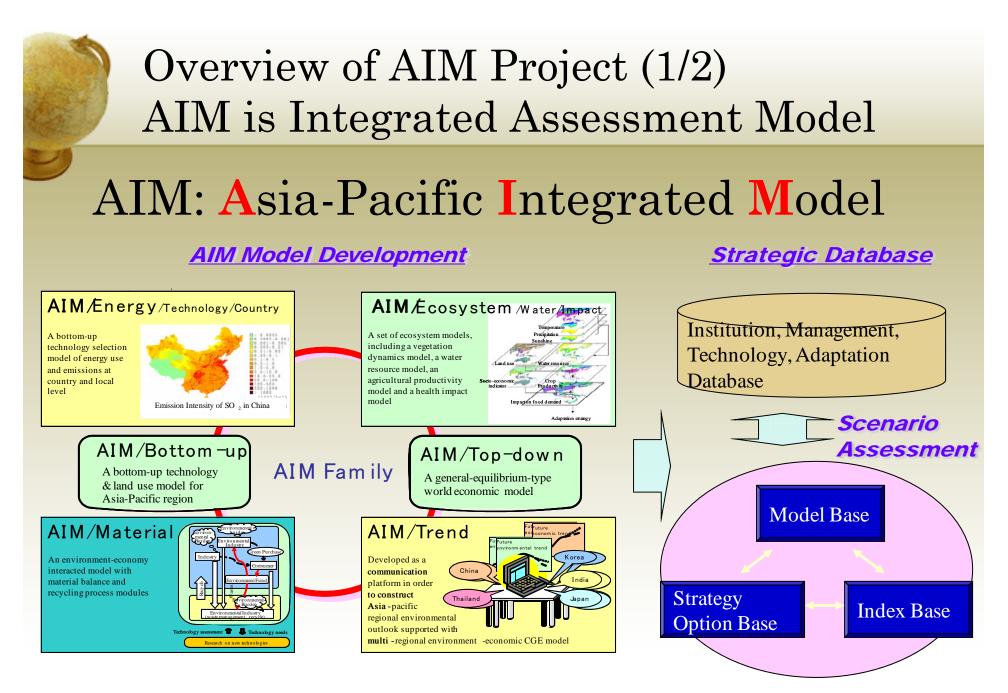


Projection of GHG emissions

Make the inventory and AIM models will give the future pathways

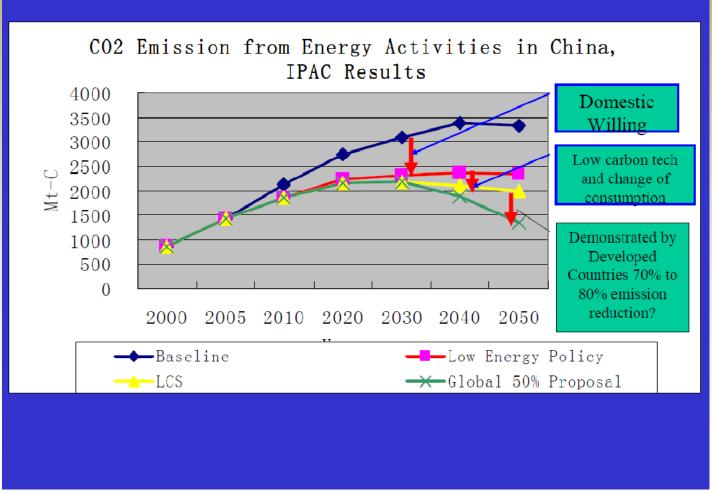

Shuichi Ashina National Institute for Environmental Studies

The 7th Workshop on GHG Inventories in Asia (WGIA7) 7-10 July 2009, Seoul, Republic of Korea

Agenda

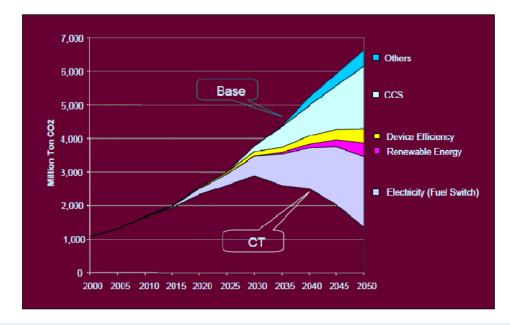
- 1. Overview of AIM Project: Who am I?
- 2. Two approaches for Projection: *Top-down and Bottom-up*
- 3. Lead the way by setting an inventory: *Why is the WGIA important*?
- 4. Examples of Projection by using AIM/ESS: *How do we project*?
- 5. Make a step forward: *What's next?*

INTRODUCTION OF AIM


AIM Website: http://www-iam.nies.go.jp/aim/

Overview of AIM Project (2/2) AIM is Team!

AIM activities with Asian friends(1/3): CO_2 emission projection in China

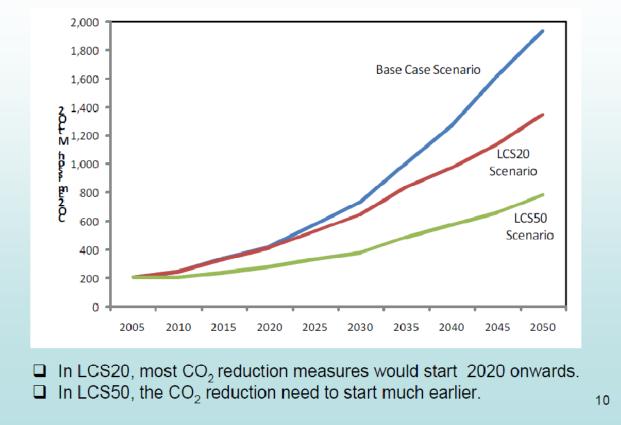


Dr. Jiang Kejun (Energy Research Institute). "Low Carbon Society Scenario up to 2050 for China", The 14th AIM International WS, Tsukuba.

AIM activities with Asian friends (2/3): CO_2 emission projection in India

Vision I: Climate Centric Scenario

- 1. Top-down/Supply-side actions
- 2. High Carbon Price as main instrument
- 3. Climate Focused Technology Push

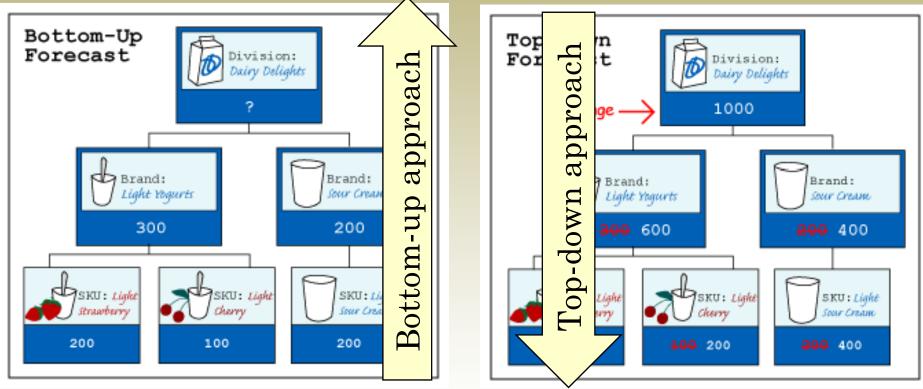


Indian Institute of Management, Ahmedabad, India

Prof. P.R. Shukla (Indian Institute of Management). "Low Carbon Scenarios for India", The 14th AIM International WS, Tsukuba.

AIM activities with Asian friends (3/3): CO_2 emission projection in Thailand

CO₂ emission profiles during 2005-2050 in selected scenarios

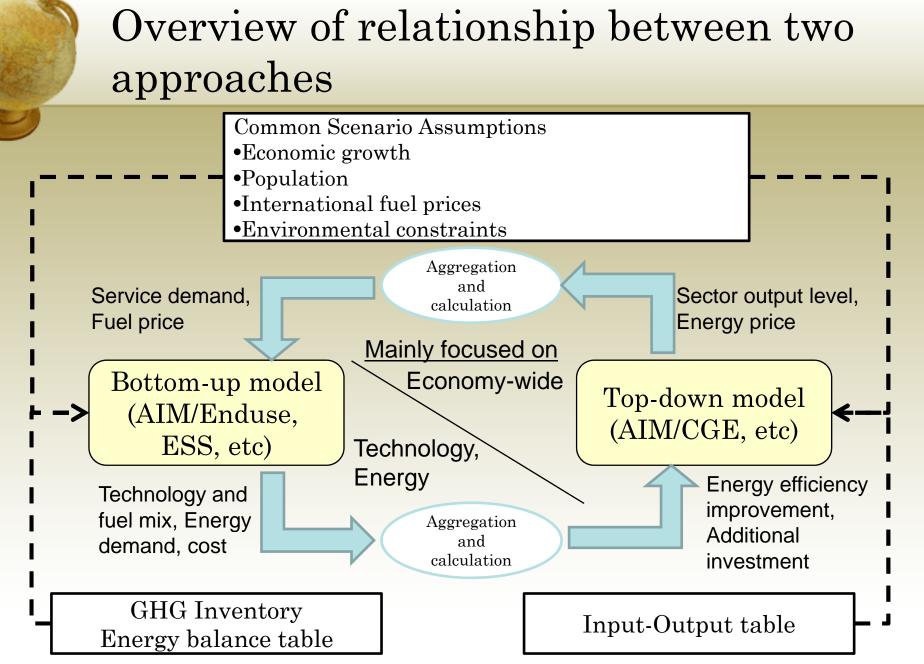


Prof. Ram M. Shrestha and Shreekar Pradhan (Asian Institute of Technology). "Low Carbon Scenarios: Case of Thailand", The 14th AIM International WS, Tsukuba.

WAY TO PROJECTION OF GHG EMISSIONS

Two approaches for Projection: Top-down and bottom-up

Macro economy



Micro economy: Energy and Technology

Comprehensive comparison of Topdown and Bottom-up approach

- Top-down approach
 - Computational General Equilibrium model of <u>macro-</u> <u>economic relations</u> inside a country and with other countries
 - \succ Models in this type emphasize <u>economy-wide</u>
- Bottom-up approach
 - technology-rich description of energy system, options and costs (partial equilibria)
 - ➢ feature sectoral and technological details
 - This is just *"DICHOTOMY"* of the approaches!

There are a lot of <u>Hybrid models which combines the two approach</u> through coupling: part of the CGE economy is described by a bottom up model.

Source: Based on Xu, Y., Jiang, K. and Masui, T. (2007). "CGE Linkage with AIM/Enduse: Assessing Energy Intensity Reduction Target in China", 13th AIM Int'I WS, Tsukuba.

AIM models for projection of GHG emissions from Top-down approach

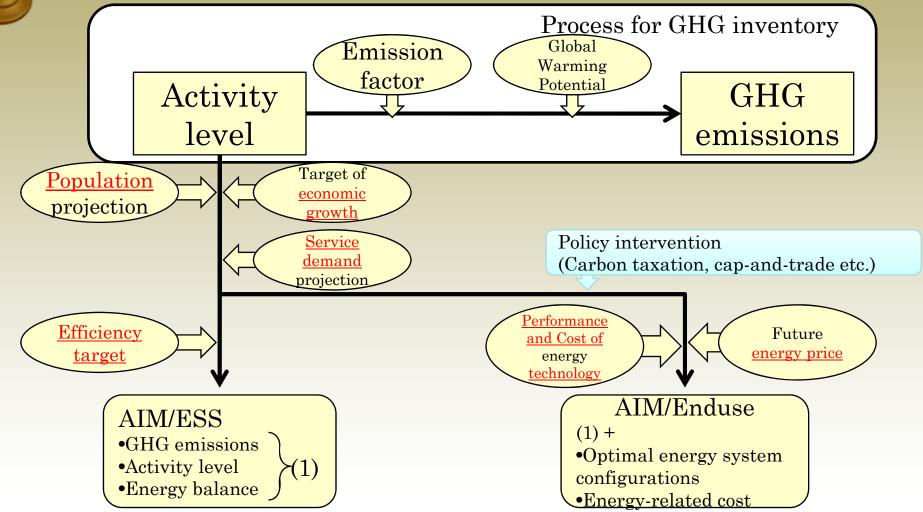
AIM/CGE model:

- General Equilibrium model
- Draws the <u>balanced macro economy</u>, based on social conditions such as population, technology and preference, countermeasures
- Programming language: <u>GAMS</u> (The General Algebraic Modeling System)
- Skills required: <u>Macroeconomics</u> (esp. IO analysis), <u>Mathematics</u> (esp. partial differentiation)

AIM models for projection of GHG emissions from Bottom-up approach

AIM/Enduse model:

- Partial equilibrium model on energy
- <u>Assess individual technologies</u> under the detail technology selection framework
- Programming language: <u>GAMS</u> (The General Algebraic Modeling System)
- Skills required: <u>Microeconomics, Mathematics</u> (esp. Linear Optimization theory), and <u>Energy and System Engineering</u>.


AIM/Energy Snapshot Tool (ESS):

- Snapshot-type tool at a certain point (non-optimization)
- <u>Assess energy balance and GHG emissions</u> among sectors simultaneously
- Programming language: MS Excel (<u>purely spreadsheet-based tool</u>)
- Skills required: <u>Basics of Energy Balance Table</u>

As the information, so the projection

	Top-down	Bottom-up
Activity information from Inventory		\checkmark
Input-Output table of economy	✓	
Socio-economic assumptions		
Population projection	\checkmark	\checkmark
Economic growth	\checkmark	\checkmark
International Fuel Price	\checkmark	\checkmark
Performance and cost of Technology	\checkmark	\checkmark
Environmental constraint	\checkmark	✓

Flow from Inventory to Projection with bottom-up models

Inventory data is one of important basis of bottom-up analysis!

Example (1/2): CO_2 emissions from fossil fuel burning

CO₂ emissions are derived from energy consumption and emission factors.
 CO₂ emissions [tCO₂] =
 Energy consumption [MJ]
 x Emission factor [tCO₂/MJ]
 x Global Warming Potential (1)

Rearrangement of data as tabular form

	Production	0.7	0.0	81.6	0.0	10.5	92.8
	Imports	220.3	54.6	0.0	0.0	175.8	450.7
	Exports & Stock Change	0.2	-15.2	0.0	0.0	-1.7	-16.7
C	TPES	221.2	39.4	81.6	0.0	184.6	526.8
Ы.	Electricity Plants	-6.2	-24.1	-01.6	93.2	-111.0	-130.5
	Petro. Refineries	-214.4	212.7	0.0	0.0	0.0	-1.7
	Other Transformation	-1.2	-2.1	0.0	-0.1	0.1	-3.3
	Own Use / Trans. losses	0.0	-12.3	0.0	-9.3	-4.0	-25.6
	Statistical Differences	0.6	6.3	0.0	0.0	0.6	7.5
	TEC	0.0	219.9	0.0	818	69.5	373.2
	Industry	0.0	93.3	0.0	35.9	50.9	180.1
	Domestic. & Commercial	0.0	37.6	0.0	46.1	18.7	102.4
	Transportation	0.0	89.2	0.0	1.9	0.0	91.1

tro. Hydro/ Elec. Coal/ Total

Projection by AIM/ESS is available

Energy Balance Table!

Supplement: What is Energy Balance Table (EBT)?

- Simple Table Format
- Illustrate general energy flow (production to enduse) of a region
- Flow (in row), Product in column)
 - Input (-), Output (+)

	Crude oil	Petro. Products	Hydro/ Nuclear	Elec.	Coal/ Gas etc.	Total
Production	0.7	0.0	81.6	0_0	10.5	92.8
Imports	220.3	54.6	0.0	0.0	175.8	450.7
Exports & Stock Change	0.2	-15.2	0.0	0.0	-1.7	-16.7
TPES	221.2	39.4	81.6	0.0	184.6	526.8
Electricity Plants	-6.2	-24.1	-81.6	93.2	-111.8	-130.5
Petro. Refineries	-214.4	212.7	0.0	0.0	0.0	-1.7
Other Transformation	-1.2	-2.1	0.0	-0.1	0.1	-3.3
Own Use / Trans. losses	0.0	-12.3	0.0	-9.3	-4.0	-25.6
Statistical Differences	0.6	6.3	0.0	0_0	0.6	7.5
TFC	0.0	219.9	0.0	83.8	69.5	373.2
Industry	0.0	93.3	0.0	35.9	50.9	180.1
Domestic. & Commercial	0.0	37.6	0.0	46.1	18.7	102.4
Transportation	0.0	89.2	0.0	1.9	0.0	91.1

Example (2/2): Non-CO₂ emissions

Non-CO₂ emissions are derived from activity level, emission factors and GWP.
 GHG emissions [tCO₂] =

 Activity level [MJ, t, ha, etc]
 x Emission factor [[t/MJ, t/ha, etc]
 x Global Warming Potential [tCO₂/t]

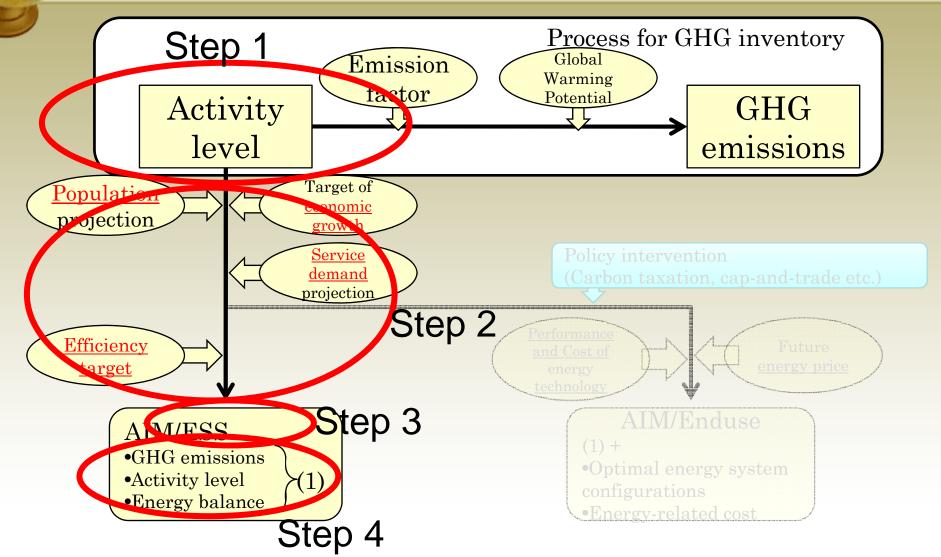
Rearrangement of data as tabular form

	Crude oil	Products	Nuclear	Elec.	Gas etc.	Total
Production	0.7	0.0	81.6	0.0	10.5	92.8
Imports	220.3	54.6	0.0	0.0	175.8	450.7
Exports & Stock Change	0.2	-15.2	0.0	0.0	-1.7	-16.7
C TPES	221.2	39.4	81.6	0.0	184.6	526.8
Electricity Plants	-6.2	-24.1	-01.6	93.2	-111.0	-130.5
Petro, Refineries	-214.4	212.7	0.0	0.0	0.0	-1.7
Other Transformation	-1.2	-2.1	0.0	-0.1	0.1	-3.3
Own Use / Trans. losses	0.0	-12.3	0.0	-9.3	-4.0	-25.6
Statistical Differences	0,6	6.3	0.0	0.0	0.6	7.5
TEC	0.0	219.9	0.0	818	69.5	373.2
Industry	0.0	93.3	0.0	35.9	50.9	180.1
Domestic. & Commercial	0.0	37.6	0.0	46.1	18.7	102.4
Transportation	0.0	89.2	0.0	1.9	0.0	91.1

<u>Non-CO₂ Balance Table</u>

Projection by AIM/ESS is also available₁₉

EXAMPLE OF CO₂ PROJECTION IN JAPAN BY AIM/ESS



Four steps towards emission projection by AIM/ESS

1. Preparations of Energy Balance table in Japan

- 2. Setting future socio-economic conditions
- 3. Projection by AIM/ESS
- 4. Analyzing results

Four steps towards emission projection by AIM/ESS

Step 1: Preparation of Energy Balance Table

2006FY	100	200	400	450	600	700	800		900
	石炭	原油	天然がス	都市がス	原子力発電	電力	熱		合計
2006FY	TJ	TJ	TJ		TJ	тJ	тĴ		ŤJ
1000 一次エネルギー	4805862	9115108	3600591	0	1	0	0		23770374
1100 国内産出	0	32712	148485	0	2656403	0	0		4299732
1200 輪入	4805862	9082396	3452106	0	0	0	0		19470643
1500 総供給	4805862	9115108	3600591	0	2656403	Ō	0		23770374
1600 輪 出	-59	0	0	Ō	0	Ō	Ō		-1009087
1700 供給在庫変動	0	-189967	145407	0	0	0	0		-62158
1900 国内供給	4805802	8925141	3745998	0	2656403	0	0	供給側	22699129
2000 エネルギー転換	-4290961	-9194777	-3695962	1325410	-2656403	3537558	713925		-6916851
2800 純転換部門計	-4353652	-91 65887	-3622118	1343461	-2656403	3920737	718088		-6093486
5000 最終エネルギー消費	420204	0	67853	1325410	0	3537369	713925		15977238
6000 産業	396274	Ō	67145	220549	Ō	1188635	689756		7165572
6100 非製造業	174	Ō	3392	26636	Ō		0		518435
6500 製造業計	396100	Ū.	63753	193912	Ō	1178074	689756		6647137
6520 ^*ル7*紙板紙	0	Ō	205	1223	Ō	127183	242205		389386
6550 化学	8063	Ō	32238	6556	Ō	173877	246660		2415096
6570 窯業土石	159450	0	385	1170	0	78735	9376		354157
6580 鉄鋼	247897	0	24397	63549	0	259649	95019		1760773
6600 機械	1	0	3872	26698	0	31 2961	0		377227
6700 重複補正	-23947	0	-642	-1193	0	-24253	-80253		-143737
6900 他業種·中小製造業	1879	0	0	60621	0	94354	129127		1086569
7000 民 生	23930	0	708	1104862	0	2280318	24169		5060629
7100 家庭	0	0	0	428969	0	1006537	1286		2104917
7500 業務他	23930	0	708	675892	0	1273781	22883		2955712
8000 運 輪	0	0	0	0	0	68415	0		3751037
8100 旅客	0	0	0	0	0	64846	0		2272524
8500 貨物	0	0	0	0	0	3568	0		1478512
9000 最終エネルギー用途消費	420204	0	51223	1325410	0	3537369	713925		14088598
9500 非エネルギー利用	0	0	16630	0	0	0	0		1859710

Source: Comprehensive Energy Statistics by METI (2007)

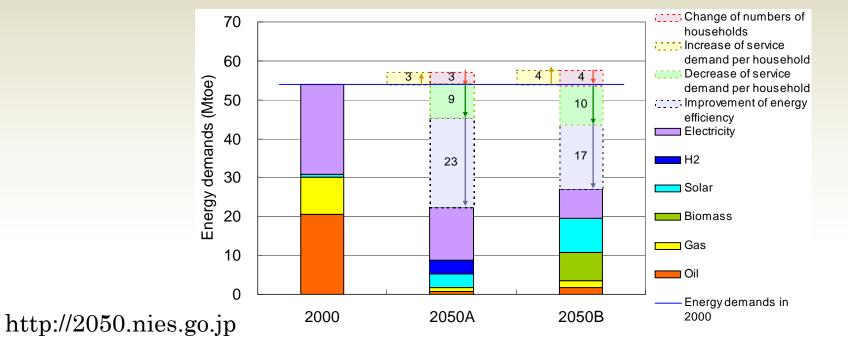
<u>The Energy Balance table is also used for National GHGs</u> <u>Inventory Report of JAPAN</u>

Step 2: Setting future socio-economic conditions (1/2)

Target Yr: 2050	
Vision A	Vision B
Vivid, Technology-driven	Slow, Natural-oriented
Urban/Personal	Decentralized/Community
Technology breakthrough Centralized production /recycle	Self-sufficient Produce locally, consume locally
Comfortable and Convenient	Social and Cultural Values
2%/yr GDP per capita growth	1%/yr GDP per capita growth
	Akemi

http://2050.nies.go.jp

Step 2: Setting future socio-economic conditions (2/2)

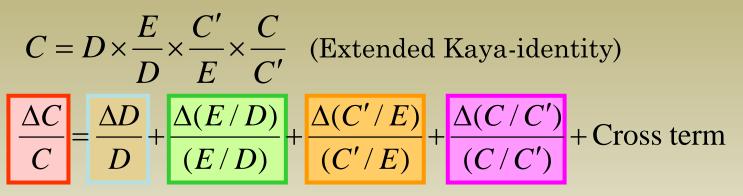

	unit	2000	Ĩ	2050
year	unit	2000	А	В
Population	Mil.	127	94(74%)	100(79%)
Household	Mil.	47	43 <mark>(92%)</mark>	42 (90%)
Average number of person per household		2.7	2.2	2.4
GDP	Tril.JPY	519	1,080 <mark>(208%)</mark>	701 (135%)
Share of production				
primary	%	<mark>2%</mark>	1%	2%
secondary	%	<mark>28%</mark>	18%	20%
tertiary	%	<mark>71%</mark>	80%	79%
Office floor space	Mil.m ²	1654	1,934 <mark>(117%)</mark>	1,718(104%)
Travel Passenger volume	bill. p∙km	1,297	1045(81%)	963(74%)
Private car	%	53%	32%	51%
Public transport	%	<mark>34%</mark>	52%	38%
Walk/bycycle	%	<mark>7%</mark>	7%	8%
Freight transport volume	bill. t∙km	570	608(107%)	490 <mark>(86%)</mark>
Industrial production index		100	126(126%)	90 (90%)
Steel production	Mil.t	107	67(63%)	58(54%)
Etylen production	Mil.t	8	5 (60%)	3 (40%)
Cement production	Mil.t	82	51 (62%)	47(57%)
Paper production	Mil.t	32	18(57%)	26(81%)

Step 3: Projection by AIM/ESS (1/3)

		Sc	cre	en	sh	ot	0	fΑ	IM/	ES	S				
9	(? -) ₹								_070310×ls 耳			cel			
💭 👘 🖓	挿入	ページ レイア	ウト 数	式 デ		校開	表示	開発 4	TOK拡張ツール						
	Tahoma BBI <u>U</u> ~	・ () ・ () フォント	9 • A • <u>A</u> •		= <mark>=</mark> ;	. ≫- I := :=		り返して全体 Vを結合して「			▼ .00 .00 .00 .00	▲ 条件付き デ 書式 * 書	ーブルとして セノ ま式設定 - スタイ スタイル	レの (ル・) (ル・)	副除され
セキュリティの警告 マクロが無効にされました。 オプション…															
E16 f Mi-t															
ABC D	ustrial s	F 6 Sector	-	J K	L	MN	0 P	Q R	S T U	V W	X Y	Z AA	AB AC AD	AE AF AG	AH AI
2	ervice demand						4-6 Ener	gy consumpt	ion / CO2 Emissio	n					
5 6 7 Agriculture 9 Mining 10 Construction 11 Food 12 Textile 13 Paper & Pul 14 Petrochemin 15 Other chemin 16 Cement 17 Other consent 18 Steel 19 Non Ferrou 20 Metal & Mar	Bil. Y Bl. Y Bl. Y cals micals Bl. Y mic Bl. Y Mil-t Bl. Y Mil-t Bl. Y Bl. Y Bl. Y Bl. Y Bl. Y Bl. Y Schine	A 15.5 20.4 1.4 0.6 77.1 73.6 35.8 55.8 7.0 12.4 31.8 16.7 7.6 3.5 19.8 36.2 82.4 56.1 4.3 5.9 106.9 74.3 6.2 7.4 142.4 184.2	EF A 28.6 20.4 0.5 0.6 38.4 55.6 38.4 55.6 28.6 20.4 28.6 73.6 38.4 55.6 28.4 16.7 3.2 3.5 25.3 36.7 44.6 55.9 63.0 74.3	B A 28.6 100 5 0.5 5 58.6 0 38.4 9 9.0 7 28.4 100 28.4 101 28.4 102 25.3 103 44.6 104 4.6 105 6.0 1152.8 100	IM/REF B 100% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100%		(Feed 5 Em Fa	sumption Istock in total) ission ictor 2 Emission	Year / Scenario 2000 2050 A (CM) 2050 B (CM) 2000 2050 A (CM) 2050 B (CM) 2050 B (CM) 2050 B (CM) 2050 B (CM)	Unit Mtoe Mtoe MtC/Mtoe MtC	COL OIL 46 99 23 39 16 36 0 31 0 14 0 13 1.05 0.80 1.05 0.80 1.05 0.80 1.05 0.80 1.05 1.05	GAS BMS 10 7 45 5 39 13 0 0 0.55 0.00 0.55 0.00 0.55 0.00 25 0 21 0	SAW Heat H2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	29 140 24 128 0 31 0 14 0 13 1.19 - 0.41 - 33 141 0 68	100 74 67 100 48 47
22 23 2 Service Sh	nare						30% 30%	5		6%	92% 92%	92%		3%	
25. Agriculture 28. Agriculture 29. Construction 30. Food 31. Textile 32. Paper 8. 33. Petrochemix 34. Other chemix 35. Other crean 37. Steel 38. Non Ferrou 39. Metal 8. Ma 40. Other Mans 41. Stergy eff	n - - cals - nicals - mic - sis - schine - ufucture -	COL OIL 0% 96% 0% 73% 0% 53% 1% 70% 13% 29% 4% 58% 85% 0% 73% 7% 73% 7% 2% 66%	0% 0% 0% 0% 22% 0% 7% 0% 7% 0% 11% 0% 0% 0% 11% 0% 0% 0% 11% 0% 11% 0% 11% 0% 11% 0% 11% 0% 11% 0% 11% 0%	0% 0% 0 0% 0% 0 0% 0% 0 0% 0% 0 0% 0% 0 0% 0% 0 0% 0% 0 0% 0% 0 0% 0% 0 0% 0% 0 0% 0% 0 0% 0% 0 0% 0% 0 0% 0% 0 0% 0% 0 0% 0% 0 0% 0% 0	0 0	0% 100%	OOL OIL 0% 29% 0% 22% 0% 49% 0% 10% 0% 5% 5% 59% 1% 1% 2% 7% 3% 9% 1% 20%	45% 0% 0% 49% 40% 0% 50% 0% 30% 23% 31% 0% 54% 0% 52% 0% 32% 0% 34% 0% 52% 0% 32% 0% 32% 0% 32% 0% 32% 0% 32% 0% 32% 0% 32% 0% 32% 0% 32% 0% 32% 0% 32% 0% 32% 0%	50 A (CM) S/W Heat H2	ELE Total 3% 100% 33% 100% 2% 100% 49% 100% 29% 100% 25% 100% 36% 100% 26% 100% 26% 100% 36% 100% 36% 100% 36% 100% 36% 100% 36% 100% 33% 100%	0% 20% 73% 7% 3% 8% 1% 2%	205 GAS BMS 61% 6% 41% 9% 37% 7% 46% 9% 27% 29% 11% 0% 41% 8% 49% 8% 49% 8% 49% 0% 30% 7% 43% 9%	0 B (CM) S/W Heat H2	ELE Total 6% 100% 30% 100% 2% 100% 26% 100% 25% 100% 25% 100% 25% 100% 25% 100% 25% 100% 25% 100% 33% 100% 16% 100% 33% 100% 33% 100% 33% 100% 30% 100%	
42. 3 Energy eff 44. Agriculture 45. Agriculture 46. Agriculture 47. Mining 48. Construction 50. Textile 51. Paper & Put 52. Petrochemik 53. Other chem	Vnit '00=1, '00=1, '00=1, '00=1, '00=1, '00=1, cals '00=1,		GAS BMS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2000 S/W He	1 1 1 1 1 1 1	.00 - .00 - .00 - .00 - .00 - .00 -	COL OIL 1.10 1.10 1.20 1.20 1.18 1.18 1.16 1.16 1.14 1.14 1.38 1.38 1.21 1.21	1.10 1.10 1.20 1.20 1.18 1.18 1.16 1.16 1.14 1.14 1.38 1.38	50 A (CM) 5/W Heat H2 3.00	ELE Total 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 -	1.10 1.10 1.10 1.10 1.18 1.18 1.16 1.16 1.14 1.14	$\begin{array}{cccc} 1.10 & 1.10 \\ 1.10 & 1.10 \\ 1.10 & 1.10 \\ 1.18 & 1.18 \\ 1.16 & 1.16 \\ 1.14 & 1.14 \\ 1.38 & 1.38 \end{array}$	0 B (CM) S/W Heat H2 3.00	ELE Total 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 -	

Step 3: Projection by AIM/ESS (2/3) Changes in energy demands in the residential sector

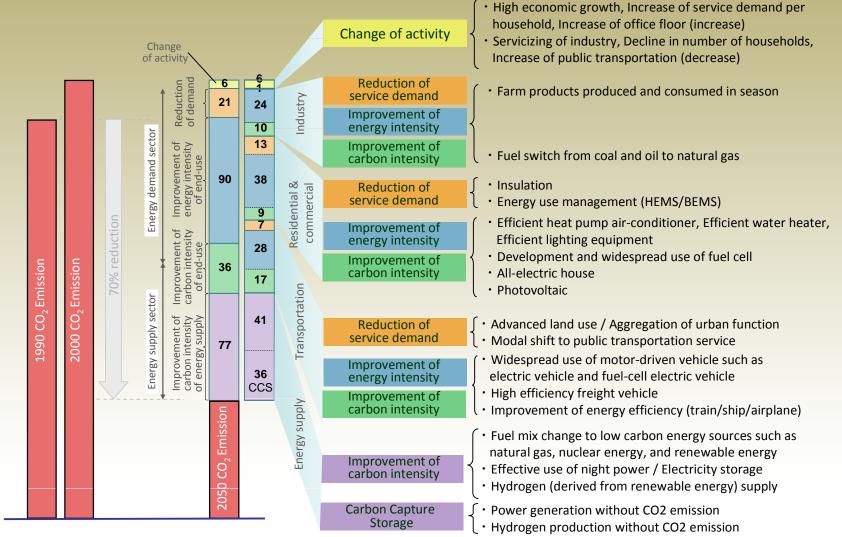
			2000						2050 A (CM)						2050 B (CM)													
		COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total	COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total	COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total
Cool	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.3
Warm	Mtoe	0.0	10.9	2.8	0.0	0.0	0.0	0.0	1.2	14.9	0.0	0.5	0.5	0.0	0.0	0.9	0.0	0.9	2.8	0.0	0.5	0.5	4.5	0.0	0.0	0.0	0.4	5.9
Hot Water	Mtoe	0.0	8.4	5.0	0.0	0.8	0.0	0.0	1.0	15.2	0.0	0.3	0.3	0.0	0.6	0.6	0.0	0.7	2.4	0.0	1.0	1.0	2.0	2.9	0.0	0.0	0.5	7.3
Cooking (S)	Mtoe	0.0	1.2	1.6	0.0	0.0	0.0	0.0	0.0	2.8	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.7	0.8	0.0	0.3	0.4	0.7	0.0	0.0	0.0	0.4	1.8
Cooking (E)	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.6
Lighting	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.4	3.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.9	1.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3	1.3
Refrigerator	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.6	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.2	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.2	2.2
ΤV	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1	2.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0
Appliance	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.9	9.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.5	6.5
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Generation	Mtoe									0.0					7.6			-2.9	4.7					15.5			-5.9	9.6
Cogeneration	Mtoe									0.0						-1.5	3.6	-1.6	0.5						0.0	0.0	0.0	0.0
	Mtoe									0.0									0.0									0.0
Total	Mtoe	0	21	9	0	1	0	0	23	54	0	1	1	0	8	0	4	14	27	0	2	2	7	18	0	0	7	37


27

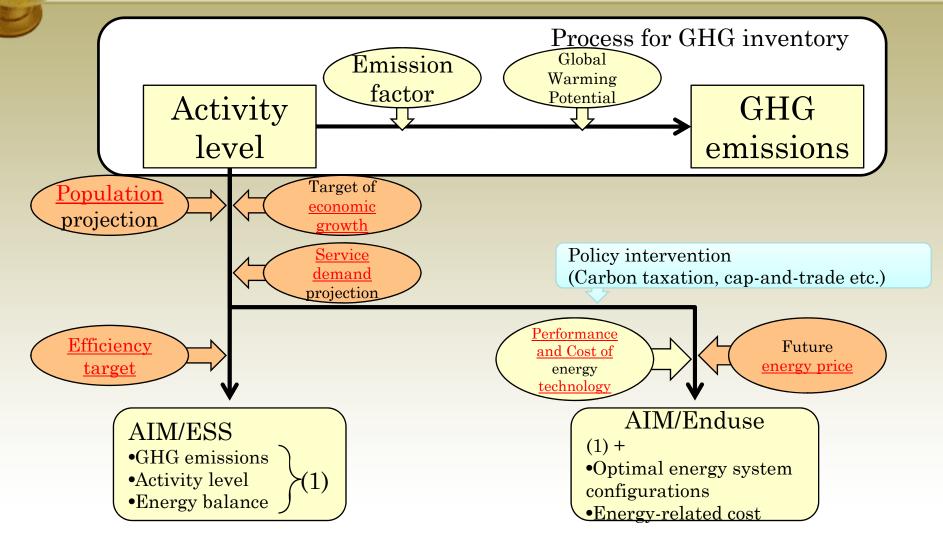
Step 3: Projection by AIM/ESS (3/3) Future energy balance table and CO_2 emissions

Future energy balance table and CO_2 emissions

	<i>Jv</i>					4					
	COL	OIL	GAS	BMS	NUC	HYD	S/W	Heat	H2	ELE	Total
Energy Balances											
Power Gnr.	15	0	41	0	92	8	1			-66	90
CCS										3	3
Heat											0
Coal/Oil/Gas		2									2
Hydrogen			12				13		-14		11
Industrial	23	39	45	5			0	0	0	29	140
Residential	0	1	1	0			8	0	4	14	27
Commercial	0	1	1	0			3	0	5	18	28
Trans. Prv.	0	4	0	2			0	0	3	2	11
Trans. Frg.	0	3	0	9			0	0	3	1	17
Enduse	23	48	47	16			11	0	14	64	223
Total	38	50	100	16	92	8	25	0	0	-0	330
Feedstock in total		14									
Emission Factor (MtC/Mtoe)	1.05	0.80	0.55	0.00	0.00	0.00	0.00	(0.00)	(0.47)	(0.00)	
CO2 Gnr. (MtC)	40	29	55	0	0	0	0	-	-	-	124
CO2 CCS (MtC)	-16		-23					-	-	-	-39
											0
											0
CO2 Ems. (MtC)	24	28.6	33	0	0	0	0	-	-	-	85


Step 4: Analyzing results (1/2) Factor analysis of CO_2 reduction by Kaya-identity

- D: Driving forces (service demand)
- E: Energy Consumption
- C': CO_2 emission without measures in transformation ector
- C: CO_2 emission with measures in transformation sector
- E/D: Energy Intensity
- C'/E: CO_2 intensity in end-use sector (without measures in transformation sector)
- C/C': Change of CO_2 intensity by measures in transformation sector



Step 4: Analyzing results (2/2) Factor analysis of CO_2 reduction: Summary

FOR MORE DETAILED AND ROBUST PROJECTION

Model evaluation of Socio-economic conditions

Nine national/regional scale models for projecting energy services, energy consumption, their management etc. *(Element models)*

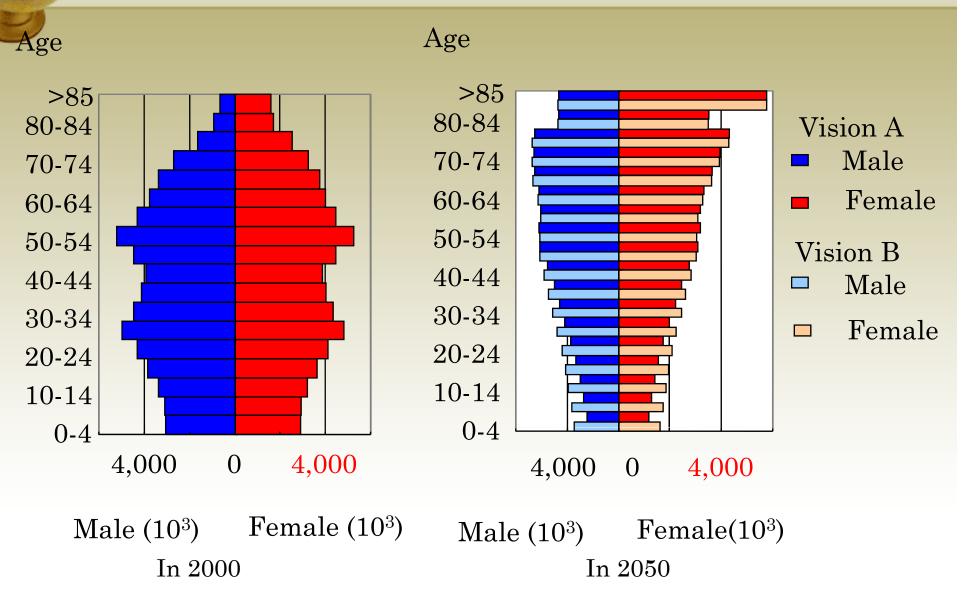
- 1. AIM/Enduse[country]: National level bottom-up engineering type model for energy supply/consumption
- 2. Macro-economy model (EME): Supply-side type mid-term econometric model
- **3. Population/Household dynamics model (PHM):** to describe each country's demographic dynamics
- 4. House and building dynamics model (BDM): to describe transition and renovation dynamics towards modern and highly insulated buildings.
- 5. Traffic demand model (TDM): to describe passenger and freight transports coupled with economic activity and urban structure
- 6. Material stocks and flow model (MSFM): to describe material metabolism towards sustainable material societies
- 7. Energy supply model (ESM): to describe scenarios of renewables energy supply, power infrastructure development
- 8. Household production and lifestyle model (HPLM): to describe the transition of household consumption, lifestyle etc.
- **9. AIM/Enduse[air]:** an atmospheric environment model to estimate cobenefits caused by environmental carbon policies.

Population and Household Model

- A <u>cohort component model for population</u>, a <u>household headship rate</u> <u>model for household types</u>, with spatial resolution of provinces, land-use types and climate zones and five family types
- <u>Analyzing effects of depopulation and changes in family composition</u> on the future population projection.

Input

Nation's and Province-wise:
Base year's population
Expected life table
Expected fertility rate
Expected migration rate


Information on land-use types and climatic zones by province-wise resolution

Output

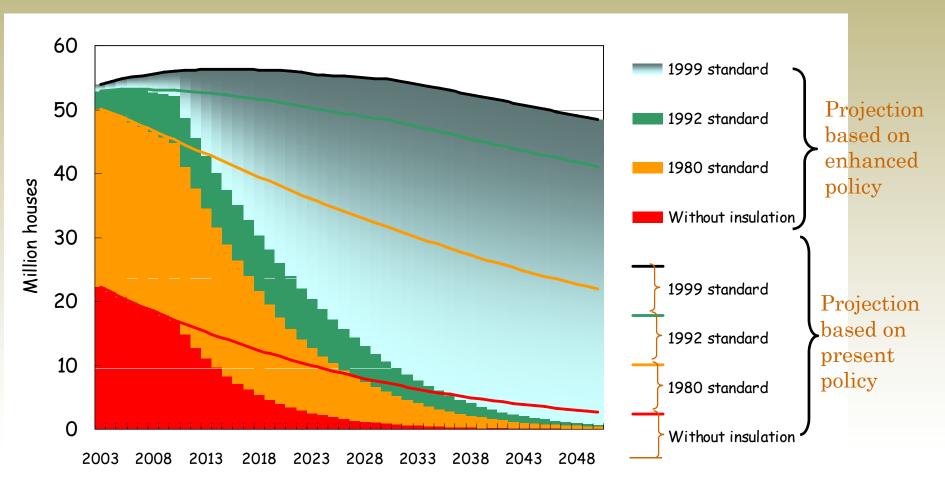
Nation's and Province-wise:

- Future population by age and sex
- Number of households by family type
- Population and Households by climatic zone and landuse classification

Demographic composition in Japan

Building Dynamics Model

• <u>A cohort model</u> with a spatial resolution of climate zones, four heat insulation levels, four residential building types, and six commercial building types.


Input

Dwelling stock in the base year Residual ratio Number of households Regional/Building type distribution of new dwellings Retrofit of existing dwelling stock Average floor space of new dwellings

Output

- Number and the floor space of future dwelling stock by
 - Region
 - Building type
 - Construction period

Projection of residential building stock by insulation level

Comprehensive LCS Modeling and its Application to Japan (S.Ashina/NIES)

Passenger Transportation Demand Model

- <u>Simulates transportation demand</u> associated with changes in population distribution, social environment, personal activity patterns, modal share, and average trip distance.
- <u>Based on the transportation model developed by</u> Japan's Ministry of Land Infrastructure and Transport (<u>MLIT</u>).

Input

License holding ratio Trip generation coefficient Modal share Average trip distance Net total conversion ratio Output

- Net transportation demand
- Total passenger transportation demand

Passenger Transportation Demand Model: Application to Japan

-		
2	Indices	Example of element
	Personal attribute	Several groups depending on age, sex, employment, etc.
	Day	Weekday, holiday
	Land area	Urban, mountainous, agricultural, etc.
	Mode	Car, bus, railway, aviation, maritime, walking & bicycling, etc.
	Objective	Work, school, return, business, private & shopping, etc.
	Simulation time	Every 5 years between 2000 and 2050

Total transportation demand by mode Inter-region transportation demand by mode (mil. person-km) of transportation (mil. person-km) 400,000 1,400,000 350,000 1,200,000 300.000 1,000,000 250,000 800,000 200,000 600,000 150.000 400,000 100,000 50.000 200,000 Aviation ■ Pass.car _ Maritime = Railway ■ Warking & Bicycling ₃₀₀ 209 mprehenzive LCS Modeling and izcoApplicatizon to 2015 2020 2025 2030 Japan (S.Ashina/NIES) Bus 0 2035 2040 2030 2045 2050 2000 39

THANK YOU FOR YOUR ATTENTION!

ashina.shuichi@nies.go.jp

FURTHER INFORMATION

AIM Website: http://www-iam.nies.go.jp/aim/ LCS Project Website: http://2050.nies.go.jp/