

GHG Emission from Livestock waste management

National Agricultural and Food Research Organization (NARO) National Agricultural Research Center for Hokkaido Region

Koki Maeda

Table 1

	Livestock herd		Manu	re (t/yr)	
	(1,000 head)	Feces	Urine	O.M.	Ν
Daily Cattle	1,533	21,206	6,261	3,424	134.9
Non-daily Cattle	2,890	18,990	6,872	3,452	130.9
Swine	9,745	7,857	14,586	1,644	151.5
Hen	181,664	7,698		1,154	154.0
Broiler	104,950	4,975		746	99.5
total		60,725	27,719	10,421	670.8

88 million t of manure

Excreted as manure

10.4 million t of O.M.0.67 million t of N

/ yr

CH₄ and N₂O emission from Agriculture

Estimation Method

 $\mathbf{CH}_{4} \qquad \mathbf{E} = \sum (\mathbf{EF}_{n} \times \mathbf{A}_{n})$

E: Methane emission (g-CH₄)

EF*n*: Emission factor for treatment method n (g-CH₄/g-OM)

An: Amount of OM contained in manure treated by method n (g-OM)

 $N_2O \qquad E = \sum (EF_n \times A_n) \times 44/28$

E: Nitrous oxide emission $(g-N_2O)$ EF*n*: Emission factor for treatment method *n* $(g-N_2O/g-N)$ A*n*: Amount of N contained in manure treated by method *n* (g-N)

Mixed feces and urine

		Dairy Cattle	Non-dairy Cattle	Swine	Hen Broiler	(%)
	Pit Storage	3.9	3.0	8.7		
	Sunlight Drying	0.2	0.2	0.2	0.2	
	Composting (feces)	0.044	0.034	0.097	0.14	
CH ₄	Composting (feces and urine mixed)	3.8	0.13	0.16	0.14	
	Deposition	0.4	0.4	0.4	0.4	
	Incineration	0.044	0.034	0.097		
	Wastewater management	0.0087	0.0067	0.019		
	Pit Storage		0.1	1		
	Sunlight Drying	A STATE AND	2.0	0		
	Composting (feces)		0.2	25		
N ₂ O	Composting (feces and urine mixed)	2.4	1.6	2.5	2.0	
	Deposition		0.	1		
	Incineration		2.	0		
	Wastewater management		5.	0		

Established by data of Japan Default value of IPCC Guideline

So How Can We Estimate the Emission Factor?

ex) cattle manure static composting process

Measurement of GHG emission from cattle manure composting process

Raw data 1 (gas conc.)

		NH ₃	N ₂ O	CO ₂	CH_4 (ppm
	2007/5/21 11:11	13.6	1.54	1918.3	12.4
	2007/5/21 11:13	16.4	1.53	1912.6	12.8
Pile 1	2007/5/21 11:15	17.2	1.54	1922.5	11.5
	2007/5/21 11:17	17.4	1.55	1924.3	12.1
Change port	2007/5/21 11:19	17.3	1.54	1896.1	12.1
	2007/5/21 11:21	19.9	1.92	1725.2	27.8
State and the	2007/5/21 11:23	23.2	1.95	1779.7	28.2
Pile 2	2007/5/21 11:25	24.9	1.95	1783.4	28.5
	2007/5/21 11:27	25.7	1.95	1762.5	27.4
Change port	2007/5/21 11:29	26.1	1.96	1776.1	27.7
background	2007/5/21 11:31	0.8	0.45	406.4	2.6
	2007/5/21 11:33	5.1	0.44	395.8	2.4
	2007/5/21 11:35	2.4	0.44	393.5	3.2
	2007/5/21 11:37	1.3	0.45	393.7	3.0
	2007/5/21 11:39	0.8	0.45	400.2	2.3
			1		: : :

Raw data 2

Calculation of GHG emission

E (mg/30 min) =

(conc. of outlet air (mg/m³) – conc. of inlet air (mg/m³) × 30(min)/60(min) × ventilation rate (m³/h)

☆ Constant air flow which does not affect the microorganism revitalization
☆ Continuous, accurate measurement of GHG concentrations
☆ Sampling number as many as possible

GHG emission data

Mass balance

Carbon		Nitrogen		
	(%/OM)		(% initial N)	
CH ₄ -C	0.24 - 0.46	N ₂ O-N	1.2 - 1.3	
CO ₂ -C	13.8 - 28.7	NH ₃ -N	4.1 - 7.9	
Mature Product	27.5 -36.7	Mature Product	52.2 - 63.8	

0.2-0.5% of initial OM was emitted as CH₄-C.

1.2-1.3% of initial N was emitted as N₂O-N.

Conclusion

- -0.2-0.5% of initial OM was emitted as CH₄-C
- •1.2-1.3% of initial N was emitted as N₂O-N

during cattle manure composting process.

- Constant air flow which does not affect the microorganism revitalization
- Continuous, accurate measurement of GHG concentrations
- Sampling number as many as possible

Enables precise evaluation of actual GHG emission.

- $\cdot N_2O$ was emitted just after the turnings with spike shapes.
- •The stable isotope analysis indicate that N₂O was emitted mainly from the denitrification process. (Data not shown)

• The accumulated NO₂⁻-N and NO₃⁻-N in the surface indicates the reduction of these inorganic nitrogen seemed to be occurred after the mixing by the turnings.

• The abundance of *amoA* sequences were agreed with the accumulated NO_2 -N and NO_3 -N in the surface of the pile, which suggested that the *Nitrosomonas*-like AOB contribute the nitrification.

Thank you

