and trends.


GREENHOUSE GAS SOURCE AND	CO ₂ ⁽¹⁾	CH ₄	N ₂ O	HFCs	PFCs	SF_6	Unspecified mix of HFCs and PFCs	NF ₃	Total
SINK CATEGORIES	CO ₂ equivalent (kt)								
Total (net emissions) ⁽¹⁾	1055484.64	28485.41	19988.39	49715.18	3422.60	2001.35	NO,NA	261.47	1159359.04
1. Energy	1048150.30	1954.63	5799.00						1055903.93
A. Fuel combustion (sectoral approach)	1047757.06	1235.48	5798.41						1054790.95
1. Energy industries	447922.13	356.76	1879.50						450158.39
2. Manufacturing industries and construction	260341.45	558.81	1607.25						262507.51
3. Transport	198811.01	119.70	1635.21						200565.93
4. Other sectors	140682.47	200.20	676.45						141559.12
5. Other	NO	NO	NO						NO
B. Fugitive emissions from fuels	393.24	719.16	0.59						1112.98
1. Solid fuels	0.42	467.89	0.51						468.82
2. Oil and natural gas	392.81	251.27	0.08						644.17
C. CO ₂ transport and storage	NO,NE,NA								NO,NE,NA
2. Industrial processes and product use	45173.64	41.12	924.57	49715.18	3422.60	2001.35	NO,NA	261.47	101539.93
A. Mineral industry	32606.28								32606.28
B. Chemical industry	4347.79	24.89	550.68	132.41	64.13	40.15	NA	19.26	5179.32

Sample of CRF


Transferring data to the CRF Reporter

Transferring data to the CRF Reporter

Transferring data to the CRF Reporter

For the use of the CRFs and Reporter...

- It is important to establish an inventory calculation system that is easy to use for newcomers, clear, and therefore stable
- A good calculation system is adaptable to 1) countryspecific methodology modification, 2) changes in reporting formats/software in the future

>>> Although setting up the system and changing it in the future will require a lot of work, <u>IT ISN'T DIFFICULT</u>

Summary of presentation

- Adapting to new GLs leads to a huge change for inventories.
- Adapting to new GLs may trigger improvement of methodologies (higher Tiers, Models).
- It's important to allocate enough time for discussion of methodologies.
- It's essential to allocate enough time to QC.
 - QC is more difficult than usual: various changes may happen for one source (e.g., not only change of EF but also GWP), posing complications for checking the reasons for recalculation.
- The impact of recalculation is not small.
- The recalculation occurs not only for the most recent year but also for previous years.
- There may be implications for the base year for emission reduction target.
- Although setting up the calculation system and changing it in the future will require a lot of work, it isn't difficult.

Thank you for your attention

https://www.nies.go.jp/gio/en/index.html www-gio@nies.go.jp

