Technical Issues Related to the Preparation of the Cambodian GHG inventory: LULUCF

Workshop on Greenhouse Gas Inventories in Asia 13-14 November 2003, Phuket, Thailand

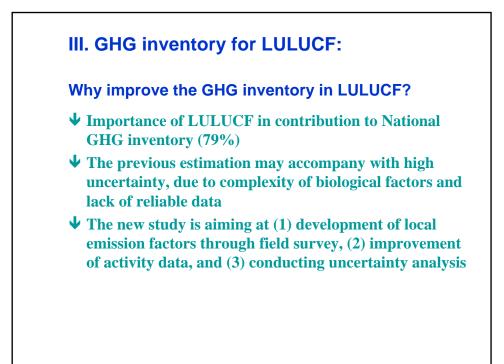
Presented by Thy SUM, Chief of Climate Change Office, Ministry of Environment, Phnom Penh, Cambodia.

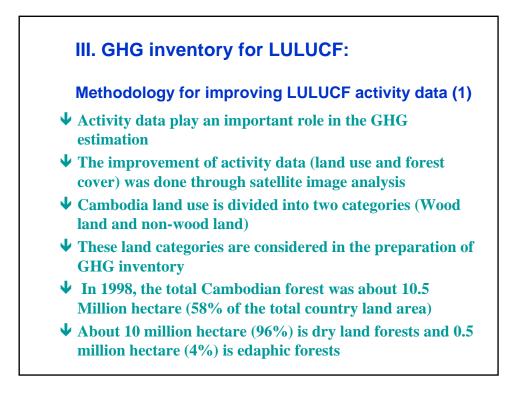
Outlines

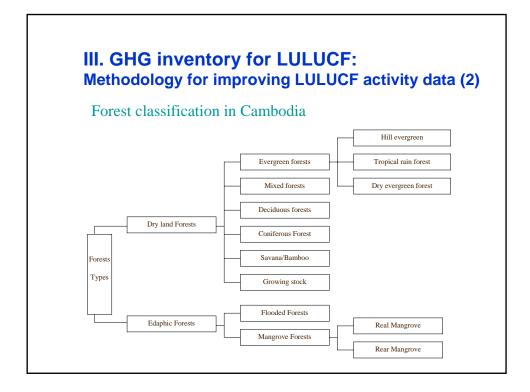
- Section 10 Brief Introduction to the First Cambodian GHG Inventory
- © GHG inventory for Land Use, Land Use Change and Forestry (LULUCF)
 - Why improve the GHG inventory in LULUCF?

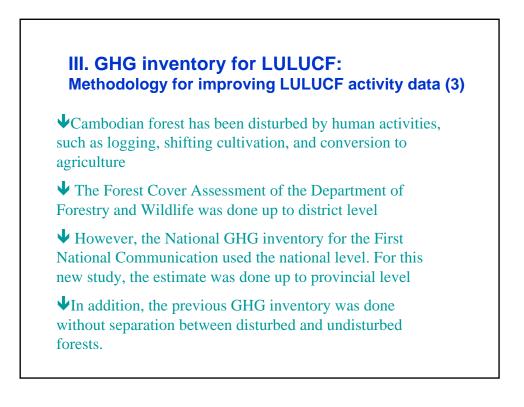
 - ✓ Methodology for improving emission factors✓ Result of GHG inventory for LULUCF
- **O Conclusion and Recommendations**

I. Brief Introduction to the First Cambodian GHG inventory (1)

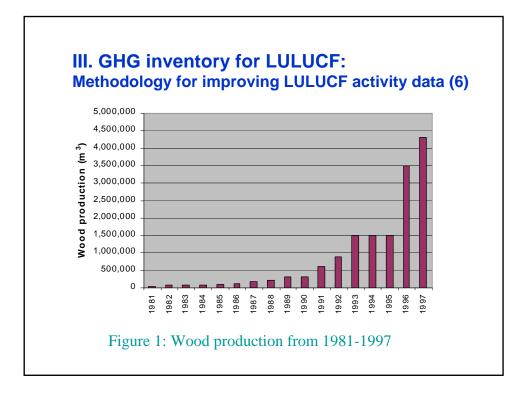

↓ Base year: 1994

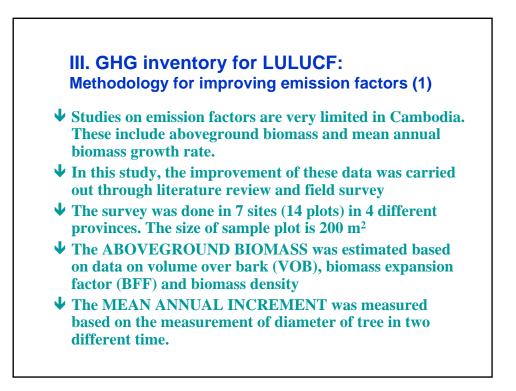

- **V** Based on the Revised 1996 IPCC Guidelines
- **Used IPCC Emission Factors**
- ↓ Greenhouse gases (GHGs): carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O)
- ↓ Major sectors: Energy, Industrial Processes, Agriculture, Waste, and LUCF.


I. Brief Introduction to Cambodian GHG Inventory (2)


↓ Summary of 1994 Cambodian GHG emissions and uptakes

Sectors and Sinks	CO ₂ uptake	Emissions					
		CO ₂	CH_4	N ₂ O	NO _x	CO	
ENERGY		1,272.08	24.13	0.33	16.69	456.56	
INDUSTRIAL PROCESSES		49.85			0.01	0.03	
AGRICULTURE			339.25	11.08	2.7	95.76	
WASTE			6.77	0.42			
LAND USE CHANGE AND FORESTRY	64,850.23	45,214.27	74.77	0.51	18.58	654.2	
TOTAL NAT'L GHG EMISSIONS/UPTAKE	64,850.23	46,536.20	444.92	12.35	37.98	1,206.55	




III. GHG inventory for LULUCF: Methodology for improving LULUCF activity data (4)

Forest area (1992-1996)

Forest type		Forest area (ha)		
		1992	1996	
Evergreen	Undisturbed	723468	686672	
-	Disturbed	3835474	3817583	
Mixed	Undisturbed	123108	119425	
	Disturbed	1734581	1708532	
Deciduous	Undisturbed	4857745	4773911	
	Disturbed	447314	454915	
Mangrove		77669	72835	
Inundated		349475	335304	
Forest regrowth		440939	379305	
Plantation		86664	96783	
Wood/strubland		2351735	2286613	
Grassland		494968	503751	
Mosaic cropping		314062	464233	

<section-header><list-item><list-item><list-item><list-item>

III. GHG inventory for LULUCF: Methodology for improving emission factors (2)

Plot	Understorey ¹ (1)	Necromas ² (2)	Live tree biomass ² (3)	Total AGB (1+2+3)
1101	(1)	t/l		(1+2+3)
A (Semi-evergreen)	7.0 (4.5)		66.62	74
B (Semi-evergreen)	7.1 (4.7)	19.77	89.92	117
C (Mangrove)	13.5 (3.2)	-	75.75	89
D (Mangrove)	-	-	198.34	198
E (Coniferous)	4.3 (1.2)	1.22	96.93	102
F (Coniferous)	3.1 (2.3)		54.18	57
G (Inundated forest)	6.9 (9.1)	3.44	28.72	39
H (Inundated forest)	6.6 (9.5)		53.64	60
I (Secondary forest)	6.2 (8.2)		35.12	41
J (Secondary forest)	4.4 (5.1)		48.51	53
K (Rubber)	3.3 (1.0)		84.52	88
L (Rubber)	3.0 (1.0)		109.57	113
M (Teak)	5.2 (2.7)	6.54	203.25	215
N (Teak)	6.2 (0.6)		148.07	154

Not: Values in the bracket is standard deviations and calculated from field survey, (2) estimated from diameter using allometric equation

	tory fo			
I. GHG inver	itory io			00010
or improving e	mission	factors (3)	
		-	-	
Forest types	Initial NatCom	Estimated from	Other studies	Used in th
	1	Survey data	2	study
Evergreen	295 ¹		150 ²	20
Mixed (Semi evergreen)	370 ¹	95	n.a	25
Deciduous	120 ¹	n.a	n.a	10
Forest Regrowth	190 ¹	47	32-230 ^{3, 4}	12
Inundated	70 ¹	50	15-342 ^{4,5}	7
Mangrove	175	144	152-443 ⁴	15
Plantation	80	142	60-153 ⁴	10
Shrubland	70	n.a	~787	70
Non-Forest/Agroforestry	n.a	n.a	30-207 ⁶	10
Wood-/Shrubland Evergreen	n.a	n.a	n.a	7
Wood-/Shrubland dry	n.a	n.a	n.a	5
Wood-/Shrubland Inundated	n.a	n.a	n.a	40
Mosaic of cropping<30%	n.a	n.a	~30 ⁸	3
Mosaic of cropping >30%	n.a	n.a	~100 ⁸	7:
Grassland	n.a	n.a	$2-7.6^{5,9}$	

Source: ¹IPCC (1997); ²FAO (1997); ³Kiyono and Hastaniah (1997); ⁴Wasrin *et al.*, (2000); ⁵Utomo (1996); ⁶Tomich et al. (1998); ⁷ Van Noordwijk *et al.*, (2000); ⁸Murdiyarso & Wasrin (1996); ⁹Palm et al., (1999); ¹⁰Hairiah and Sitompul (2000). Note: ~ means around that value.

III. GHG inventory for LULUCF: Methodology for improving emission factors (4)

Plot	Forest type	GRB	Plot	Forest type	GRB
	51	(t/ha/year)		51	(t/ha/year)
А	Semi		Н		
	evergreeen	4.74		Inundated forest	-
В	Semi		Ι		
	evergreeen	5.35		Secondary Forest	2.29
С	Mangrove	6.45	J	Secondary Forest	3.70
D	Mangrove	-	Κ	Rubber plantation	3.72
Е	Coniferous	5.73	L	Rubber plantation	4.09
F	Coniferous	5.72	М	Tectona grandis	6.50
G	Inundated		Ν		
	forest	-		Tectona grandis	6.55

Note: The estimates were the estimate of the biomass growth rate in the inventory year (2002).

III. GHG inventory for LULUCF: Methodology for improving emission factors (5) Forest types Initial NatCom Estimated from Other studies Used in this (t/ha/year) Survey data (t/ha/year) study (t/ha/year) (t/ha/year) 3.00 0.30 Evergreen 4.20^2 3.60^2 Mixed (Semi-evergreen) 5.04 1.71-2.968 3.0 0.17 Deciduous n.a 2.0 2.83³ 2.98³ Forest Regrowth 2.99 1.3-2.7 2.5 2.0 Inundated n.a n.a Mangrove 3.00⁴ 6.45 3.0 n.a 3.3-25¹⁰ Plantation (rubber) Shrubland 6.68^{5} 1.00^{4} 5.20 n.a 6.7 1.0 n.a Non-Forest/Agroforestry Wood-/Shrubland Evergreen 5.84^{3} n.a n.a 6.0 1.0 n.a n.a n.a Wood-/Shrubland dry Wood-/Shrubland Inundated n.a n.a n.a 0.7 0.5 n.a n.a n.a Mosaic of cropping<30% Mosaic of cropping >30% Grassland n.a n.a n.a 1.5 0.5 0.2 n.a 0.50⁶ n.a n.a n.a n.a n.a n.a Bamboo 1.50 n.a Source: 1 IPCC (1997);² FAO (1997); 3 LEAP RWEDP (1997); 4 Lasco and Pulhin (1999); 5 Boer et al.,

Source: ¹ IPCC (1997);² FAO (1997); ³ LEAP RWEDP (1997); ⁴ Lasco and Pulhin (1999); ⁵ Boer *et al.*, (2001);⁶ UNDP-ESMAP (1992); ⁷Ashwell (in Nophea, undated); ⁸Logged over forest (Boer *et al.*, 2001); ⁹Sutisna (1997), and ¹⁰Askari (2000).

III. GHG inventory for LULUCF: Result of GHG inventory (1)

⇒ GHG inventory for forestry sector in each province was estimated up to provincial level

 \Rightarrow Koh Kong Province is the highest CO2 emitter, while Mondol Kiri province is the highest C-sequestration

⇒ The error of estimate of CO2 emission is ranged between 1%22%, while the CO2 sequestration estimate ranges between 16%-38%

 \Rightarrow In term of CO2-eqv, more than half of Cambodian province were a net emitters

 \Rightarrow In comparison with the National GHG inventory reported in the National Communication, the improved inventory gave lower estimate.

III. GHG inventory for LULUCF: Result of GHG inventory (2)

✤ Comparison of 1994 GHG Inventory between National Communication and the Improved Inventory

	Removal (kt)]	Emission (kt)		
	CO_2	CO_2	CH_4	CO	N_2O	NOx
Improved	-39,451.609	31,562.585	28.984	253.610	0.199	7.20
NatCom	-64,850.230	45,214.270	74.770	654.200	0.510	18.58
% Change of						
Natcom	39.2	30.2	61.2	61.2	60.9	61.

IV. Conclusion and recommendations

✤ The area of forests and area being converted and above ground biomass and annual growth rate of tree play the most important role that will determine greatly the accuracy of GHG inventory

 \checkmark The improvement of the GHG inventory was made in 3 areas: forest area and rate of conversion, biomass growth rate, and level of analysis

↓ However, the aboveground biomass and biomass growth rate estimated from field survey will not represent the overall condition of Cambodia forest

 \blacklozenge Further survey should be done for improving these factors.