Developing CH4 emission factors from rice cultivation in India - Triumphs and Challenges

Sumana Bhattacharya NATCOM India

Contents

- National Inventory at a glace
- Importance of CH4 emission vis a vis total national emissions
- CH4 emission measurements in India Typical characteristics
- Emission factors derived
- Institutional Arrangements
- Identification of hotspots
- Achievements so far
- Challenges ahead

GHG Emissions from Sources and Removals by Sinks - India 1994

GHG source and sink categories (Gg per year)	CO ₂ emissions	CO ₂ removals	CH₄	N ₂ O	CO ₂ eq. emissions*
Total (Net) National Emission	817023	23533	18083	178	1228540
1. All Energy	679470		2896	11.4	743820
2. Industrial Processes	99878		2	9	102710
3. Agriculture			14175	151	344485
4. Land use, Land-use change and Forestry*	37675	23533	6.5	0.04	14292
5. Other sources as appropriate and to the					
extent possible					0
5a. Waste			1003	7	23233
5b. Emissions from Bunker fuels #	3373				3373

^{*}Converted by using GWP indexed multipliers of 21 and 310 for converting CH₄ and N₂O respectively.

Sectoral Distribution of GHG emissions

Key source analysis – Level Assessment (1994)

(CS: Country Specific EF, D: IPCC default EF, R: Improvement Required).

Sources of emission	CO ₂ equivalent (Gg)	Percentage of total emissions	Cumulat ive emission (Gg)	Cumulative emission vs. total emission (%)	Tier used	EF use d	Status of EF envisaged in SNC
Energy and transformation industries	355037	28.9	355037	28.9	Tier II	CS	R
Enteric Fermentation	188412	15.3	543449	44.2	Tier II	CS	R
Industry	150674	12.3	694123	56.5	Tier I	D	D
Rice Cultivation	85890	7.0	780013	63.5	Tier II	CS	R
Transport	80286	6.5	860299	70.0	Tier I	CS	R
Emission from Soils	45260	3.7	905559	73.7	Tier I	D	CS
Iron and steel production	44445	3.6	950004	77.3	Tier I	D	CS
Energy use in Residential sector	43918	3.6	993922	80.9	Tier I	D	D
Biomass burnt for energy	34976	2.8	1028898	83.7	Tier I	D	D
All other energy sectors	32087	2.6	1060985	86.4	Tier I	D	D
Cement production	30767	2.5	1091752	88.9	Tier I	CS	R
Energy consumed in Commercial/institutional	20571	1.7	1112323	90.5	Tier I	D	D
Manure Management	20176	1.6	1132499	92.2	Tier I	D	D
Ammonia production	14395	1.2	1146894	93.4	Tier I	D	CS
Land-use, Land-use change & Forestry	14292	1.2	1161186	94.5	Tier I	D	CS
Coal mining	13650	1.1	1174836	95.6	Tier III	CS	CS

Key source analysis – Level Assessment (1994)

(CS: Country Specific EF, D: IPCC default EF, R: Improvement Required).

Sources of emission	CO ₂ equivalent (Gg)	Percentage of total emissions	Cumulati ve emission (Gg)	Cumulative emission vs. total emission (%)	Tier used	EF used	Status of EF envisaged in SNC
Oil and natural gas system	12621	1.0	1187457	96.7	Tier I	D	D
Municipal Solid Waste Disposal	12222	1.0	1199679	97.7	Tier I	D	CS
Domestic Waste water	7539	0.6	1207218	98.3	Tier I	D	D
Lime stone and dolomite use	5751	0.5	1212969	98.7	Tier I	D	D
Agricultural crop residue	4747	0.4	1217716	99.1	Tier I	D	D
Nitric acid production	2790	0.2	1220506	99.3	Tier II	CS	CS
Human Sewage	2170	0.2	1222676	99.5	Tier I	D	D
Lime production	1901	0.2	1224577	99.7	Tier I	D	D
Industrial Waste Water	1302	0.1	1225879	99.8	Tier I	D	CS
Ferro alloys production	1295	0.1	1227174	99.9	Tier I	D	D
Aluminium production	749	0.1	1227923	99.9	Tier I	D	D
Carbide production	302	0.0	1228225	100.0	Tier I	D	D
Soda ash use	273	0.0	1228498	100.0	Tier I	D	D
Black carbon and styrene prod.	42	0.0	1228540	100.0	Tier I	D	D

Characteristic of Rice Cultivation in India

- Multiple Cropping System both Rabi and Kharif season
- Variety of cultivars in use
- Cultivated all over India in upland, gangetic plains, and in the deccan plateau in the South
- Water management practices vary between arid, rainfed, irrigated, and deep water conditions
 - About 50% of area is irrigated
 - the rest is distributed between other water management practices

INDIAN RICE PADDY HARVESTED AREA FROM 1979-1999

Parameters affecting CH4 emission from rice cultivation

- Water management
- soil organic carbon content
- Soil Sulphate Content
- Soil Temperature
- Rice cultivar
- Fertilizer application

Methane emission rates vary markedly with water regimes

A single mid season drainage or multiple-aeration may reduce methane emission by about 50% without compromising on the rice yield

Chronology of Measurements of Methane Efflux from Paddy Fields in India

Methodology

Static box or chamber technique

Flux measurements made in the forenoon and afternoon twice each week

Samples at all sites collected manually in glass vials or syringes

- Automatic sampling systems also used at IRRI sites
- CH4 concentrations in samples determined using Gas chromatograph with flame ionisation detector (FID)
- NIST USA traceable methane calibration standards used Secondary standards calibrated nationally and internationally and inter-compared

Diurnal Methane flux Variations from Rice crop from Intermittently Flooded-MA fields for two days in October

Seasonal Methane flux Variations from Rice crop in an Intermittently Flooded-MA for the period Aug to Nov

Annual Methane Flux Variation Intermittently flooded- MA (Dec. 2001-Dec 2002)

SIF(gm-2): 2.42 ± 0.92

Methane emission factors (*E*sif) for Indian paddy ecosystems (1991-2003)

Rice Eco-Systems → Soil Organic Carbon/ Amendments ↓	Rainfed (flood prone)	Rainfed (drought prone)	Continuously flooded	Intermittently flooded (single aeration)	Intermittently flooded (multiple aeration)	Deep water
Low Soil Org. C	19.0±6.0	6.9±4.3	15.3±2.6	6.9±4.3	2.2±1.5	19.0±6.0
Low Soil Org. C, with Org. Amend.	-	12.5	12.0±4.0	12.5	4.8	-
High Soil Org. C	-	7.95±1.5	26.3±6.7	7.95±1.5	3.7±1.2	-
High Soil Org. C, with Org. Amend.	-	-	63±17	-	-	-
Average E_{sif} (g/m ²) (Range)	19.0±6.0	9.12 (6.9 to 12.5)	29.2 (12 to 63)	9.12 (6.9 to 12.5)	3.6 (2.2 to 4.8)	19.0±6.0

Averaged for low & high organic carbon paddy soils including with and without organic amendments

Effect of water management/organic amendments on Esif

	luring 1998 (Kharif or Wet season) Pant Nagar, UP Cultivar: Pant-4 NPK-60,50,40 kg/ha +			NPL New Delhi Cultivar: P-169 Only FYM @10t/ha		
		FYM @ 50%N			•	
	IF	CF(SA)	Factor	IF	CF	Factor
With organic amendment	7.15	12.5	1.75	2.0	12.05	6.03
Without organic amendments	5.36	7.07	1.32	-	-	-
Scaling factor	1.33	1.77		_	_	_

Reference: Methane Asia Campaign, 1998

Institutional Arrangement (NATCOM)

Comparison of Emission Factors Across Different Studies

Rice Ecosystem		Emission Facto	r (EF) in g m ⁻²
	IPCC-96	After MAC-98/ Earlier EFs	NATCOM Campaign Data Included
Upland	0	0	0
Rainfed Flood Prone	16	19 <u>+</u> 6	19 <u>+</u> 6
Rainfed, Drought Prone (RF-DP)	8	6.9 <u>+</u> 4.3	6.95 <u>+</u> 1.86
Irrigated, Continuously Flooded (IRR-CF)	20	15.3 <u>+</u> 2.6	17.48 <u>+</u> 4.0
Irrigated, Single Aeration (IRR-SA)	10	6.9 <u>+</u> 4.3	6.62 <u>+</u> 1.89
Irrigated Multiple Aeration (IRR-MA)	4	2.2 <u>+</u> 1.5	2.01 <u>+</u> 1.49
Deep Water	16	19 <u>+</u> 6	19 <u>+</u> 6

Distribution of Area Under Different Water Management Regime

	Water	Percenta ge of	Area		
				area	(mha)
UPLAND)			15	6.35
LOWLA	Rain-fed	Flood pro	ne	10	4.23
ND					
		Drought p	rone	16	6.77
	Irrigated	Continuou	ısly	16	6.77
		flooded			
		Intermitte	Single	23.5	9.92
		ntly	aeration		
		flooded	Multiple	13.5	5.74
			Aeration		
	Deep	Water d	epth 50-	6	2.54
	water	100 cm			
		Water de	epth >100	-	_
		cm			

Trends of CH4 Emission Across two Decades

State Wise distribution of CH4 Emission from rice Paddy Field

STATES	CH4 Emission (Tg/Y)
W.B.	0.59 ± 0.17
Bihar	0.57 ± 0.17
M.P.	0.53 ± 0.16
U.P.	0.52 ± 0.15
Orissa	0.42 ± 0.12
A.P.	0.35 ± 0.10
Assam	0.28 ± 0.08
T.N.	0.21+ 0.06
Punjab	0.20 + 0.06
Maharashtra	0.13 ± 0.04
Karnataka	0.08 ± 0.02
Haryana	0.07 <u>+</u> 0.02
Others	0.05 <u>+</u> 0.01
Gujarat	0.05 ± 0.01
Kerala	0.02 ± 0.01
Rajasthan	0.01+0.00
J & K	0.00 <u>+</u> 0.00
H.P.	0.00 <u>+</u> 0.00
Total	4.09 <u>+</u> 1.19

Cumulative State Wise CH4 emission Distribution from different states in India

Achievements

Pre -1995	Post 1995
Estimates restricted to irrigated, rainfed, upland	Estimates made for rainfed flood prone, rainfed drought prone; irrigated continuously flooded, irrigated single aeration, aerated multiple aeration; deep water & upland
Sporadic diurnal measurements in the cropping period	Seasonal (1995 onwards) and Annual (beyond 1998)
Restricted to North and western part of India	Campaign spread to the rice major growing regions including the South, East and the North East parts of India

Achievements – Post 1995

- CH4 Emission factors also assessed for soils with high organic content
- Estimates of CH4 brought down from 37.6 Mt to around 4 Mt
- Strong element of quality control and quality control in the measurements
- Level of uncertainties associated with the estimates of CH4 from rice cultivation determined
- Areas where single aeration and multiple aeration practices can replace the practice of continuously flooding the fields

Uncertainties and Research Questions

- Annual variations in rice area under various water management practices
- High level of uncertainties introduced due to lack of data in certain hotspots like Madhya Pradesh

Thank you