

Agriculture WG in WGIA 7

- Understanding of Country-Specific EFs development
- Availability to the other country of CS-EFs, and possibility of joint research
- Exchange agriculture information (including mitigation potential)

Chair: Kazuyuki Yagi

Rapporteur: Batimaa Punsalmaa

Time Schedule (WGIA7 Day 3, 9:30~12:20)

Discussed

CS-EFs for Livestock Manure Management

Koki Maeda (NARO)

CS-EFs for Soils and Rice Cultivation

Kazuyuki Yagi (NIAES)

CS-EFs for Rice Cultivation in Philippine

Leandro Buendia

CS-EFs in Indonesia

Prihasto Setyanto (Indonesia)

Agricultural Mitigation Potential

Kohei Sakai (GIO)

Short information by Vietnam, Mongolia, Myanmar

GHG Emission from Livestock waste management

Koki Maeda

National Agricultural and Food Research Organization (NARO) National Agricultural Research Center for Hokkaido Region

Measurement of GHG emission from cattle manure composting process

Emission Factor

		Dairy Cattle	Non-dairy Cattle	Swine	Hen Broiler	(%)
CH ₄	Pit Storage	3.9	3.0	8.7		
	Sunlight Drying	0.2	0.2	0.2	0.2	
	Composting (feces)	0.044	0.034	0.097	0.14	
	Composting (feces and urine mixed)	3.8	0.13	0.16	0.14	
	Deposition	0.4	0.4	0.4	0.4	
	Incineration	0.044	0.034	0.097		
	Wastewater management	0.0087	0.0067	0.019		
N ₂ O	Pit Storage	0.1				
	Sunlight Drying	2.0				
	Composting (feces)	0.25				
	Composting (feces and urine mixed)	2.4	1.6	2.5	2.0	
	Deposition		0.1			
	Incineration		2.0			
	Wastewater management		5.0			

Established by data of Japan Default value of IPCC Guideline

National Inventory for Japan N₂O from agricultural soils

Adopted EFs

Direct N₂O: Mineral fertilizer/Animal manure

Paddy rice: 0.31 (\pm 0.31) % (IPCC default values)

Tea: 2.90 (±1.82) % (from national data analysis)

Other crops: 0.62 (±0.48) % (from national data analysis)

Direct N₂O: Crop residues/Legumes IPCC default values

Direct N₂O: Organic soils

Paddy: 0.30 kg N₂O-N/ha/year (from national data)

Upland: IPCC default values (similar to national data)

Indirect N₂O

Atmospheric deposition (IPCC default values)

Leaching and run-off: 1.24 % (IPCC default values)

Relationship between N inputs and N₂O emissions from <u>upland fields</u> with <u>different soil drainage type</u> (measurement period more than 90 days)

Country-specific Emission Factors for Rice Cultivation in the Philippines

7th Workshop on GHG Inventories in Asia 7-10 July 2009, Seoul, Republic of Korea

Leandro Buendia

Team Leader, Agriculture Sector of the Philippine SNC GHG

Inventory

The IRRI International Research Program on Methane Emissions from rice fields in Asia

- Automated closed chambers measuring system: 24 hours/day for the whole growing season; 2-3 cropping seasons.
- Five countries (8 stations):
 - China (2)
 - India (2)
 - Indonesia (1)
 - Philippines (2)
 - Thailand (1)

e. Emil. pione front lice Econystème le Ania Annam Lamini mos sois

All findings were published in a book "Methane Emissions from Major Rice Ecosystems in Asia", Development in Plant and Soil Sciences, Kluwer Academic Publishers

NAME AND ADDRESS OF THE OWNER.

EFs for rice cultivation in the Philippines

Variety	Water Management	Organic amendment	Cropping Season	Emission Factor, kg/ha/day	
IR72	Continuous flooding	none	dry season	1.46 (0.64 - 2.27)	
IR72	Continuous flooding	none wet season		2.95 (1.39 -5.16)	
Source: Cor	ton et al. 2000: Wassmann e	et al. 2000			

TABLE 5.11 DEFAULT CH ₄ BASELINE EMISSION FACTOR ASSUMING NO FLOODING FOR LESS THAN 180 DAYS PRIOR TO RICE CULTIVATION, AND CONTINUOUSLY FLOODED DURING RICE CULTIVATION WITHOUT ORGANIC AMENDMENTS				
	Emission factor	Error range		
CH ₄ emission (kg CH ₄ ha ⁻¹ d ⁻¹)	1.30	0.80 - 2.20		

Source: Yan et al., 2005

INDONESIA EXPERIENCE IN DETERMINING COUNTRY SPESIFIC EMISSION FACTOR IN AGRICULTURE SECTOR

Dr. Prihasto Setyanto Prof. Dr. AK Makarim Prof. Hidayat Pawitan Prof. Iswandi Anas Dr. Le Istiqlal Amien Elza Sumaini

Rice cultivation scaling factors

- 1. Water regimes
- 2. Soil Types
- 3. Rice varieties
- 4. Organic matter
- 5. Establishment of herbicides
- 6. Crop establishment

Adjusted scaling factor for water regimes and soil correction factors

Category	Sub-category			SF (adapted from IPCC Guidelines 1996)	Adjusted SF (based on current studies in Indonesia)	Adjusted CF from different soil types of Indonesia
Upland	None		0			
Lowland	Irrigated Continuously Flooded		1.0	1.00		
		Intermittently Flooded	Single Aeration	0.5 (0.2-0.7)	0.46 (0.38-0.53)	
			Multiple Aeration	0.2 (0.1-0.3)		
	Rainfed	Flood Prone		0.8 (0.5-1.0)	0.49	
		Drought Prone		0.4 (0-0.5)	(0.19-0.75)	
	Deep Water	Water Depth 50	-100 cm	0.8 (0.6-1.0)		
		Water Depth < 5	50 cm	0.6 (0.5-0.8)		

Summary

- >CS-EFs development in agricultural sector
 - enteric fermentation

Mongolia, India and Japan

- manure management

Japan

- rice cultivation

Cambodia, India, Japan, Philippines, Thailand and Vietnam

- N₂O emission from soils

Japan

Participants mentioned that CS EFs is not always the best case.

Summary

➤ Technical paper for "Challenges and opportunities for mitigation in the agricultural sector" was released in 21 Nov. 2008. ("FCCC/TP/2008/8") –Kohei Sakai

- Mitigation potential

 Many research have done: management rice cultivation

 management of fertilizer application, soil carbon

 sequestration
- Availability to the other country of CS-EFs

Summary

About WGIA-EFDB

There is considerable amount of information

What could be discussed in WGIA8 and in future WGIA?

To share experiences (software, tools) how to move from simple tier 1 to tier 2 beyond SNC

To combine LULUCF and Agriculture sector

To focus on agricultural soil and livestock

To discuss about mitigation options in sub-sectors of AS

To discuss on a possibility to separate rice cultivation from other crops

Thank you for your attention

