7th Workshop on Greenhouse Gas Inventories in Asia 7-10 July 2009, Seoul, Korea

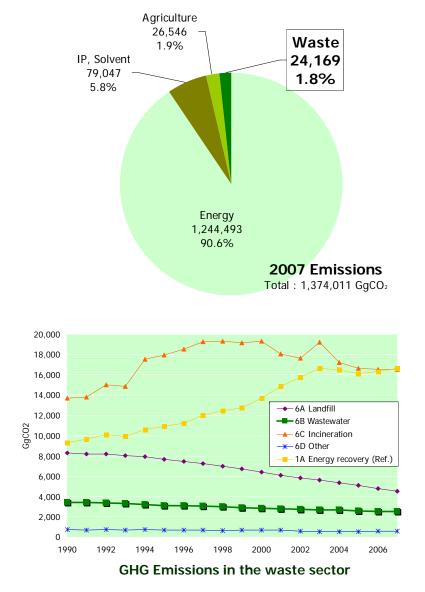
GHG Emissions from Wastewater Treatment and Discharge in Japan

Hiroyuki Ueda

SUR, Japan Cooperative Researcher, GIO, NIES

> ***** 数理計画 SUR

Outline


- Introduction of Japan's emission estimations from wastewater treatment and discharge (WWTD, 6.B)
 - Structure of 6.B WWTD category* in Japan's inventory
 - □ CH₄ and N₂O emission sources in 6.B
 - □ EFs, AD and methodologies

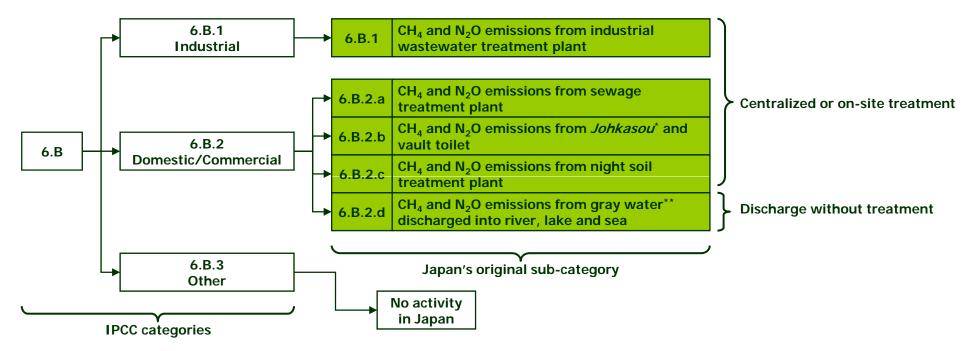
Sharing experience and information exchange

- Early and well-planned preparation
- Prioritization of targets
- Process for improvement

^{*} In the annual inventory, Japan reports GHG emissions as "6.B wastewater handling" according to FCCC/CP/2002/8. However, this presentation uses more appropriate definition of "wastewater treatment and discharge (WWTD)" from 2006GL instead.

Overview of GHG emissions in Japan

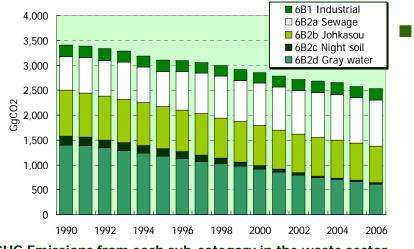
Japan's 2007 inventory*

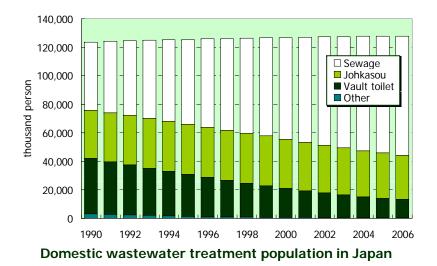

- Emissions from the waste sector amounted 24,169 GgCO₂ or 1.8 per cent of total.
- Emissions from 6.B amounted 2,528 GgCO₂ or 10.5 per cent of the waste sector.
- Emissions from 6.B decreased by 25.9 per cent from 1990 to 2007. The key driver was the decrease of emission from gray water discharged into river, lake and sea.

* Japan has submitted 2007 data inventory to UNFCCC in April 2009.

Structure of Japan's 6.B inventory

5 sub-categories in 6.B

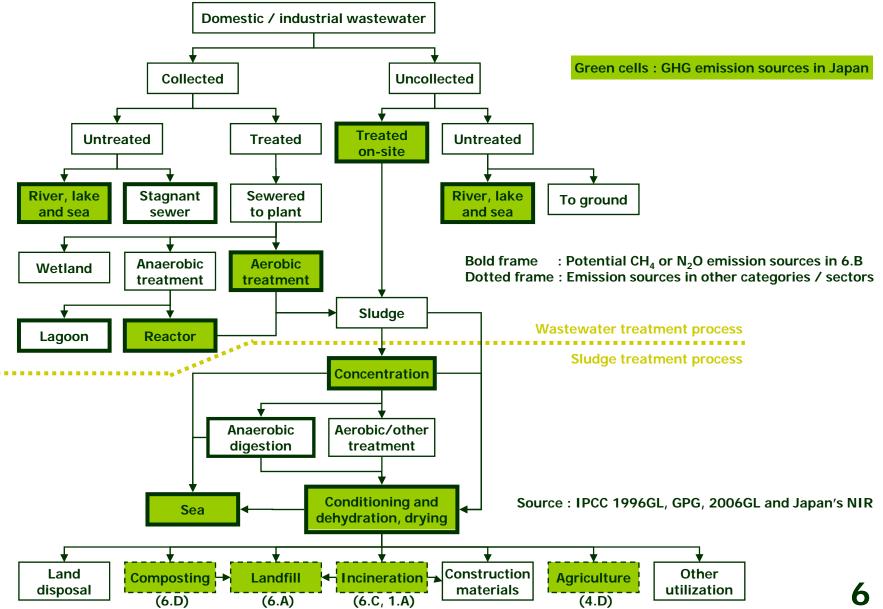

Japan divides IPCC 6.B category into 5 original sub-categories according to methodologies for GHG emission estimations.


* Johkasou : Japan's original on-site domestic wastewater treatment system

**Gray water: Miscellaneous domestic wastewater except night soil

Emissions of Japan's 6.B inventory

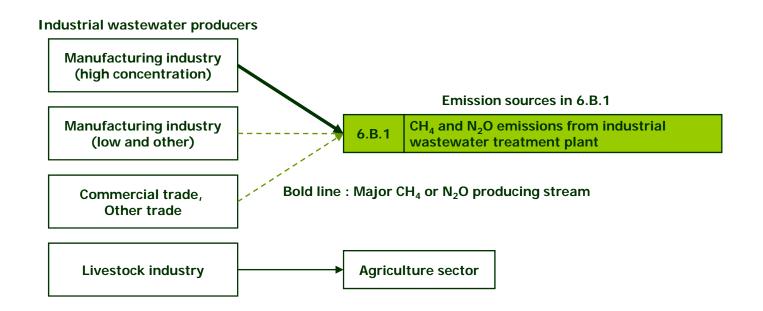
GHG Emissions from each sub-category in the waste sector

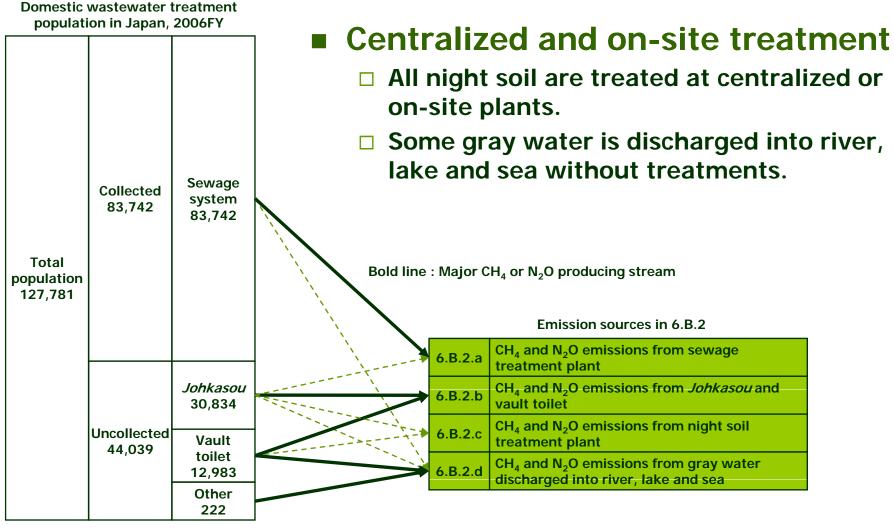

Continuous decrease since 1990

- In 1990, the largest emission source in 6.B was 6.B.2.d, however, decreased by 785 GgCO₂ or 56.0 per cent between 1990 and 2006*.
- This decline has contributed to the decrease of 6.B total emissions (882 GgCO₂ from 1990 to 2006).
- The key driver for the decline of 6.B.2.d was the progress of conversion of vault toilet to sewage system.

*In 2009 inventory, 2007 data is in preparation and 2006 data was substituted.

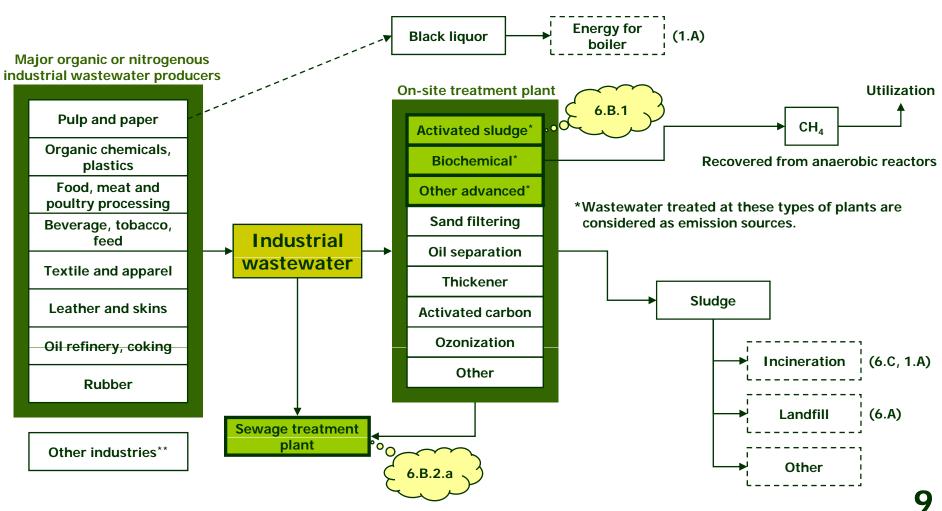
7th Workshop on Greenhouse Gas Inventories in Asia


Typical emission sources in 6.B


Industrial WWT system in Japan

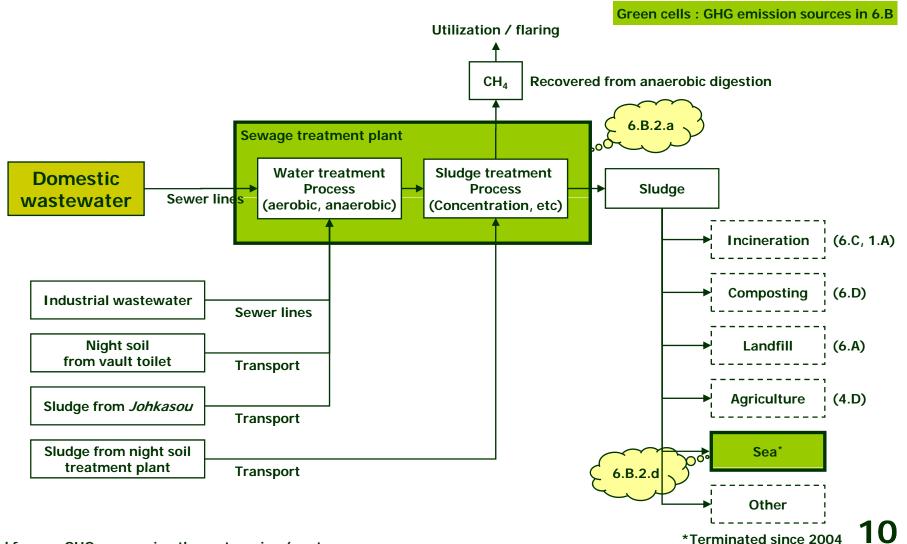
On-site treatment

- Every industries that produce polluted wastewater are required to treat the polluted wastewater by on-site plants according to the Water Pollution Control Law.
- □ Wastewater from livestock industry is considered in the agriculture sector, not in 6.B, according to IPCC GL.

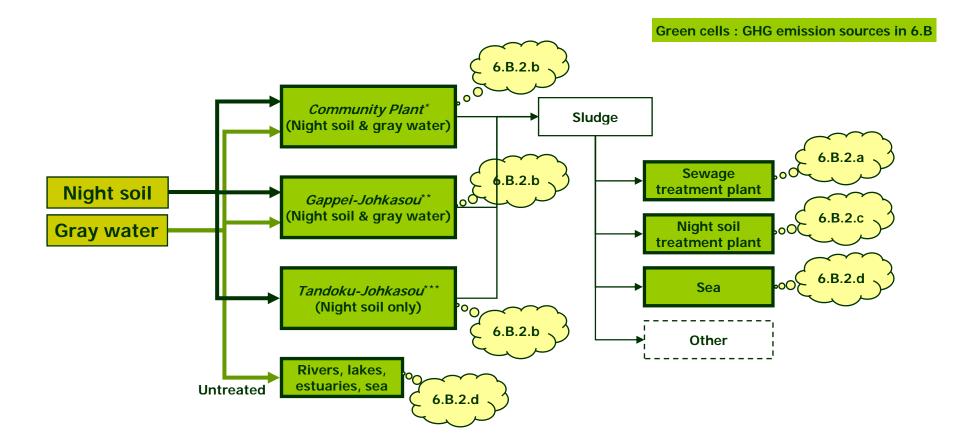

Domestic WWT system in Japan

(Thousand persons)

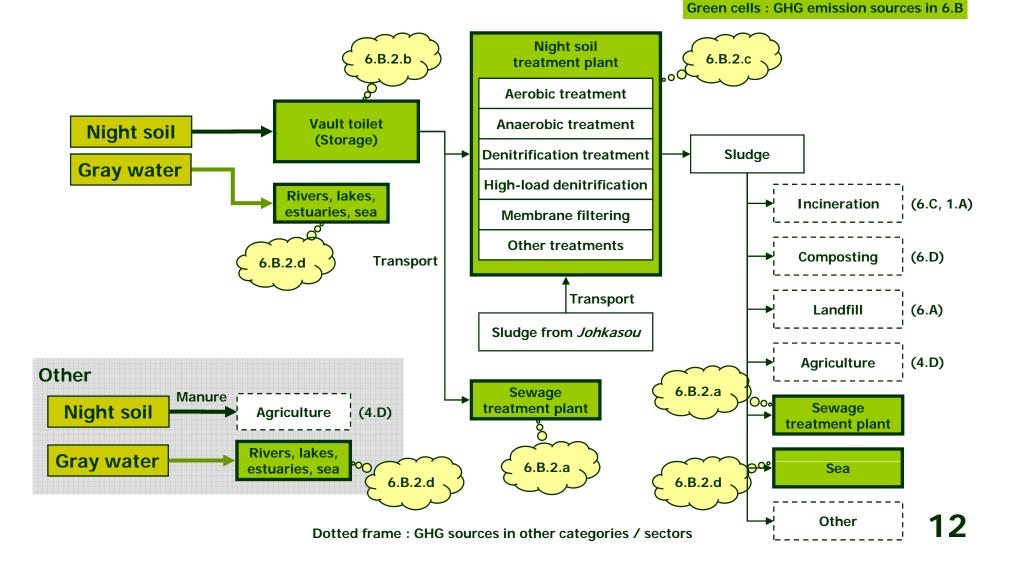
Green cells : GHG emission sources in 6.B


GHG sources in Industrial wastewater treatment system

**Other industries are not considered as an emission source.


Dotted frame : GHG sources in other categories / sectors

GHG sources in Sewage treatment system


7th Workshop on Greenhouse Gas Inventories in Asia

GHG sources in Johkasou system

- * Community Plant : collectively treats domestic wastewater and have similar features to a large-scale Gappei-Johkasou.
- ** *Gappei-Johkasou* : is designed for both night soil and gray water treatment at household.
- *** Tandoku-Johkasou: is an old-type Johkasou and treats only night soil. Newly installation has been prohibited since 2001.

GHG sources in Vault toilet and other system

Equation for CH₄ estimation

Japan's country specific equation for CH_4 is as follows.

- Japan's country specific equation for 6.B.2.a, 6.B.2.b and 6.B.2.c uses m³ or person as AD, according to domestic research.
- Basic theory is almost the same with IPCC equation^{*}, that uses kg of organic matter (BOD or COD) as AD. *Equation 5.5 in GPG and 6.1, 6.4 in 2006GL
- \square Recovered CH₄ from anaerobic reactor or digestion are not used for CH₄ because country specific EF is not " CH_4 production" but " CH_4 emission".

CH_4 Emission = EF • AD

EF : CH_4 emissions per m³ (kgCH₄/m³) or person (kgCH₄/person) AD: treated wastewater (m³) or person (person)

	Sub-category	Method	AD	EF	1
6.B.1	Industrial wastewater treatment plant	D	kg BOD	CS	·
6.B.2.a	Sewage treatment plant	CS	m ³	CS	CS: Country Specific D : Default value or
6.B.2.b	Johkasou and vault toilet	CS	person	CS	GL, GPG.
6.B.2.c	Night soil treatment plant	CS	m ³	CS	
6.B.2.d	Gray water discharged into river, lake and sea	D	kg BOD	D	13

Summary for method, AD and EF of CH₄ estimation in Japan

Equation for N₂O estimation

■ Japan's country specific equation for N₂O is as follows.

- Japan's country specific equation for 6.B.2.a and 6.B.2.b uses m³ or person as AD, according to domestic research.
- Basic theory is almost the same with IPCC equation^{*}, that uses kg of nitrogen or person as AD.
 *Equation 6.7, 6.9 in 2006GL

N₂O Emission = EF • AD

EF : N₂O emissions per m³ (kgN₂O/m³) or person (kgN₂O/person) AD : treated wastewater (m³) or person (person)

	Sub-category	Method	AD	EF	1
6.B.1	Industrial wastewater treatment plant	D	kg N	CS	
6.B.2.a	Sewage treatment plant	CS	m ³	CS	CS: Country Specific D : Default value or
6.B.2.b	Johkasou and vault toilet	CS	person	CS	GL, GPG.
6.B.2.c	Night soil treatment plant	D	kg N	CS	
6.B.2.d	Gray water discharged into river, lake and sea	D	kg N	D	

6.B.1 GHG from Industrial wastewater treatment plant

Methodology, EFs and AD

- Emissions from activated sludge or anaerobic treatment of industrial wastewater that contain high concentration of organic matter or nitrogen are estimated due to domestic research.
- □ As country specific EF for CH₄ or N₂O from industrial wastewater treatment are unavailable, EFs of domestic wastewater are substituted.
- As the concentration of industrial wastewater differs from domestic, EFs (kgCH₄/m³, kgN₂O/m³) are converted to (kgCH₄/kgBOD, kgN₂O/kgN).
- Statistical data of the volume (m³) of industrial wastewater treated with activated sludge or anaerobically, multiplied by BOD or nitrogen concentration of each industry, are used as AD.

Emission = EF • AD

- $EF: CH_4$ or N_2O emissions per kg or BOD (kgCH₄/kgBOD) or N (kgN₂O/kgN)
- AD: BOD or N in the wastewater treated with activated sludge or anaerobically (kgBOD, kgN)

GHG	Method	AD	EF
CH ₄	D	kg BOD	CS
N ₂ O	D	kg N	CS

Summary for method, AD and EF of industrial wastewater treatment plant

6.B.2.a GHG from Sewage treatment plant

- Methodology, EFs and AD
 - IPCC GL indicates aerobic system may not be CH₄ sources. However, Japan has detected CH₄ production and regarded it as the emission source as well as anaerobic (AO, A2O and A2) system.
 - **EF** is the mean value of measured EFs at 14 plants (CH_4) and 8 plants (N_2O). Both wastewater and sludge treatment process are considered.
 - Statistical data of the volume (m³) of all wastewater treated at sewage treatment plants except primary treatment are used as AD.

Emission = EF • AD				
	EF : CH_4 or N_2O emissions per m ³ (kg CH_4/m^3 , kg N_2O/m^3)			
	AD : Volume of all wastewater treated at sewage treatment plants (m ³)			

GHG	Method	AD	EF
CH ₄	CS	m ³	CS
N ₂ O	CS	m ³	CS

Summary for method, AD and EF of sewage treatment plant

6.B.2.b GHG from Johkasou and vault toilet

Methodology, EFs and AD

- Emissions are calculated by 3 types of *Johkasou* including *Community Plant*, *Gappei-Johkasou* and *Tandoku-Johkasou*. EFs are the mean value of measured EFs at each *Johkasou*.
- Vault toilet is not *Johkasou* but storage tank of night soil. Its GHG producing process is unknown but seems to be similar with *Tandoku-Johkasou*, therefore, emission from vault toilet is calculated by the same method and EF of *Tandoku-Johkasou*.
- □ Statistical data of the treatment population (person) of each types of *Johkasou* and vault toilet are used as AD.

Emission = $\sum (EF \iota \bullet AD \iota)$

 $EF_{l}: CH_{4}$ or $N_{2}O$ emissions per person at *Johkasou* l (kgCH₄/person, kgN₂O/person) ADl: Treatment population at *Johkasou* l (person)

GHG	Method	AD	EF
CH ₄	CS	m ³	CS
N ₂ O	CS	m³	CS

Summary for method, AD and EF of Johkasou and vault toilet

6.B.2.c GHG from Night soil treatment plant

- Methodology, EFs and AD
 - Emissions are calculated by every types of treatment methods in the night soil treatment plant*.
 - CH₄ EF for anaerobic, denitrification and high-load denitrification are set from domestic research results. EF for the rest are substituted by the average of denitrification and high-load denitrification.
 - N₂O EF for high-load denitrification and membrane filtering are set from domestic research results^{**}. EF for the rest are substituted by the EF of high-load denitrification because of lack of research output.
 - □ Statistical data of the volume of night soil treated at plants (CH_4) and the amount of nitrogen included in the night soil (N_2O) are used as AD.

Emission = $\sum (EF \iota \bullet AD \iota)$

 $EF_{l}: CH_{4}$ emissions per m³ (kgCH₄/m³) and N₂O per nitrogen in human waste (kgN₂O/kgN) AD_l: Volume of all wastewater (m³) and nitrogen in human waste (kgN)

Summary for method, AD and EF of night soil treatment plant

GHG	Method	AD	EF
CH ₄	CS	m ³	CS
N ₂ O	D	kg N	CS

* Treatment of aerobic, anaerobic, denitrification, high-load denitrification, membrane filtering and other.

18

**EF of recent plant decreased because of progress of structure standard and maintenance technology.

6.B.2.d GHG from

Gray water discharged into river, lake and sea

Methodology, EFs and AD

- Emissions from gray water and sludge discharged into river, lake and sea without treatment are estimated by IPCC default method* and EFs, because country specific method and EF is unavailable.
- □ Gray water from household which use *Tandoku-Johkasou*, vault toilet or self-treatment and sludge from *Johkasou*, sewage treatment plant and night soil treatment plant are regarded as GHG producing activity.
- Statistical data of the volume (m³) of discharged gray water and sludge, multiplied by BOD or nitrogen concentration of each activity are used as AD.

Emission = **EF** $\bullet \sum$ (**AD** ι)

 $EF : CH_4$ or N_2O emissions per kg or BOD (kgCH₄/kgBOD) or N (kgN₂O/kgN), default value AD₁: BOD or N in gray water and sludge discharged without treatment (kgBOD, kgN)

Summary for method, AD and EF of gray water and sludge discharged into river, lake and sea

GHG	Method	AD	EF
CH ₄	D	kg BOD	D
N ₂ O	D	kg N	D

Sharing experience 1:

Importance of early and planned preparation

- Category 6.B has some specific problems compared with other categories in the waste sector.
 - □ Few or no statistics are available for activity data.
 - Country specific methodologies and EFs are not sufficiently developed.
 - □ The extent of emission sources are diverse and obscure.
 - Condition and mechanism of GHG production are not sufficiently cleared.
 - □ The amount of emissions in 6.B are likely to be much smaller than other categories in the waste sector.

As it takes a long time to make accurate 6.B inventory, early and well-planned preparation is important.

Sharing experience 2 : Importance of prioritization of targets

Human, institutional and financial resources are often limited. However, many things are to be resolved for accurate 6.B inventory.

Prioritization of targets is important.

- □ Estimate major (or all) GHG emissions
- Estimate GHG emissions in both urban and rural areas
- Estimate GHG emissions back to the past year
- □ Improve accuracy of EFs, AD and methodologies
- Make detailed and transparent documents
- □ Apply quality assurance and quality control (QA/QC)
- Estimate uncertainty
- Other

Sharing experience 3 : Procedure for improving 6.B inventory

One of the way to improve 6.B inventory is as follows.

- 1. Understand all emission sources in 6.B (slide 6)
- 2. List all industrial and domestic WWT system (slide 7 and 8)
- 3. List all emission sources in each system (slide 9 to 12)
- 4. Consider methodologies, EFs and AD (slide 13 to 19)
 - Collect available statistics for AD
 - Collect candidates for EF (CS, default, EFDB and other countries)
 - Decide methodology (Tier 1, 2 or 3) according to AD and EF
- 5. List problems to be improved in the future
 - List problems on EF, AD, methodologies in terms of transparency, comparability, completeness, consistency and accuracy
 - Share the experience and exchange information (in the future WGIA)

7th Workshop on Greenhouse Gas Inventories in Asia

Thank you for your attention.

Hiroyuki Ueda (植田 洋行)

Suuri-keikaku (SUR), Japan (株式会社 数理計画) Cooperative researcher, Greenhouse gas inventory office of Japan, NIES ueda_hiroyuki@sur.co.jp