National Greenhouse Gas Inventory Report of JAPAN

April, 2010

Ministry of the Environment, Japan Greenhouse Gas Inventory Office of Japan (GIO), CGER, NIES

National Institute for Environmental Studies, Japan

National Greenhouse Gas Inventory Report of JAPAN

April, 2010

Ministry of the Environment, Japan Greenhouse Gas Inventory Office of Japan (GIO), CGER, NIES

National Greenhouse Gas Inventory Report of JAPAN (2010)

Edited by

Greenhouse Gas Inventory Office of Japan (GIO), Center for Global Environmental Research (CGER), National Institute for Environmental Studies (NIES)

Content reviewed by

Climate Change Policy Division, Global Environment Bureau, Ministry of the Environment

Primary Authors

Dr. Yukihiro NOJIRI	(Manager, GIO/CGER/NIES)
Mr. Kohei SAKAI	(GHG Inventory Expert, GIO/CGER/NIES)
Dr. Yuriko HAYABUCHI	(GHG Inventory Expert, GIO/CGER/NIES)
Ms. Takako ONO	(GHG Inventory Expert, GIO/CGER/NIES)
Dr. Takefumi ODA	(GHG Inventory Expert, GIO/CGER/NIES)
Dr. Junko AKAGI	(GHG Inventory Expert, GIO/CGER/NIES)
Ms. Elsa HATANAKA	(GHG Inventory Expert, GIO/CGER/NIES)
Mr. Hiroshi ITO	(GHG Inventory Expert, GIO/CGER/NIES)

Collaborative Authors

Mr. Takashi MORIMOTO (Mitsubishi UFJ Research and Consulting Co., Ltd.)
Mr. Masato YANO (Mitsubishi UFJ Research and Consulting Co., Ltd.)
Mr. Atsushi SATO (Mitsubishi UFJ Research and Consulting Co., Ltd.)
Mr. Kazumasa KAWASHIMA (Mitsubishi UFJ Research and Consulting Co., Ltd.)
Mr. Takeshi ENOKI (Mitsubishi UFJ Research and Consulting Co., Ltd.)
Dr. Motoshi HIRATSUKA (Mitsubishi UFJ Research and Consulting Co., Ltd.)
Mr. Takuji TERAKAWA (Mitsubishi UFJ Research and Consulting Co., Ltd.)
Mr. Takuji TERAKAWA (Mitsubishi UFJ Research and Consulting Co., Ltd.)
Mr. Takuji TERAKAWA (Suuri Keikaku Co., Ltd.)
Mr. Yasuo FUJISHIMA (Suuri Keikaku Co., Ltd.)
Mr. Hiroyuki UEDA (Suuri Keikaku Co., Ltd.)
Mr. Masakazu OKADA (Suuri Keikaku Co., Ltd.)
Ms. Masako WHITE (GIO/CGER/NIES)

Copies available from:

Center for Global Environmental Research (CGER) National Institute for Environmental Studies (NIES) 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan Phone: +81-29-850-2777 Fax: +81-29-850-2219 E-mail : www-cger@nies.go.jp

Copyright 2010:

NIES: National Institute for Environmental Studies

This publication is printed on paper manufactured entirely from recycled material (Rank A), in accordance with the Law Concerning the Promotion of Procurement of Eco-Friendly Goods and Services by the State and Other Entities.

Foreword

On the basis of Article 4 and 12 of the United Nations Framework Convention on Climate Change (UNFCCC) and Article 7 of the Kyoto Protocol, all Parties to the Convention are required to submit national inventories of greenhouse gas emissions and removals to the Secretariat of the Convention. Therefore, the inventories on emissions and removals of greenhouse gases and precursors are reported in the Common Reporting Format (CRF) and in this National Inventory Report, in accordance with UNFCCC Inventory Reporting Guidelines (FCCC/SBTA/2006/9).

This Report presents Japan's institutional arrangement for the inventory preparation, the estimation methods of greenhouse gas emissions and removals from sources and sinks, the trends in emissions and removals for greenhouse gases (carbon dioxide (CO_2); methane (CH_4); nitrous oxide (N_2O); hydrofluorocarbons (HFCs); perfluorocarbons (PFCs); and sulfur hexafluoride (SF_6)) and precursors (nitrogen oxides (NO_X), carbon monoxide (CO), non-methane volatile organic compounds (NMVOC), and sulfur dioxide (SO_2)).

The structure of this report is fully in line with the recommended structure indicated in the Annex I of UNFCCC Inventory Reporting Guidelines (FCCC/SBSTA/2006/9).

The Executive Summary focuses on the latest trends in emissions and removals of greenhouse gases in Japan. Chapter 1 deals with background information on greenhouse gas inventories, the institutional arrangement for the inventory preparation, inventory preparation process, methodologies and data sources used, key source category analysis, QA/QC plan, and results of uncertainty assessment. Chapter 2 describes the latest information on trends in emissions and removals of greenhouse gases in Japan. Chapters 3 to 8 provide the detailed estimation methods for emissions and removals respectively, described in the *Revised 1996 IPCC Guidelines*. Chapter 9 comprises current status of reporting of the emissions from sources not covered by IPCC guidelines. Chapter 10 provides the explanations on improvement and recalculation (data revision, addition of new source, etc.) from since the previous submission.

Annex offers additional information to assist further understanding of Japan's inventory. The background data submitted to the secretariat provides the complete process of estimating Japan's inventory.

For the latest updates or changes in data, refer to the web-site (URL: www-gio.nies.go.jp) of the Greenhouse Gas Inventory Office of Japan (GIO).

April, 2010 Climate Change Policy Division Global Environment Bureau Ministry of the Environment

Preface

Preface

The Kyoto Protocol accepted by Japan in June 2002 targets the reduction of six greenhouse gases (GHGs): carbon dioxide (CO₂); methane (CH₄); nitrous oxide (N₂O); hydrofluorocarbons (HFCs); perfluorocarbons (PFCs); and sulfur hexafluoride (SF₆). Quantified targets for reductions in emissions of greenhouse gases have been set for each of the Annex I parties including Japan. The target given to Japan for the first commitment period (five years from 2008 to 2012) is to reduce average emissions of greenhouse gases by six percent from the base year (1990 for carbon dioxide, methane and nitrous oxide, and 1995 for HFCs, PFCs, and sulfur hexafluoride). At the same time, the Annex I parties were required to improve the accuracy of their emission estimates, and to prepare a national system for the estimation of anthropogenic emissions by sources and removals by sinks of the aforementioned greenhouse gases by one year before the beginning of the commitment period (2007). The GHGs inventories have been therefore authoritative data for Japan in reporting its achievement of the Kyoto Protocol's commitment.

The GHGs inventory of Japan including this report represents the combined knowledge of over 70 experts in a range of fields from universities, industrial bodies, regional governments, relevant government departments and agencies, and relevant research institutes, who are members of the Committee for the Greenhouse Gas Emissions Estimation Methods established by Ministry of Environment in November 1999 and has been often held since then.

In compiling GHGs inventories, the Greenhouse Gas Inventory Office of Japan (GIO) would like to acknowledge not just the work of the Committee members in seeking to develop the methodology, but other experts who provided the latest scientific knowledge, the industrial bodies and government departments and agencies that provided the data necessary for compiling the inventories. We would like to express our gratitude to the Climate Change Policy Division of the Global Environment Bureau of the Ministry of the Environment for their efforts and support to the establishment of GIO in July 2002.

This is the year to submit the first inventory of the beginning of the commitment period to the secretariat of the United Nations Framework Convention on Climate Change (UNFCCC). GIO compiled this report with great care for international review. We hope this report will be used accurately and universally as an index that Japan should accomplish emission reduction targets and an index evaluated states of implementing measures against global warming of Japan and relative sectors.

My appreciation also extends to Mr. Kiyoto TANABE, a GIO researcher, and Ms. Makiko YAMADA, our assistant, who supported us to smooth GIO operation.

April, 2010

野尻彰

Yukihiro Nojiri Manager Greenhouse Gas Inventory Office of Japan (GIO) Center for Global Environmental Research

Table of Contents

Foreword	i
Preface	
Contents	V
EXECUTIVE SUMMARY OF NATIONAL GHGS INVENTORY REPORT OF JAPAN 2010	1
E.S.1. Background Information on GHGs Inventories and Climate Change	1
E.S.2. Summary of National Emission and Removal Related Trends	1
E.S.3. Overview of Source and Sink Category Emission Estimates and Trends	
E.S.4. Other Information (Indirect GHGs and SO ₂)	
CHAPTER 1. INTRODUCTION	1-1
1.1. Background Information on Japan's Greenhouse Gas Inventory	_ 1-1
1.2. A Description of Japan's Institutional Arrangement for the Inventory Preparation	_ 1-1
1.3. Brief Description of the Inventory Preparation Process	_ 1-2
1.3.1. Annual cycle of the inventory preparation	_ 1-2
1.3.2. Process of the inventory preparation	
1.4. Brief General Description of Methodologies and Data Sources Used	_ 1-5
1.5. Brief Description of Key Categories	1-5
1.6. Information on the QA/QC Plan including Verification and Treatment of Confidentiality	
Issues	1-7
1.7. General Uncertainty Assessment, including Data on the Overall Uncertainty for the	_
Inventory Totals	1-8
1.8. General Assessment of the Completeness	
CHAPTER 2. TRENDS IN GHGS EMISSIONS AND REMOVALS	2-1
2.1. Description and Interpretation of Emission and Removal Trends for Aggregate GHGs	_ 2-1
2.1.1. GHGs Emissions and Removals	_ 2-1
2.1.2. CO ₂ Emissions per Capita	_ 2-3
2.1.3. CO ₂ Emissions per Unit of GDP	_ 2-3
2.2. Description and Interpretation of Emission and Removal Trends by Gas	_ 2-4
2.2.1. CO ₂	_ 2-4
2.2.2. CH ₄	_ 2-6
2.2.3. N ₂ O	_ 2-7
2.2.4. HFCs	_ 2-8
2.2.5. PFCs	_ 2-8
2.2.6. SF ₆	_ 2-9
2.3. Description and Interpretation of Emission and Removal Trends by Categories	2-11
2.3.1. Energy	2-12
2.3.2. Industrial Processes	
2.3.3. Solvent and Other Product Use	
2.3.4. Agriculture	
2.3.5. Land Use, Land Use Change and Forestry (LULUCF)	
2.3.6. Waste	
2.4. Description and Interpretation of Emission Trends for Indirect GHGs and SO ₂	2-17

CHAPTER 3. ENERGY (CRF SECTOR 1)	3-1
3.1. Overview of Sector	3-1
3.2. Fuel Combustion (1.A.)	
3.2.1. Energy Industries (1.A.1.)	
3.2.2. Manufacturing Industries and Construction (1.A.2)	
3.2.3. Mobile Combustion (1.A.3.:CO ₂)	
3.2.4. Mobile Combustion (1.A.3.:CH ₄ , N ₂ O)	
3.2.4.1. Civil Aviation (1.A.3.a.)	
3.2.4.2. Road Transportation (1.A.3.b.)	
3.2.4.3. Railways (1.A.3.c.)	3-33
3.2.4.4. Navigation (1.A.3.d.)	3-35
3.2.5. Other Sources (1.A.4)	
3.2.6. Comparison of Sectoral and Reference Approaches	3-38
3.2.7. International Bunker Fuels	3-38
3.2.8. Feedstocks and Non-Energy Use of Fuels	3-41
3.2.9. CO ₂ capture from flue gases and subsequent CO ₂ storage	3-42
3.2.10. Emission from waste incineration with energy recovery	3-42
3.3. Fugitive Emissions from Fuels (1.B.)	3-45
3.3.1. Solid Fuels (1.B.1.)	
3.3.1.1. Coal Mining and Handling (1.B.1.a.)	3-45
3.3.1.2. Solid Fuel Transformation (1.B.1.b.)	3-49
3.3.2. Oil and Natural Gas (1.B.2.)	3-50
3.3.2.1. Oil (1.B.2.a.)	
3.3.2.2. Natural Gas (1.B.2.b.)	
3.3.2.3. Venting and Flaring (1.B.2.c.)	3-65
CHAPTER 4. INDUSTRIAL PROCESSES (CRF SECTOR 2)	4-1
4.1. Overview of Sector	4-1
4.2. Mineral Products (2.A.)	
4.2.1. Cement Production (2.A.1.)	
4.2.2. Lime Production (2.A.2.)	
4.2.3. Limestone and Dolomite Use (2.A.3.)	
4.2.4. Soda Ash Production and Use (2.A.4.)	
4.2.4.1. Soda Ash Production (2.A.4)	
4.2.4.2. Soda Ash Use (2.A.4)	
4.2.5. Asphalt Roofing (2.A.5.)	
4.2.6. Road Paving with Asphalt (2.A.6.)	4-12
4.3. Chemical Industry (2.B.)	4-12
4.3.1. Ammonia Production (2.B.1.)	
4.3.2. Nitric Acid Production (2.B.2.)	
4.3.3. Adipic Acid Production (2.B.3.)	
4.3.4. Carbide Production (2.B.4.)	
4.3.4.1. Silicon Carbide (2.B.4)	
4.3.4.2. Calcium Carbide (2.B.4)	
4.3.5. Other (2.B.5.)	4-21
4.3.5.1. Carbon Black (2.B.5)	4-21
4.3.5.2. Ethylene (2.B.5)	
4.3.5.3. 1,2-Dichloroethane (2.B.5)	
4354 Styrene (2B5-)	4-27

Table of Contents

4.3.5.5. Methanol (2.B.5)	4-28
4.3.5.6. Coke (2.B.5)	4-29
4.4. Metal Production (2.C.)	
4.4.1. Iron and Steel Production (2.C.1.)	
4.4.1.1. Steel (2.C.1)	
4.4.1.2. Pig Iron (2.C.1)	
4.4.1.3. Sinter (2.C.1)	
4.4.1.4. Coke (2.C.1)	4-33
4.4.1.5. Use of Electric Arc Furnaces in Steel Production (2.C.1)	4-33
4.4.2. Ferroalloys Production (2.C.2.)	4-35
4.4.3. Aluminium Production (2.C.3.)	
4.4.4. SF ₆ Used in Aluminium and Magnesium Foundries (2.C.4.)	4-38
4.4.4.1. Aluminium	4-38
4.4.4.2. Magnesium	4-38
4.5. Other Production (2.D.)	4-39
4.5.1. Pulp and Paper (2.D.1.)	
4.5.2. Food and Drink (2.D.2.)	
4.6. Production of Halocarbons and SF ₆ (2.E.)	
4.6.1. By-product Emissions: Production of HCFC-22 (2.E.1)	
4.6.2. Fugitive Emissions (2.E.2.)	
4.7. Consumption of Halocarbons and SF_6 (2.F.)	
4.7.1. Refrigeration and Air Conditioning Equipment (2.F.1.)	
4.7.1.1. Domestic Refrigeration (2.F.1)	
4.7.1.2. Commercial Refrigeration (2.F.1)	
4.7.1.2. Commercial Refrigeration (2.F.1)	
4.7.1.4. Industrial Refrigeration (2.F.1)	
4.7.1.5. Stationary Air-Conditioning (Household) (2.F.1)	
4.7.1.6. Mobile Air-Conditioning (Car Air Conditioners) (2.F.1)	
4.7.2. Foam Blowing (2.F.2.)	
4.7.2.1. Hard Foam (2.F.2)	
4.7.2.2. Soft Foam (2.F.2)	4-55
4.7.3. Fire Extinguishers (2.F.3.)	4-55
4.7.4. Aerosols/Metered Dose Inhalers (2.F.4.)	4-57
4.7.4.1. Aerosols (2.F.4)	
4.7.4.2. Metered Dose Inhalers (2.F.4)	4-58
4.7.5. Solvents (2.F.5.)	4-60
4.7.6. Other applications using ODS substitutes (2.F.6.)	4-61
4.7.7. Semiconductors (2.F.7.)	4-61
4.7.7.1. Semiconductors	
4.7.7.2. Liquid Crystals	4-63
4.7.8. Electrical Equipment (2.F.8.)	4-64
4.7.9. Other - Railway Silicon Rectifiers (2.F.9.)	4-66
CHAPTER 5. SOLVENT AND OTHER PRODUCT USE (CRF SECTOR 3)	5-1
5.1. Overview of Sector	
5.2. Paint Application (3.A.)	
5.3. Degreasing and Dry-Cleaning (3.B.)	
5.4. Chemical Products, Manufacture and Processing (3.C.)	
5.5. Other (3.D.)	
	32

5.5.1. Use of Nitrous Oxide for Anesthesia (3.D)	5-2
5.5.2. Fire Extinguishers (3.D)	5-3
5.5.3. Aerosol Cans (3.D)	
CHAPTER 6. AGRICULTURE (CRF SECTOR 4)	6-1
6.1. Overview of Sector	6-1
6.2. Enteric Fermentation (4.A.)	
6.2.1. Cattle (4.A.1.)	
6.2.2. Buffalo, Sheep, Goats, Horses & Swine (4.A.2., 4.A.3., 4.A.4., 4.A.6., 4.A.8.)	
6.2.3. Poultry (4.A.9.)	
6.2.4. Camels and Llamas, Mules and Asses (4.A.5., 4.A.7.)	
6.2.5. Other (4.A.10.)	
6.3. Manure Management (4.B.)	
6.3.1. Cattle, Swine and Poultry (4.B.1., 4.B.8., 4.B.9.)	
6.3.2. Buffalo, Sheep, Goats & Horses (4.B.2., 4.B.3., 4.B.4., 4.B.6.)	
6.3.3. Camels and Llamas, Mules and Asses (4.B.5., 4.B.7.)	
6.3.4. Other (4.B.10.)	
6.4. Rice Cultivation (4.C.)	
6.4.1. Intermittently Flooded (Single Aeration) (4.C.1)	
6.4.2. Continuously Flooded (4.C.1)	
6.4.3. Rainfed & Deep Water (4.C.2., 4.C.3.)	
6.4.4. Other (4.C.4.)	
6.5. Agricultural Soils (4.D.)	
6.5.1. Direct Soil Emissions (4.D.1.)	
6.5.1.1. Synthetic Fertilizers (4.D.1)	
6.5.1.2. Organic Fertilizer (Application of Animal Waste) (4.D.1)	
6.5.1.3. N-fixing Crops (4.D.1)	
6.5.1.4. Crop Residue (4.D.1)	
6.5.1.5. Plowing of Organic Soil (4.D.1)	
6.5.1.6. Direct Emissions (CH ₄)	6-42
6.5.2. Pasture, Range and Paddock Manure (4.D.2.)	
6.5.3. Indirect Emissions (4.D.3.)	6-42
6.5.3.1. Atmospheric Deposition (4.D.3)	6-42
6.5.3.2. Nitrogen Leaching and Run-off (4.D.3)	
6.5.3.3. Indirect Emissions (CH ₄) (4.D.3)	
6.5.4. Other (4.D.4)	
6.6. Prescribed Burning of Savannas (4.E.)	
6.7. Field Burning of Agricultural Residues (4.F.)	6-47
6.7.1. Rice, Wheat, Barley, Rye, and Oats (4.F.1.)	6-47
6.7.2. Maize, Peas, Soybeans, Adzuki beans, Kidney beans, Peanuts, Potatoes, Sugarb	
& Sugar cane (4.F.1., 4.F.2., 4.F.3., 4.F.4.)	6-51
6.7.3. Dry bean (4.F.2)	
6.7.4. Other (4.F.5.)	6-53
CHAPTER 7. LAND USE, LAND-USE CHANGE AND FORESTRY (CRF SECTOR5) _	7-1
7.1. Overview of Sector	7-1
7.2. Method of determining land-use categories	
7.2.1. Basic approach	
11	

Table of Contents

7.2.2. Method of determining land-use categories and areas	_ 7-2
7.2.3. Survey methods and due dates of major land area statistics	
7.2.4. Land area estimation methods	
7.3. Forest land (5.A.)	
7.3.1. Forest land remaining Forest land (5.A.1.)	
7.3.2. Land converted to Forest land (5.A.2)	
7.4. Cropland (5.B)	
7.4.1. Cropland remaining Cropland (5.B.1)	
7.4.2. Land converted to Cropland (5.B.2)	
7.5. Grassland (5.C)	
7.5.1. Grassland remaining Grassland (5.C.1)	
7.5.2. Land converted to Grassland (5.C.2)	
7.6. Wetlands (5.D)	
7.6.1. Wetlands remaining Wetlands (5.D.1)	
7.6.2. Land converted to Wetlands (5.D.2)	
7.7. Settlements (5.E)	
7.7.1. Settlements remaining Settlements (5.E.1)	
7.7.2. Land converted to Settlements (5.E.2)	
7.8. Other land (5.F)	
7.8.1. Other land remaining Other land (5.F.1)	
7.8.2. Land converted to Other land (5.F.2)	
7.9. Direct N ₂ O emissions from N fertilization (5. (I))	
7.10. N ₂ O emissions from drainage of soils (5. (II))	
7.10. N_2O emissions from disturbance associated with land-use conversion to Cropland (5.(III)	
• • • • • •	
7.12. CO ₂ emissions from agricultural lime application (5.(IV))	
7.12. CO2 emissions from agricultural time application (5.(1v)) 7.13. Biomass burning (5.(V))	
	7-70
7.13. Biomass burning (5.(V)) CHAPTER 8. WASTE (CRF SECTOR 6)	7-70 8-1
7.13. Biomass burning (5.(V)) CHAPTER 8. WASTE (CRF SECTOR 6) 8.1. Overview of Sector	7-70 8-1 _ 8-1
7.13. Biomass burning (5.(V)) CHAPTER 8. WASTE (CRF SECTOR 6) 8.1. Overview of Sector 8.2. Solid Waste Disposal on Land (6.A.)	7-70 8-1 8-1 8-1
7.13. Biomass burning (5.(V)) CHAPTER 8. WASTE (CRF SECTOR 6) 8.1. Overview of Sector 8.2. Solid Waste Disposal on Land (6.A.) 8.2.1. Emissions from Managed Landfill Sites (6.A.1.)	7-70 8-1 8-1 8-3
7.13. Biomass burning (5.(V))	7-70 8-1 8-1 8-1 8-3 8-3 8-12
7.13. Biomass burning (5.(V))	7-70
7.13. Biomass burning (5.(V))	7-70 8-1 8-1 8-3 8-3 8-12 8-12
7.13. Biomass burning (5.(V))	7-70 8-1 8-1 8-1 8-3 8-12 8-12 8-12 8-12 8-14
7.13. Biomass burning (5.(V))	7-70 8-1 8-1 8-1 8-3 8-12 8-12 8-12 8-14 8-15
7.13. Biomass burning (5.(V))	7-70 8-1 8-1 8-1 8-3 8-12 8-12 8-12 8-12 8-14 8-15 8-19
7.13. Biomass burning (5.(V)) CHAPTER 8. WASTE (CRF SECTOR 6) 8.1. Overview of Sector 8.2. Solid Waste Disposal on Land (6.A.) 8.2.1. Emissions from Managed Landfill Sites (6.A.1.) 8.2.2. Emissions from Unmanaged Waste Disposal Sites (6.A.2.) 8.2.3. Emissions from Other Managed Landfill Sites (6.A.3.) 8.2.3.1. Emissions from Inappropriate Disposal (6.A.3.a) 8.3. Wastewater Handling (6.B.) 8.3.1. Industrial Wastewater (6.B.1.) 8.3.2.1. Sewage Treatment Plant (6.B.2.a)	7-70 8-1 8-1 8-1 8-3 8-12 8-12 8-12 8-12 8-14 8-15 8-19 8-19
7.13. Biomass burning (5.(V))	7-70 8-1 8-1 8-1 8-3 8-12 8-12 8-12 8-14 8-15 8-19 8-19 8-21
7.13. Biomass burning (5.(V)) CHAPTER 8. WASTE (CRF SECTOR 6) 8.1. Overview of Sector 8.2. Solid Waste Disposal on Land (6.A.) 8.2.1. Emissions from Managed Landfill Sites (6.A.1.) 8.2.2. Emissions from Unmanaged Waste Disposal Sites (6.A.2.) 8.2.3. Emissions from Other Managed Landfill Sites (6.A.3.) 8.2.3.1. Emissions from Other Managed Landfill Sites (6.A.3.) 8.2.3.1. Emissions from Inappropriate Disposal (6.A.3.a) 8.3. Wastewater Handling (6.B.) 8.3.1. Industrial Wastewater (6.B.1.) 8.3.2. Domestic and Commercial Wastewater (6.B.2.) 8.3.2.1. Sewage Treatment Plant (6.B.2.a) 8.3.2.3. Human-Waste Treatment Plant (mainly septic tanks) (6.B.2.b) 8.3.2.4. Emission from the Natural Decomposition of Domestic Wastewater (6.B.2.d) 8.3.2.5. Recovery of CH ₄ emitted from treating domestic and commercial wastewater	7-70 8-1 8-1 8-1 8-3 8-12 8-12 8-12 8-12 8-14 8-15 8-19 8-19 8-21 8-24 8-29
7.13. Biomass burning (5.(V)) CHAPTER 8. WASTE (CRF SECTOR 6) 8.1. Overview of Sector 8.2. Solid Waste Disposal on Land (6.A.) 8.2. Solid Waste Disposal on Land (6.A.) 8.2.1. Emissions from Managed Landfill Sites (6.A.1.) 8.2.2. Emissions from Unmanaged Waste Disposal Sites (6.A.2.) 8.2.3. Emissions from Other Managed Landfill Sites (6.A.3.) 8.2.3. Emissions from Other Managed Landfill Sites (6.A.3.) 8.2.3.1. Emissions from Inappropriate Disposal (6.A.3.a) 8.3. Wastewater Handling (6.B.) 8.3.1. Industrial Wastewater (6.B.1.) 8.3.2. Domestic and Commercial Wastewater (6.B.2.) 8.3.2.1. Sewage Treatment Plant (6.B.2.a) 8.3.2.3. Human-Waste Treatment Plant (mainly septic tanks) (6.B.2.b) 8.3.2.4. Emission from the Natural Decomposition of Domestic Wastewater (6.B.2.d) 8.3.2.5. Recovery of CH ₄ emitted from treating domestic and commercial wastewater (6.B.2)	7-70 8-1 8-1 8-1 8-3 8-12 8-21 8-24 8-29 8-32
7.13. Biomass burning (5.(V)) CHAPTER 8. WASTE (CRF SECTOR 6) 8.1. Overview of Sector 8.2. Solid Waste Disposal on Land (6.A.) 8.2. Solid Waste Disposal on Land (6.A.) 8.2.1. Emissions from Managed Landfill Sites (6.A.1.) 8.2.2. Emissions from Unmanaged Waste Disposal Sites (6.A.2.) 8.2.3. Emissions from Other Managed Landfill Sites (6.A.3.) 8.2.3. Emissions from Other Managed Landfill Sites (6.A.3.) 8.2.3. Emissions from Inappropriate Disposal (6.A.3.a) 8.3. Wastewater Handling (6.B.) 8.3.1. Industrial Wastewater (6.B.1.) 8.3.2. Domestic and Commercial Wastewater (6.B.2.) 8.3.2.1. Sewage Treatment Plant (6.B.2.a) 8.3.2.3. Human-Waste Treatment Plant (mainly septic tanks) (6.B.2.b) 8.3.2.4. Emission from the Natural Decomposition of Domestic Wastewater (6.B.2.d) 8.3.2.5. Recovery of CH ₄ emitted from treating domestic and commercial wastewater (6.B.2) 8.4. Waste Incineration (6.C.)	7-70 8-1 8-1 8-1 8-3 8-12 8-12 8-12 8-12 8-14 8-15 8-19 8-21 8-24 8-29 8-32 8-34
7.13. Biomass burning (5.(V)) CHAPTER 8. WASTE (CRF SECTOR 6) 8.1. Overview of Sector 8.2. Solid Waste Disposal on Land (6.A.) 8.2. Solid Waste Disposal on Land (6.A.) 8.2.1. Emissions from Managed Landfill Sites (6.A.1.) 8.2.2. Emissions from Unmanaged Waste Disposal Sites (6.A.2.) 8.2.3. Emissions from Other Managed Landfill Sites (6.A.3.) 8.2.3. Emissions from Other Managed Landfill Sites (6.A.3.a) 8.2.3. Emissions from Inappropriate Disposal (6.A.3.a) 8.3. Wastewater Handling (6.B.) 8.3.1. Industrial Wastewater (6.B.1.) 8.3.2. Domestic and Commercial Wastewater (6.B.2.) 8.3.2.1. Sewage Treatment Plant (6.B.2.a) 8.3.2.2. Domestic Sewage Treatment Plant (mainly septic tanks) (6.B.2.b) 8.3.2.3. Human-Waste Treatment Plant (6.B.2) 8.3.2.4. Emission from the Natural Decomposition of Domestic Wastewater (6.B.2.d) 8.3.2.5. Recovery of CH ₄ emitted from treating domestic and commercial wastewater (6.B.2) 8.4.1. Waste Incineration (6.C.) 8.4.1. Waste Incineration without Energy Recovery (6.C.)	7-70 8-1 8-1 8-1 8-3 8-12 8-12 8-12 8-12 8-14 8-15 8-19 8-21 8-24 8-29 8-32 8-34 8-37
7.13. Biomass burning (5.(V)) CHAPTER 8. WASTE (CRF SECTOR 6) 8.1. Overview of Sector 8.2. Solid Waste Disposal on Land (6.A.) 8.2.1. Emissions from Managed Landfill Sites (6.A.1.) 8.2.2. Emissions from Unmanaged Waste Disposal Sites (6.A.2.) 8.2.3. Emissions from Other Managed Landfill Sites (6.A.3.) 8.2.3. Emissions from Other Managed Landfill Sites (6.A.3.) 8.2.3. Emissions from Inappropriate Disposal (6.A.3.a) 8.3. Wastewater Handling (6.B.) 8.3.1. Industrial Wastewater (6.B.1.) 8.3.2. Domestic and Commercial Wastewater (6.B.2.) 8.3.2.1. Sewage Treatment Plant (6.B.2.a) 8.3.2.3. Human-Waste Treatment Plant (6.B.2) 8.3.2.4. Emission from the Natural Decomposition of Domestic Wastewater (6.B.2.d) 8.3.2.5. Recovery of CH ₄ emitted from treating domestic and commercial wastewater (6.B.2) 8.4.1. Waste Incineration (6.C.) 8.4.1.1. Municipal Solid Waste Incineration (6.C.1)	7-70 8-1 8-1 8-1 8-1 8-12 8-14 8-15 8-21 8-21 8-21 8-21 8-22 8-22 8-23 8-24 8-32 8-32 8-32 8-32 8-32 8-32 8-32 8-32 8-32 8-32 8-32 8-32 8-32 8-32 8-34 8-37 8-32 8-34 8-37 8-37 8-37 8-37 8-37 8-37
7.13. Biomass burning (5.(V)) CHAPTER 8. WASTE (CRF SECTOR 6) 8.1. Overview of Sector 8.2. Solid Waste Disposal on Land (6.A.) 8.2. Solid Waste Disposal on Land (6.A.) 8.2.1. Emissions from Managed Landfill Sites (6.A.1.) 8.2.2. Emissions from Unmanaged Waste Disposal Sites (6.A.2.) 8.2.3. Emissions from Other Managed Landfill Sites (6.A.3.) 8.2.3. Emissions from Other Managed Landfill Sites (6.A.3.a) 8.2.3. Emissions from Inappropriate Disposal (6.A.3.a) 8.3. Wastewater Handling (6.B.) 8.3.1. Industrial Wastewater (6.B.1.) 8.3.2. Domestic and Commercial Wastewater (6.B.2.) 8.3.2.1. Sewage Treatment Plant (6.B.2.a) 8.3.2.2. Domestic Sewage Treatment Plant (mainly septic tanks) (6.B.2.b) 8.3.2.3. Human-Waste Treatment Plant (6.B.2) 8.3.2.4. Emission from the Natural Decomposition of Domestic Wastewater (6.B.2.d) 8.3.2.5. Recovery of CH ₄ emitted from treating domestic and commercial wastewater (6.B.2) 8.4.1. Waste Incineration (6.C.) 8.4.1. Waste Incineration without Energy Recovery (6.C.)	7-70 8-1 8-1 8-1 8-1 8-12 8-21 8-24 8-32 8-34 8-37 8-37 8-37 8-34 8-37 8-37 8-34 8-37 8-34 8-37 8-34 8-37 8-34 8-37 8-34 8-37 8-34

8.4.2. Emissions from waste incineration with energy recovery (1.A.)	8-54
8.4.2.1. Incineration of municipal solid waste with energy recovery (1.A.1.a)	_ 8-54
8.4.2.2. Incineration of industrial solid waste with energy recovery (1.A.1.a)	_ 8-55
8.4.3. Emissions from direct use of waste as fuel (1.A.)	_8-56
8.4.3.1. Emissions from municipal waste (waste plastics) used as alternative fuel	
(1.A.1 and 1.A.2)	_ 8-60
8.4.3.2. Emissions from industrial waste (waste plastics, waste oil, and waste wood)	0.10
used as raw material or alternative fuels (1.A.2.))	
8.4.3.3. Emissions from waste tires used as raw materials and alternative fuels (1.A.1 and 1.A.2)	_ 8-65
8.4.4. Emissions from incineration of waste processed as fuel (1.A.)	
8.4.4.1. Incineration of refuse-based solid fuels (RDF and RPF) (1.A.1 and 1.A.2)	
8.5. Other (6.D.)	
8.5.1. Emissions from Composting of Organic Waste (6.D.1)	_8-72
8.5.2. Emissions from the Decomposition of Petroleum-Derived Surfactants (6.D.2)	_8-74
CHAPTER 9. OTHER (CRF SECTOR 7)	9-1
9.1. Overview of Sector	9-1
9.2. CO ₂ , CH ₄ , N ₂ O, HFCs, PFCs and SF ₆	9-1
9.3. NOx, CO, NMVOC and SO ₂	
CHAPTER 10. RECALCULATION AND IMPROVEMENTS	10-1
10.1. Explanation and Justification for Recalculations	
10.1.1. General Issues	
10.1.2. Recalculations in Each Sector	
10.2. Implications for Emission Levels	
10.3. Implication for Emission Trends, including Time Series Consistency	
10.4. Recalculations, including in response to the review process, and planned improvements	
the inventory	
10.4.1. Improvements from inventory submitted in 2009	
10.4.1.1. Methodology for estimating emissions and removals of GHGs	
10.4.1.2. National Greenhouse Gas Inventory Report	
10.4.2. Planned Improvements	
	_ 10 0
ANNEX 1. KEY CATEGORIES	1-1
1.1. Outline of Key Category Analysis	
1.2. Results of Key Category Analysis	
1.2. Results of Rey Category Analysis	1-1
ANNEX 2. DETAILED DISCUSSION ON METHODOLOGY AND DATA FOR ESTIMATI	-
EMISSIONS FROM FOSSIL FUEL COMBUSTION	2-1
2.1. Discrepancies between the figures reported in the CRF tables and the IEA statistics	2-1
2.2. General Energy Statistics	_2-10

ANNEX 3. OTHER DETAILED METHODOLOGICAL DESCRIPTIONS FOR INDIVIDUAL SOURCE OR SINK CATEGORIES ______ 3-1

3.1. Methodology for Estimating Emissions of Precursors	3-1
3.1.1. Energy Sector	
3.1.2. Industrial Processes	
3.1.3. Sectors that use solvents and other products	
3.1.4. Agriculture	_ 3-21
3.1.5. Land Use, Land-Use Change and Forestry	_ 3-22
3.1.6. Wastes	
3.1.7. Other sectors	_ 3-27
ANNEX 4. CO ₂ REFERENCE APPROACH AND COMPARISON WITH SECTORAL APP	ROACH,
AND RELEVANT INFORMATION ON THE NATIONAL ENERGY BALANCE	E 4-1
4.1. Difference in Energy Consumption	4-1
4.2. Difference in CO ₂ Emissions	4-1
4.3. Comparison between Differences in Energy Consumption and that of CO ₂ Emissions	
4.4. Causes of the difference between Reference Approach and Sectoral Approach	
ANNEX 5. ASSESSMENT OF COMPLETENESS AND (POTENTIAL) SOURCES AND SI	
GREENHOUSE GAS EMISSIONS AND REMOVALS EXCLUDED	
5.1. Assessment of Completeness	
5.2. Definition of Notation Keys	
5.3. Decision Tree for Application of Notation Keys	
5.4. Source categories not estimated in Japan's inventory	
ANNEX 6. ADDITIONAL INFORMATION TO BE CONSIDERED AS PART OF THE NIR SUBMISSION OR OTHER USEFUL REFERENCE INFORMATION	
6.1. Details on Inventory Compilation System and QA/QC Plan	
6.1.1. Introduction to QA/QC Plan	
6.1.2. QA/QC plan's scope	
6.1.3. Roles and responsibilities of each entity involved in the inventory preparation	0 1
process	6-1
6.1.4. Collection process of activity data	
6.1.5. Selection process of emission factors and estimation methods	
6.1.6. Improvement process of estimations for emissions and removals	
6.1.7. QA/QC activity	
6.1.8. Response for UNFCCC inventory review	
6.1.9. Documentation and archiving of inventory information	
ANNEX 7. METHODOLOGY AND RESULTS OF UNCERTAINTY ASSESSMENT	7-1
7.1. Methodology of Uncertainty Assessment	7-1
7.1.1. Background and Purpose	
7.1.2. Overview of Uncertainty Assessment Indicated in the Good Practice Guidance	
7.1.3. Methodology of Uncertainty Assessment in Japan's Inventories	
7.2. Results of Uncertainty Assessment	
7.2.1. Assumption of Uncertainty Assessment	
7.2.2. Uncertainty of Japan's Total Emissions	
7.2.3. Energy Sector	
7.2.5. Energy Sector	

7.2.4. Industrial Processes	7-18
7.2.5. Solvents and Other Product Use	
7.2.6. Agriculture	
7.2.7. LULUCF	
7.2.8. Waste	7-21
7.2.9. Consideration of the results	7-22
7.2.10. Issues in Uncertainty Assessment	7-22
7.2.11. Reference Material	7-23
ANNEX 8. HIERARCHICAL STRUCTURE OF JAPAN'S NATIONAL GHG INVENTORY	FILE
SYSTEM	8-1
ANNEX 9. SUMMARY OF COMMON REPORTING FORMAT	9-1
ANNEX 10. JAPAN'S INFORMATION REQUIRED UNDER ARTICLE 7, PARAGRAPH	OF
THE KYOTO PROTOCOL	10-1
10.1. Greenhouse Gas Inventory Information	
10.1.1. Steps taken to improve estimates in areas that were previously adjusted	
10.1.2. Information of Article 3, paragraph 3 and paragraph 4	
10.2. Information on ERU, CER, t-CER, 1-CER, AAU and RMU	
10.2.1. Information on ERU, CER, t-CER, l-CER, AAU and RMU	
10.2.2. Information on discrepancy and other issues	
10.2.3. Calculation of its commitment period reserve in accordance with decision	
11/CMP.1 (Article 17 of the Kyoto Protocol)	10-2
10.3. Changes in national systems in accordance with Article 5, paragraph 1	_10-2
10.4. Changes in national registries	10-2
10.4.1. Summary of changes made on national registry of Japan in 2009	10-2
10.4.2. Information relevant to the changes made on national registry of Japan	_10-3
10.5. Minimization of adverse impacts in accordance with Article 3, paragraph 14	10-4
ANNEX 11. SUPPLEMENTARY INFORMATION ON LULUCF ACTIVITIES UNDER A	RTICLE
3, PARAGRAPHS 3 AND 4 OF THE KYOTO PROTOCOL	11-1
11.1. Summary of removal related trends, and emission and removals from KP LULUCF	
activities	
11.2. General information	
11.2.1. Definition of forest and any other criteria	
11.2.2. Elected activities under Article 3, paragraph 4 of the Kyoto Protocol	_11-3
11.2.3. Description of how the definitions of each activity under Article 3.3 and each	
elected activity under Article 3.4 have been implemented and applied	
consistently over time	11-4
11.2.4. Description of precedence conditions and/or hierarchy among Article 3.4	
activities, and how they have been consistently applied in determining how lan	
was classified	
11.3. Land-related information	11-4
11.3.1. Spatial assessment unit used for determining the area of the units of land under	11 4
Article 3.3	11-4

Table of Contents

11.3.2. Methodology used to develop the land transition matrix	_ 11-4
11.4. Activity-specific information	11-16
11.4.1. Methods for carbon stock change and GHG emission and removal estimates	
11.5. Article 3.3	11-50
11.5.1. Information that demonstrates that activities under Article 3.3 began on or after	1
January 1990 and before 31 December 2012 and are direct human-induced	11-50
11.5.2. Information on how harvesting or forest disturbance that is followed by the	
re-establishment of forest is distinguished from deforestation	11-50
11.5.3. Information on the size and geographical location of forest areas that have lost	
forest cover but which are not yet classified as deforested	11-50
11.6. Article 3.4	11-51
11.6.1. Information that demonstrates that activities under Article 3.4 have occurred sin	
1 January 1990 and are human-induced	11-51
11.6.2. Information relating to Revegetation for the base year	11-53
11.6.3. Information relating to Forest Management	11-53
11.7. Other information	
11.7.1. Key category analysis for Article 3.3 activities and any elected activities under	
Article 3.4	11-53
11.7.2. Further improvement	
11.8. Information relating to Article 6	

Executive Summary of National GHGs Inventory Report of Japan 2010

E.S.1. Background Information on GHGs Inventories and Climate Change

This National Inventory Report comprises the inventory of the emissions and removals of greenhouse gases (GHGs), indirect GHGs and SO₂ in Japan for FY 1990 through to FY 2008^{1} , on the basis of Articles 4 and 12 of the United Nations Framework Convention on Climate Change (UNFCCC).

Estimation methodologies of GHGs inventories should be in line with the *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories* (hereafter, *Revised 1996 IPCC Guidelines*) which was developed by the Intergovernmental Panel on Climate Change (IPCC). In 2000, the *Good Practice and Uncertainty Management in National Greenhouse Gas Inventories (2000)* (hereafter, *Good Practice Guidance (2000)*) was published. The Guidance presents the methods for choosing methodologies appropriate to the circumstances of each country and quantitative methods for evaluating uncertainty. Parties are required to seek to apply the *Good Practice Guidance (2000)* to their inventory reporting from 2001 and afterward.

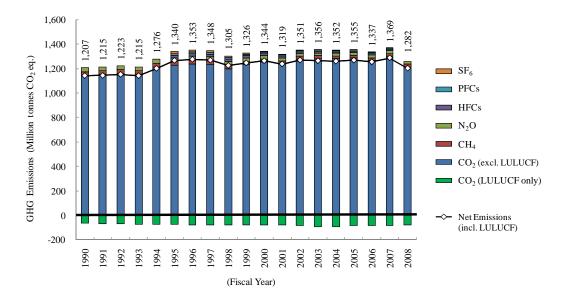
For the submission of Japan's inventories, the trial use of the UNFCCC Reporting Guidelines on Annual Inventories (FCCC/SBSTA/2006/9) has been determined by the Conference of the Parties, and the inventory will be reported in accordance with this guideline. For the preparation of the LULUCF inventory, the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry (hereafter, GPG-LULUCF) was published in 2003, and the Parties are required to seek to apply the GPG-LULUCF to their inventory reporting from 2005 and afterward.

E.S.2. Summary of National Emission and Removal Related Trends

Total GHGs emissions in FY 2008² (excl. LULUCF³) were 1,282 million tonnes (in CO₂ eq.). They increased by 6.2% compared to the emissions in FY 1990⁴ (excl. LULUCF). Compared to the emissions in the base year under the Kyoto Protocol⁵, they increased by 1.6%.

It should be noted that actual emissions of HFCs, PFCs, and SF_6 in the period from CY 1990 to 1994 are not estimated (NE)⁶.

¹ "FY" (Fiscal Year), from April of the reporting year through March of the next year, is used because CO_2 is the primary GHGs emissions and estimated on a fiscal year basis. "CY" stands for "Calendar Year".


² The sum of CO₂, CH₄, N₂O, HFCs, PFCs and SF₆ emissions converted to CO₂ equivalents, multiplied by their respective global warming potential (GWP). The GWP is a coefficient by means of which greenhouse gas effects of a given gas are made relative to those of an equivalent amount of CO₂. The coefficients are subjected to the *Second Assessment Report* (1995) issued by the Intergovernmental Panel on Climate Change (IPCC).

³ Abbreviation of "Land Use, Land-Use Change and Forestry"

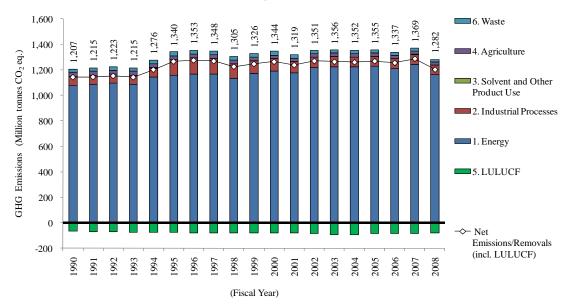
 $^{^4}$ The sum of CO₂, CH₄ and N₂O emissions converted to CO₂ equivalents multiplied by their respective GWP.

⁵ Japan's base year under the Kyoto Protocol for CO₂, CH₄, N₂O emissions is FY 1990, while FY 1995 is the base year for HFCs, PFCs, and SF₆emissions.

⁶ Potential emissions are reported in Common Reporting Format (CRF) for CY 1990 to 1994.

Figure 1	Trends in GHGs emission and removals in Japan
----------	---

	Ta	ble 1	Tren	ds in C	GHGs	emissio	on and	remov	als in	Japan			
[Million tonnes CO2 eq.]	GWP	Base year of KP	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
CO ₂ (excl. LULUCF)	1	1,144.1	1,143.4	1,152.8	1,160.9	1,153.6	1,213.4	1,226.5	1,238.8	1,234.6	1,198.6	1,233.6	1,254.3
CO ₂ (incl. LULUCF)	1	NA	1,080.0	1,082.1	1,090.9	1,081.0	1,139.5	1,152.5	1,160.3	1,155.7	1,119.7	1,154.2	1,174.0
CO ₂ (LULUCF only)	1	NA	-63.5	-70.7	-70.0	-72.5	-73.9	-73.9	-78.5	-79.0	-78.9	-79.4	-80.3
CH ₄ (excl. LULUCF)	21	33.4	31.9	31.7	31.4	31.1	30.4	29.5	28.8	27.8	27.0	26.4	25.8
CH4 (incl. LULUCF)	21	NA	31.9	31.7	31.4	31.1	30.5	29.5	28.9	27.8	27.0	26.4	25.8
N2O (excl. LULUCF)	310	32.6	31.5	31.0	31.1	30.8	31.9	32.3	33.4	34.0	32.5	26.1	28.7
N ₂ O (incl. LULUCF)	310	NA	31.6	31.1	31.2	30.8	32.0	32.4	33.4	34.1	32.6	26.1	28.7
HFCs	HFC-134a: 1,300 etc.	20.2	NE	NE	NE	NE	NE	20.3	19.9	19.9	19.4	19.9	18.8
PFCs	PFC-14: 6,500 etc.	14.0	NE	NE	NE	NE	NE	14.2	14.8	16.2	13.4	10.4	9.5
SF_6	23,900	16.9	NE	NE	NE	NE	NE	17.0	17.5	15.0	13.6	9.3	7.2
Gross Total (excl. LU	JLUCF)	1,261.3	1,206.8	1,215.4	1,223.4	1,215.4	1,275.8	1,339.8	1,353.2	1,347.5	1,304.6	1,325.7	1,344.3
Net Total (incl. LUI	LUCF)	NA	1,143.5	1,144.8	1,153.5	1,143.0	1,202.0	1,265.9	1,274.8	1,268.6	1,225.7	1,246.4	1,264.0
[Million tonnes CO2 eq.]	GWP	2001	2002	2003	2004	2005	2006	2007	2008	Emission increase from the base year of KP	Emission increase from 1990 (2008)	Emission increase from 1995 (2008)	Emission increase from previous year (2008)
[Million tonnes CO ₂ eq.]	GWP 1	2001	2002	2003 1,281.6	2004	2005 1,286.0	2006	2007 1,300.6	2008	increase from	increase from	increase from	increase from
CO ₂										increase from the base year of KP	increase from 1990 (2008)	increase from 1995	increase from previous year (2008)
CO ₂ (excl. LULUCF) CO ₂	1	1,238.3	1,276.0	1,281.6	1,281.5	1,286.0	1,266.7	1,300.6	1,214.4	increase from the base year of KP	increase from 1990 (2008) 6.2%	increase from 1995 (2008) -	increase from previous year (2008) -6.6%
CO2 (excl. LULUCF) CO2 (incl. LULUCF) CO2	1	1,238.3	1,276.0 1,194.1	1,281.6	1,281.5	1,286.0 1,199.8	1,266.7	1,300.6	1,214.4	increase from the base year of KP	increase from 1990 (2008) 6.2% 5.2%	increase from 1995 (2008) -	increase from previous year (2008) -6.6% -6.8%
CO2 (exel. LULUCF) CO2 (inel. LULUCF) CO2 (LULUCF only) CH4	1	1,238.3 1,157.7 -80.6	1,276.0 1,194.1 -81.9	1,281.6 1,189.8 -91.8	1,281.5 1,189.6 -91.9	1,286.0 1,199.8 -86.1	1,266.7 1,184.8 -81.9	1,300.6 1,218.8 -81.8	1,214.4 1,135.6 -78.8	increase from the base year of KP 6.1% - -	increase from 1990 (2008) 6.2% 5.2% 24.2%	increase from 1995 (2008) -	increase from previous year (2008) -6.6% -6.8% -3.6%
CO2 (excl. LULUCF) CO2 (incl. LULUCF) CO2 (LULUCF only) CH4 (excl. LULUCF) CH4	1 1 1 21	1,238.3 1,157.7 -80.6 25.0	1,276.0 1,194.1 -81.9 24.0	1,281.6 1,189.8 -91.8 23.5	1,281.5 1,189.6 -91.9 23.1	1,286.0 1,199.8 -86.1 22.7	1,266.7 1,184.8 -81.9 22.3	1,300.6 1,218.8 -81.8 21.7	1,214.4 1,135.6 -78.8 21.3	increase from the base year of KP 6.1% - -	increase from 1990 (2008) 6.2% 5.2% 24.2% -33.3%	increase from 1995 (2008) -	increase from previous year (2008) -6.6% -6.8% -3.6% -2.1%
CO2 (excl LULUCF) CO2 (incl LULUCF) CO2 (LULUCF only) CH4 (excl LULUCF) CH4 (incl LULUCF) N2O	1 1 1 21 21	1,238.3 1,157.7 -80.6 25.0 25.0	1,276.0 1,194.1 -81.9 24.0 24.1	1,281.6 1,189.8 -91.8 23.5 23.5	1,281.5 1,189.6 -91.9 23.1 23.1	1,286.0 1,199.8 -86.1 22.7 22.7	1,266.7 1,184.8 -81.9 22.3 22.3	1,300.6 1,218.8 -81.8 21.7 21.7	1,214.4 1,135.6 -78.8 21.3 21.3	increase from the base year of KP 6.1% - - -36.2% -	increase from 1990 (2008) 6.2% 5.2% 24.2% -33.3% -33.2%	increase from 1995 (2008) -	increase from previous year (2008) -6.6% -6.8% -3.6% -2.1% -2.0%
CO2 (excl LULUCF) CO2 (minel LULUCF) CO2 (LULUCF only) CH4 (excl LULUCF) CH4 (incl LULUCF) N2O (excl LULUCF) N2O	1 1 21 21 310	1,238.3 1,157.7 -80.6 25.0 25.0 25.3	1,276.0 1,194.1 -81.9 24.0 24.1 24.5	1,281.6 1,189.8 -91.8 23.5 23.5 23.5 24.2	1,281.5 1,189.6 -91.9 23.1 23.1 24.3	1,286.0 1,199.8 -86.1 22.7 22.7 23.8	1,266.7 1,184.8 -81.9 22.3 22.3 22.3 23.9	1,300.6 1,218.8 -81.8 21.7 21.7 22.6	1,214.4 1,135.6 -78.8 21.3 21.3 21.3 22.5	increase from the base year of KP 6.1% - - - -36.2% - 31.2%	increase from 1990 (2008) 6.2% 5.2% 24.2% -33.3% -33.2% -28.7%	increase from 1995 (2008) -	increase from previous year (2008) -6.6% -6.8% -3.6% -2.1% -2.0% -0.5%
CO2 (excl LULUCF) CO2 (incl. LULUCF) CO2 (LULUCF only) CH4 (excl. LULUCF) CH4 (incl. LULUCF) N2O (excl. LULUCF) N3O (incl. LULUCF)	1 1 21 21 310 310 HFC-134a:	1,238.3 1,157.7 -80.6 25.0 25.0 25.3 25.3	1,276.0 1,194.1 -81.9 24.0 24.1 24.5 24.5	1,281.6 1,189.8 -91.8 23.5 23.5 24.2 24.2	1,281.5 1,189.6 -91.9 23.1 23.1 24.3 24.3	1,286.0 1,199.8 86.1 22.7 22.7 23.8 23.9	1,266.7 1,184.8 81.9 22.3 22.3 23.9 23.9	1,300.6 1,218.8 81.8 21.7 21.7 22.6 22.6	1,214.4 1,135.6 -78.8 21.3 21.3 22.5 22.5	increase from the base year of KP - - -36.2% - - -31.2%	increase from 1990 (2008) 6.2% 5.2% 24.2% -33.3% -33.2% -28.7%	increase from 1995 (2008) - - - - - - - - - -	increase from previous year (2008) -6.6% -3.6% -2.1% -2.0% -0.5%
CO2 (excl LULUCF) CO2 (incl LULUCF) CO3 (LULUCF only) CH4 (excl LULUCF) CH4 (incl LULUCF) N3O (excl LULUCF) N3O (incl LULUCF) HFCs	1 1 21 21 310 310 HFC-134a: 1,300 etc. PFC-14:	1,238.3 1,157.7 -80.6 25.0 25.3 25.3 25.3 16.2	1,276.0 1,194.1 -81.9 24.0 24.1 24.5 24.5 13.7	1,281.6 1,189.8 -91.8 23.5 23.5 24.2 24.2 13.8	1,281.5 1,189.6 -91.9 23.1 23.1 24.3 24.3 24.3 10.6	1,286.0 1,199.8 86.1 22.7 22.7 23.8 23.9 10.6	1,266.7 1,184.8 -81.9 22.3 22.3 23.9 23.9 11.7	1,300.6 1,218.8 -81.8 21.7 21.7 22.6 22.6 13.3	1,214.4 1,135.6 -78.8 21.3 21.3 22.5 22.5 15.3	increate from the base year of KP 6.1% - -36.2% - -31.2% - 24.5%	increase from 1990 (2008) 6.2% 5.2% 24.2% -33.3% -33.2% -28.7% -28.9% -	increase from 1995 (2008) - - - - - - - - - - - - - - - - - - -	increace from previous year (2008) -6.6% -6.8% -3.6% -2.1% -2.0% -0.5% 15.0%
CO; (excl LULUCF) CO; (incl LULUCF) CO; (LULUCF) CH4 (excl LULUCF) CH4 (incl LULUCF) N;O (excl LULUCF) N;O (incl LULUCF) HFCs PFCs	1 1 21 21 310 HFC-134a: 1,300 etc. PFC-14: 6,500 etc. 23,900	1,238.3 1,157.7 -80.6 25.0 25.3 25.3 16.2 7.9	1,276.0 1,194.1 -81.9 24.0 24.1 24.5 24.5 13.7 7.4	1,281.6 1,189.8 -91.8 23.5 23.5 24.2 24.2 13.8 7.2	1,281.5 1,189.6 -91.9 23.1 23.1 24.3 24.3 10.6 7.5	1,286.0 1,199.8 -86.1 22.7 23.8 23.9 10.6 7.0	1,266.7 1,184.8 -81.9 22.3 23.9 23.9 11.7 7.3	1,300.6 1,218.8 -81.8 21.7 22.6 22.6 13.3 6.4	1,214.4 1,135.6 -78.8 21.3 21.3 22.5 22.5 15.3 4.6	increace from the base year of KP 6.1% - -36.2% - -31.2% - -24.5% -67.1%	increase from 1990 (2008) 5.2% 24.2% -33.3% -33.2% -28.7% -28.9% -	increase from 1995 (2008) - - - - - - - - - 24.7% (-67.6%	increse from previous year (2008) -6.6% -6.8% -3.6% -2.1% -2.1% -0.5% -0.5% 15.0% -28.0%


	able 1	Trends in	GHGs emission	and removals in Japan
--	--------	-----------	---------------	-----------------------

* NA : Not Applicable

* NE: Not Estimated * LULUCF: Land Use, Land-Use Change and Forestry

E.S.3. Overview of Source and Sink Category Emission Estimates and Trends

The breakdown of GHGs emissions and removals in FY 2008 by sector⁷ shows that the Energy accounts for 90.5% of total GHGs emissions. It is followed by the Industrial Processes (5.9%), the Agriculture (2.0%), the Waste (1.6%) and the Solvents and Other Product Use (0.01%).

Removals by the LULUCF in FY 2008 were equivalent to 6.1% of total GHGs emissions.

[Million tonnes CO2 eq.]	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
1. Energy	1,078.8	1,086.7	1,094.0	1,087.5	1,143.5	1,156.4	1,168.6	1,165.6	1,135.4	1,170.7	1,190.0
2. Industrial Processes	70.8	71.6	71.2	70.3	72.5	124.1	125.6	123.3	111.4	98.0	97.
3. Solvent and Other Product Use	0.3	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.3
4. Agriculture	31.3	31.2	31.2	31.1	30.7	30.1	29.4	28.8	28.4	27.9	27.
5. LULUCF	-63.4	-70.6	-69.9	-72.4	-73.8	-73.9	-78.4	-78.9	-78.9	-79.3	-80.3
6. Waste	25.6	25.5	26.6	26.2	28.6	28.8	29.1	29.5	29.1	28.7	28.:
Net Emissions/Removals (incl. LULUCF)	1,143.5	1,144.8	1,153.5	1,143.0	1,202.0	1,265.9	1,274.8	1,268.6	1,225.7	1,246.4	1,264.
Emissions (excl. LULUCF)	1,206.8	1,215.4	1,223.4	1,215.4	1,275.8	1,339.8	1,353.2	1,347.5	1,304.6	1,325.7	1,344.
[Million tonnes CO2 eq.]	2001	2002	2003	2004	2005	2006	2007	2008			
1. Energy	1,177.7	1,217.5	1,223.2	1,223.1	1,226.7	1,208.2	1,241.7	1,160.5			
2. Industrial Processes	86.2	80.5	79.7	77.4	77.2	79.5	78.7	75.3			
3. Solvent and Other Product Use	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.2			
4. Agriculture	27.4	27.2	26.9	26.7	26.6	26.5	26.1	25.8			
5. LULUCF	-80.6	-81.9	-91.8	-91.9	-86.1	-81.9	-81.8	-78.8			
6. Waste	26.8	25.7	25.4	24.5	23.7	22.4	22.2	20.1			
Net Emissions/Removals (incl. LULUCF)	1,238.0	1,269.3	1,263.7	1,260.1	1,268.4	1,254.9	1,287.2	1,203.0			

Table 2	Trends in	GHGs	emissions	and	removals	in	each	category
10010 2	inches m	01105	cimbolond	unu	i chilo v ulb		cucii	cutegory

* LULUCF: Land Use, Land-Use Change and Forestry

⁷ It implies "Category" indicated in the *Revised 1996 IPCC Guidelines* and CRF.

E.S.4. Other Information (Indirect GHGs and SO₂)

Under the UNFCCC, it is required to report emissions not only 6 types of GHGs (CO₂, CH₄, N₂O, HFCs, PFCs and SF₆) that are controlled by the Kyoto Protocol, but also emissions of indirect GHGs (NO_x, CO and NMVOC) as well as SO₂. Their emission trends are indicated below.

Nitrogen oxide (NO_X) emissions in FY 2008 were 1,874 thousand tonnes. They decreased by 8.0% since FY 1990 and decreased by 4.0% compared to the previous year.

Carbon monoxide (CO) emissions in FY 2008 were 2,456 thousand tonnes. They decreased by 44.4% since FY 1990 and decreased by 8.2% compared to the previous year.

Non-methane volatile organic compounds (NMVOC) emissions in FY 2008 were 1,571 thousand tonnes. They decrease by 18.9% since FY 1990 and decreased by 4.0% compared to the previous year.

Sulfur dioxide (SO_2) emissions in FY 2008 were 783 thousand tonnes. They decreased by 22.6% since FY 1990 and decreased by 3.4% compared to the previous year.

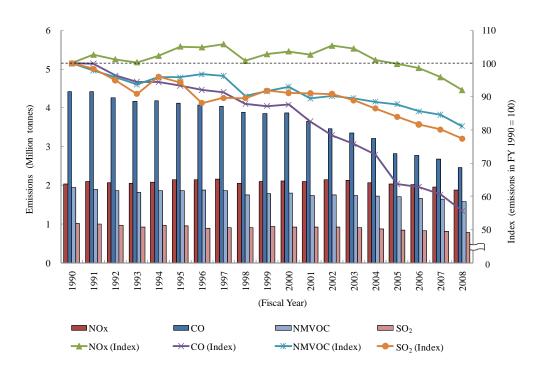


Figure 3 Trends in Emissions of Indirect GHGs and SO₂

Chapter 1. Introduction

1.1. Background Information on Japan's Greenhouse Gas Inventory

The National Inventory Report (NIR) is comprised of the inventories of the emissions and removals of greenhouse gases (GHGs), including indirect GHGs and SO₂ in Japan from FY 1990 to FY 2008¹, on the basis of Article 4 and 12 of the United Nations Framework Convention on Climate Change (UNFCCC).

Estimation methodologies for the GHG inventories should be in line with the *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Revised 1996 IPCC Guidelines)*, which was developed by the Intergovernmental Panel on Climate Change (IPCC). In 2000, the *Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (2000)* (*GPG (2000)*) was published. This Guidance presents the methods for choosing methodologies appropriate to the circumstances of each country and quantitative methods for evaluating uncertainty. Parties are required to attempt to apply the *GPG (2000)* to their inventory reporting from 2001 and afterwards.

Japan's national inventory is reported in accordance with the UNFCCC Reporting Guidelines on Annual Inventories (FCCC/SBSTA/2006/9). With regard to the preparation of the LULUCF inventory, parties are required to attempt the application of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry (GPG-LULUCF), published in 2003, to their inventory reporting from 2005 and afterwards.

1.2. A Description of Japan's Institutional Arrangement for the Inventory Preparation

The Ministry of the Environment (MOE), with the cooperation of relevant ministries, agencies and organizations, prepares Japan's national inventory, which is annually submitted to the UNFCCC Secretariat in accordance with the UNFCCC and the Kyoto Protocol. The MOE takes overall responsibilities for the national inventory and therefore also makes an effort on improving its quality. For instance, the MOE organizes "the Committee for the Greenhouse Gas Emission Estimation Methods (the Committee)" in order to integrate the latest scientific knowledge into the inventory and to modify it based on more recent international provisions. The estimation of GHG emissions and removals, the key category analysis and the uncertainty assessment are then carried out by taking the decisions of the Committee into consideration. Substantial activities, such as the estimation of emissions and removals and the preparation of Common Reporting Format (CRF) and NIR, are done by the Greenhouse Gas Inventory Office of Japan (GIO), which belongs to the Center for Global Environmental Research of the National Institute for Environmental Studies. The relevant ministries, agencies and organizations provide the GIO the appropriate data (e.g., activity data, emission factors, GHG emissions and removals) through compiling various statistics. The relevant ministries check and verify these inventories (i.e., CRF, NIR, KP-CRF and KP-NIR) including the spreadsheets that are actually utilized for the estimation, as a part of the Quality Control (QC) activities. The checked and verified inventory data are Japan's official values. They are then made public by the MOE and the national inventory is submitted to the UNFCCC Secretariat by the Ministry of Foreign Affairs.

¹ "FY (fiscal year)" is used because the major part of CO₂ emission estimate is on the fiscal year basis (April to March).

Figure 1-1 shows the overall institutional arrangement for the inventory preparation within Japan. More detailed information on the role and responsibility of each relevant ministry, agency and organization in the inventory preparation process is described in Annex 6.

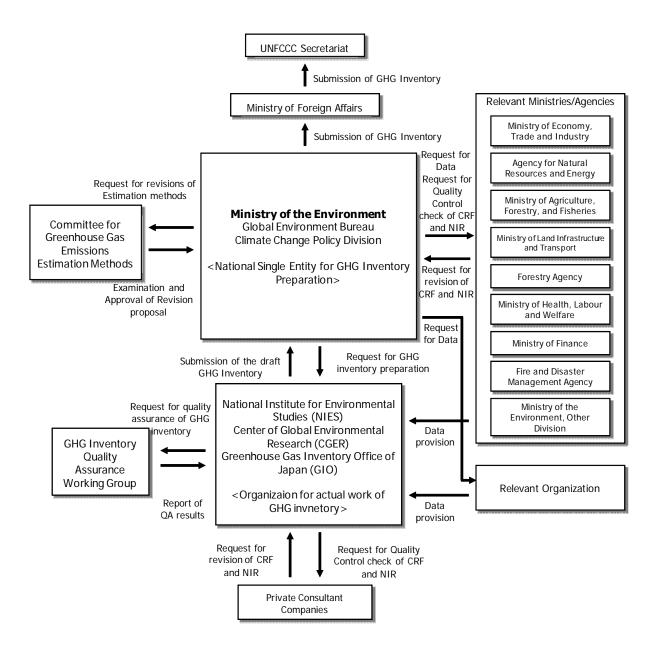


Figure 1-1 Japan's institutional arrangement for the national inventory preparation

1.3. Brief Description of the Inventory Preparation Process

1.3.1. Annual cycle of the inventory preparation

Table 1-1 shows the annual cycle of the inventory preparation. In Japan, in advance of the estimation of national inventory submitted to the UNFCCC (submission deadline: 15th April), preliminary figures are estimated and published as a document for an official announcement. (In preliminary figures, only GHG emissions excluding removals are estimated.)

*Inventory preparation in fiscal yaer "n"														
			Calender Year n+1 CY n+2 Fiscal Year n+1 FY n-											
	Process	Relevant Entities						-		_	FY n+2			
			Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May
1	Discussion on the inventory improvement	MOE, GIO	→	+	→	→								
2	Holding the meeting of the Committee	MOE, (GIO, Private consultant)	†	1	†	-	-	-	→	†				
3	Collection of data for the national inventory	MOE, GIO, Relevant Ministries/Agencies, Relevant organization, Private consultant							+	1	1	1		
4	Preparation of a draft of CRF	GIO, Private consultant								1	1	1		
5	Preparation of a draft of NIR	GIO, Private consultant								1	1	1		
6	Implementation of the exterior QC and the coordination with the relevant ministries and agencies	MOE, GIO, Relevant Ministries/Agencies, Private consultant									1	1	1	
7	Correction of the drafts of CRF and NIR	MOE, GIO, Private consultant										1	+	
8	Submission and official announcement of the national inventory	MOE, Ministry of Foreign Affairs, GIO											Note ★	
9	Holding the meeting of the QA-WG	MOE, GIO	→	→	→	→								ţ

Table 1-1 Annual cycle of the inventory preparation

Note: Inventory submission and official announcement must be implemented within 6 weeks after April 15. MOE: Ministry of the Environment

GIO: Greenhouse Gas Inventory Office of Japan

The Committee: The Committee for the Greenhouse Gas Emission Estimation Methods

The QA-WG: The Inventory Quality Assurance Working Group

1.3.2. Process of the inventory preparation

1) Discussion on the inventory improvement (Step 1)

The MOE and the GIO identify the items, which need to be addressed by the Committee, based on the results of the previous inventory review of the UNFCCC, the recommendations of "the Inventory Quality Assurance Working Group (the QA-WG)", the items needing improvement as identified at former Committee's meetings, as well as any other items, requiring revision, as determined during previous inventory preparations. The schedule for the expert evaluation (step 2) is developed by taking the above mentioned information into account.

2) Holding the meeting of the Committee for the Greenhouse Gas Emission Estimation Methods [evaluation and examination of estimation methods by experts] (Step 2)

The MOE holds the meeting of the Committee, in which estimation methodologies for an annual inventory and the issues that require technical reviews are discussed by experts with different scientific backgrounds (refer to Annex 6).

3) Collection of data for the national inventory (Step 3)

The data required for preparing the national inventory is collected.

4) Preparation of a draft of CRF [including the implementation of the key category analysis and the uncertainty assessment] (Step 4)

The data input and estimation of emissions and removals are carried out simultaneously by utilizing files containing spreadsheets (JNGI: Japan National GHG Inventory files), which have inter-connecting links among themselves based on the calculation formulas for emissions and

removals. Subsequently, the key category analysis and the uncertainty assessment are also carried out.

5) Preparation of a draft of NIR (Step 5)

The drafts of NIR and KP-NIR are prepared by following the general guidelines made by the MOE and the GIO. These entities identify the points, which need to be revised or which require an additional description by taking the discussion at step 1 into account. The GIO and the selected private consulting companies prepare new NIR and KP-NIR by updating data, and by adding and revising descriptions in the previous NIR and KP-NIR.

6) Implementation of the exterior QC and the coordination with the relevant ministries and agencies (Step 6)

As a QC activity, the selected private consulting companies check the JNGI files and the initial draft of CRF (the 0^{th} draft) prepared by the GIO (exterior QC). These companies not only check the input data and the calculation formulas in the files, but also verify the estimations by re-calculating the total amounts of GHG emissions determined by utilizing the same files. Because of this cross-check, any possible data input and emission estimation mistakes are avoided. They also check the content and descriptions of the initial draft of NIR (the 0^{th} draft) prepared by the GIO.

Subsequently, the GIO sends out the primary drafts of the inventories as well as of official announcements as electronic computer files to the MOE and the relevant ministries and agencies, and possible revisions are carried out by them. These primary drafts include not only the drafts, to which the exterior QC was applied, but also the drafts of KP-CRF and KP-NIR that are prepared by the selected private consulting companies. The data, which are estimated based on confidential data, are only sent out for confirmation to the ministry and/or the agency which provided them.

7) Correction of the drafts of CRF and NIR (Step 7)

When revisions are requested at step 6, the possible corrections are discussed among the MOE, the GIO and the relevant ministries and/or agencies. The corrected drafts are then the secondary drafts. These secondary drafts are sent out again to the relevant ministries and/or the agencies for conclusive confirmation. If there is no additional request for revision, they are considered to be the final versions.

8) Submission and official announcement of the national inventory (Step 8)

The completed inventory is submitted by the MOE via the Ministry of Foreign Affairs to the UNFCCC Secretariat. Information on the estimated GHG emissions and removals is officially made public and is published on the MOE's homepage (http://www.env.go.jp/) complete with any additional relevant information. The inventory is also published on the GIO's homepage (http://www-gio.nies.go.jp/index-j.html).

9) Holding the meeting of the Greenhouse Gas Inventory Quality Assurance Working Group (Step 9)

The QA-WG, which is composed of experts who are not directly involved in or related to the inventory preparation process, is organized in order to guarantee the inventory's quality and to find out possible improvements. This QA-WG verifies the validation of the following information: estimation methodologies, activity data, emission factors, and the contents of CRF and NIR.

GIO integrates the items, which were suggested for improvement by the QA-WG, into the inventory improvement program, and utilizes them in discussions on the inventory estimation methods and in

subsequent inventory preparation.

1.4. Brief General Description of Methodologies and Data Sources Used

The methodology used in estimation of GHG emissions or removals is basically in accordance with the *Revised 1996 IPCC Guidelines*, the *GPG (2000)* and the *GPG-LULUCF*. The country-specific methodologies are also used for some categories (e.g., "4.C. methane emissions from rice cultivation") in order to reflect the actual situation of emissions in Japan.

Results of the actual measurements or estimates based on research conducted in Japan are used to determine the emissions factors (country-specific emissions factors). The default values given in the *Revised 1996 IPCC Guidelines*, the *GPG (2000)* and the *GPG-LULUCF* are used for: emissions, which are assumed to be quite low (e.g., "1.B.2.a.ii fugitive emissions from fuel (oil and natural gas")), and where the possibility of emission from a given source is uncertain (e.g., "4.D.3. Indirect emissions from soil in agricultural land").

1.5. Brief Description of Key Categories

Key category analysis is carried out in accordance with the *GPG* (2000) and the *GPG-LULUCF* (Tier 1, Tier 2 level assessment and trend assessment, and qualitative analysis).

This analysis identified 38 sources and sinks as Japan's key categories in FY 2008 (Table 1-2). The same analysis was also conducted for the base year of the UNFCCC (FY 1990) in response to previous recommendations from reviewers. A total of 34 sources and sinks were identified as key categories in the base year (Table 1-3). More detailed information is described in Annex 1.

	A IPCC Category		B Direct GHGs	L1	T1	L2	T2
#1	1A Stationary Combustion	Solid Fuels	CO2	#1	#2	#2	#7
#2	1A Stationary Combustion	Liquid Fuels	CO2	#2	#1	#8	#8
#3	1A3 Mobile Combustion	b. Road Transportation	CO2	#3	#9	#5	
#4	1A Stationary Combustion	Gaseous Fuels	CO2	#4	#3		
#5	5A Forest Land	1. Forest Land remaining Forest Land	CO2	#5	#12	#4	#20
#6	2A Mineral Product	1. Cement Production	CO2	#6	#5	#7	#10
#7	1A Stationary Combustion	Other Fuels	CO2	#7	#13	#6	#9
#8	6C Waste Incineration		CO2	#8			
#9	1A3 Mobile Combustion	d. Navigation	CO2	#9			
#10	2A Mineral Product	3. Limestone and Dolomite Use	CO2	#10		#11	
#11	2F(a) Consumption of Halocarbons and SF6	1. Refrigeration and Air Conditioning Equipment	HFCs	#11	#7	#3	#1
#12	1A3 Mobile Combustion	a. Civil Aviation	CO2	#12	#16		
#13	2A Mineral Product	2. Lime Production	CO2	#13		#19	
#14	4A Enteric Fermentation		CH4			#22	
#15	4C Rice Cultivation		CH4			#17	#22
#16	4B Manure Management		N2O			#10	#19
#17	1A Stationary Combustion		N2O			#16	#14
	6A Solid Waste Disposal on Land		CH4		#14		
#19	2F(a) Consumption of Halocarbons and SF6	7. Semiconductor Manufacture	PFCs			#13	
#20	4D Agricultural Soils	1. Direct Soil Emissions	N2O			#9	#12
#21	4D Agricultural Soils	3. Indirect Emissions	N2O			#12	#17
#22	1A3 Mobile Combustion	b. Road Transportation	N2O			#14	#11
#23	4B Manure Management	*	CH4			#15	#18
#24	2B Chemical Industry	1. Ammonia Production	CO2				#24
#25	2F(a) Consumption of Halocarbons and SF6	5. Solvents	PFCs		#8		#3
	2E Production of Halocarbons and SF6	2. Fugitive Emissions	SF6		#15	#18	#4
	2F(a) Consumption of Halocarbons and SF6		SF6			#23	
		2. Land converted to Settlements	CO2		#11		#21
#29	2F(a) Consumption of Halocarbons and SF6	8. Electrical Equipment	SF6		#6		#2
-	6D Other	••	CO2			#21	
	2B Chemical Industry	3. Adipic Acid	N2O		#10		#15
	~	2. Land converted to Cropland	CO2	1			#16
	2E Production of Halocarbons and SF6	1. By-product Emissions (Production of HCFC-22)	HFCs	1	#4		#13
	1A3 Mobile Combustion	a. Civil Aviation	N2O			#1	#5
-		d. Navigation	N2O	1		#20	
	5A Forest Land	2. Land converted to Forest Land	CO2				#25
	1B Fugitive Emission	1a i. Coal Mining and Handling (under gr.)	CH4	1	#17		#6
	5F Other Land	2. Land converted to Other Land	CO2				#23

N.B. Figures recorded in the Level and Trend columns indicate the ranking of individual level and trend assessments.

A IPCC Category		B Direct GHGs	L1	L2
#1 1A Stationary Combustion	Liquid Fuels	CO2	#1	#7
#2 1A Stationary Combustion	Solid Fuels	CO2	#2	#3
#3 1A3 Mobile Combustion	b. Road Transportation	CO2	#3	#6
#4 1A Stationary Combustion	Gaseous Fuels	CO2	#4	
#5 5A Forest Land	1. Forest Land remaining Forest Land	CO2	#5	#4
#6 2A Mineral Product	1. Cement Production	CO2	#6	#9
#7 2E Production of Halocarbons and SF6	1. By-product Emissions (Production of HCFC-	HFCs	#7	#23
#8 1A3 Mobile Combustion	d. Navigation	CO2	#8	
#9 6C Waste Incineration		CO2	#9	
#10 2A Mineral Product	3. Limestone and Dolomite Use	CO2	#10	#18
#11 2F(a) Consumption of Halocarbons and S	8. Electrical Equipment	SF6	#11	#5
#12 2F(a) Consumption of Halocarbons and S	5. Solvents	PFCs	#12	#8
#13 1A Stationary Combustion	Other Fuels	CO2	#13	#14
#14 4A Enteric Fermentation		CH4	#14	#24
#15 6A Solid Waste Disposal on Land		CH4	#15	
#16 2B Chemical Industry	3. Adipic Acid	N2O	#16	#29
#17 2A Mineral Product	2. Lime Production	CO2	#17	#20
#18 1A3 Mobile Combustion	a. Civil Aviation	CO2	#18	
#19 4C Rice Cultivation		CH4		#19
#20 4B Manure Management		N2O		#13
#21 2E Production of Halocarbons and SF6	2. Fugitive Emissions	SF6		#2
#22 4D Agricultural Soils	1. Direct Soil Emissions	N2O		#10
#23 1A3 Mobile Combustion	b. Road Transportation	N2O		#12
#24 4D Agricultural Soils	3. Indirect Emissions	N2O		#15
#25 2B Chemical Industry	1. Ammonia Production	CO2		#26
#26 2F(a) Consumption of Halocarbons and S	7. Semiconductor Manufacture	PFCs		#16
#27 4B Manure Management		CH4		#17
#28 1B Fugitive Emission	1a i. Coal Mining and Handling (under gr.)	CH4		#11
#29 2F(a) Consumption of Halocarbons and S	7. Semiconductor Manufacture	SF6		#28
#30 2B Chemical Industry	other products except Anmonia	CO2		#25
#31 2E Production of Halocarbons and SF6	2. Fugitive Emissions	PFCs		#27
#32 6D Other		CO2		#22
#33 1A3 Mobile Combustion	d. Navigation	N2O		#21
#34 1A3 Mobile Combustion	a. Civil Aviation	N2O		#1

N.B. Figures recorded in the column L (Level) indicate the ranking of level assessments.

The data of HFCs, PFCs and SF₆ utilized for this analysis are the 1995 values.

1.6. Information on the QA/QC Plan including Verification and Treatment of Confidentiality Issues

The QC activities (e.g., checking estimation accuracy, archiving documents) were carried out in each step of the inventory preparation process in accordance with the GPG (2000) in order to control the inventory's quality.

The evaluation and verification processes on estimation methods, which are done by experts within the Committee, were considered to be a QA activity. The experts who are not involved in any inventory preparation processes evaluated and verified the data quality from the view points of scientific knowledge and data availability.

In FY 2008, the QA/QC plan was revised by taking the Expert Review Team's recommendations into

consideration. Under the revised QA/QC plan, Japan reviewed the national system and process for inventory preparation including QA/QC activities, and enhanced and systematized its national system and QC activities. As a QA activity, the Quality Assurance Working Group (QA-WG) is newly established in order to implement the detailed review of sources and sinks. The QA-WG is composed of experts who are not directly involved in or related to the inventory preparation process. The process includes providing and preparation of activity data, developing emission factors, estimating GHG emissions and removals, and revising the estimation methodologies.

The new aspects of the QA/QC plan are:

1. Clear descriptions of the national system for the inventory preparation and the role of each relevant entity

The role and the responsibility for each entity in the inventory preparation process are clarified (Figure 1-1). The relevant entities are: MOE, GIO, relevant ministries, relevant agencies, relevant organizations, the Committee, the QA-WG and selected private consulting companies.

2. New Establishment of the Inventory Quality Assurance Working Group (the QA-WG)

As a QA activity, the QA-WG has been newly established in order to implement a detailed review of each source or sink. The QA-WG is composed of experts who are not directly involved in or related to the inventory preparation process.

The secretariat of the QA-WG was established within the GIO. The secretariat and the MOE determined the sectors and categories to be reviewed by the QA-WG. The QA-WG review was implemented in the agriculture and waste sectors in FY 2009.

Key data and the methods of estimation used in these sectors have been validated by QA-WG. The QA-WG identified some issues and submitted them to the Committee. Other issues that have not been resolved by the committee are presented in each category of the "f) Source-specific Planned Improvement" section in this report. In addition, the QA-WG identified insufficient explanations and incorrect descriptions in the NIR 2009 and addressed them in this report to improve transparency and accuracy.

The MOE and the secretariat will annually determine the sectors/categories to be reviewed by the QA-WG, with the aim of reviewing the entire inventory within the next few years.

For further information on the national system and process for inventory preparation, see sections 1.2 and 1.3 of this chapter. Detailed information on the QA/QC plan is described in Annex 6.1.

1.7. General Uncertainty Assessment, including Data on the Overall Uncertainty for the Inventory Totals

Total net GHG emissions in Japan for FY 2008 were approximately 1,203 million tonnes (carbon dioxide equivalents). The total net emissions uncertainty was 2% and the uncertainty introduced into the trend in the total emissions was 1%. More detailed information on the uncertainty assessment is described in Annex 7.

10010 1	F Oneertainty of Ja	apan b 10aa	I tet En	noorono			
IPCC Category	GHGs	Emissions / Removals [Gg CO2 eq.]		Combined Uncertainty	rank	Combined uncertainty as % of total	rank
		[45 002 04.]		[/0]		national	
						emissions	
		Α	[%]	В		С	
1A. Fuel Combustion (CO ₂)	CO ₂	1,151,985.3	89.9%	1%	10	0.76%	2
1A. Fuel Combustion (Stationary:CH ₄ ,N ₂ O)	CH ₄ N ₂ O	5,060.9	0.4%	27%	3	0.11%	8
1A. Fuel Combustion (Transport:CH ₄ ,N ₂ O)	CH ₄ N ₂ O	2,962.5	0.2%	355%	1	0.87%	1
1B. Fugitive Emissions from Fuels	CO ₂ , CH ₄ , N ₂ O	446.4	0.0%	19%	5	0.01%	9
2. Industrial Processes (CO ₂ ,CH ₄ ,N ₂ O)	CO ₂ , CH ₄ , N ₂ O	51,667.6	4.0%	7%	7	0.32%	7
2. Industrial Processes (HFCs,PFCs,SF6)	HFCs、PFCs、SF ₆	23,642.7	1.8%	26%	4	0.52%	4
3. Solvent & other Product Use	N ₂ O	160.4	0.0%	5%	9	0.00%	10
4. Agriculture	CH ₄ N ₂ O	25,844.9	2.0%	18%	6	0.38%	6
5. LULUCF	CO_2 CH_4 N_2O	-78,807.9	-6.1%	6%	8	0.42%	5
6. Waste	CO ₂ , CH ₄ , N ₂ O	20,058.0	1.6%	32%	2	0.53%	3
Total Net Emissions	(D)	1,203,020.6		(E) $^{2)}$ 2%			

Table 1-4 Uncertainty of Japan's Total Net Emissions

1) $\mathbf{C} = \mathbf{A} \times \mathbf{B} / \mathbf{D}$

2) $E = \sqrt{C_1^2 + C_2^2 + \cdots +$

1.8. General Assessment of the Completeness

In this inventory report, emissions from some categories are not estimated and reported as "NE". In FY 2006, GHG emissions and removals from categories that were previously reported as NE were newly estimated by analyzing categories such as those, which possibly result in the emission of considerable amount of GHGs, as well as those, which require substantial improvement in their estimation methodology. Also, some categories, which were previously reported as "NE", were reviewed within the Committee and newly estimated.

Source categories reported as NE in this year's report include those whose emissions are thought to be very small, those whose emissions are unknown, and those for which emission estimation methods have not been developed. For these categories, further investigation on their emission possibility and the development of estimation methodologies will be carried out in accordance with Japan's QA/QC plan. See Annex 5 for a list of not-estimated emission source categories.

For some categories, dealing with the emission sources of HFCs, PFCs and SF₆, activity data are not available from CY 1990 to 1994. Those categories are therefore reported as "NE" during that period.

Chapter 2. Trends in GHGs Emissions and Removals

2.1. Description and Interpretation of Emission and Removal Trends for Aggregate GHGs

2.1.1. GHGs Emissions and Removals

Total GHGs emissions in FY 2008^{1,2} (excl. LULUCF³) were 1,282 million tonnes (in CO₂ eq.). They increased by 6.2% compared to the emissions in FY 1990⁴ (excl. LULUCF). Compared to the emissions in the base year under the Kyoto Protocol⁵, they increased by 1.6%.

It should be noted that actual emissions of HFCs, PFCs, and SF_6 in the period from CY 1990 to 1994 are not estimated (NE)⁶.

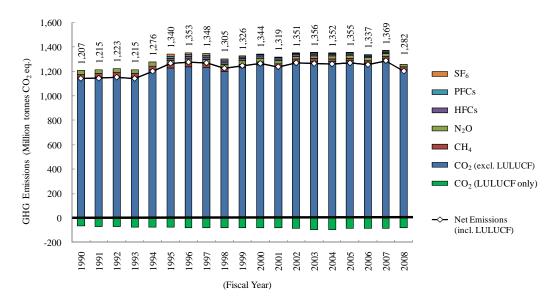


Figure 2-1 Trends in greenhouse gas emissions and removals in Japan

Carbon dioxide emissions in FY 2008 were 1,214 million tonnes (excl. LULUCF), accounting for 94.7% of total GHGs emissions. They increased by 6.2% since FY 1990 and decreased by 6.6% compared to the previous year. Carbon dioxide removals⁷ in FY 2008 were 78.8 million tonnes and were equivalent to 6.2% of total GHGs emissions. They increased by 24.2% since FY 1990 and decreased by 3.6% compared to the previous year. Methane emissions in FY 2008 (excl. LULUCF)

¹ "FY" (Fiscal Year), from April of the reporting year through March of the next year, is used because CO₂ is the primary GHGs emissions and estimated on a fiscal year basis. "CY" stands for "Calendar Year".

² The sum of CO₂, CH₄, N₂O, HFCs, PFCs and SF₆ emissions converted to CO₂ equivalents, multiplied by their respective global warming potential (GWP). The GWP is a coefficient by means of which greenhouse gas effects of a given gas are made relative to those of an equivalent amount of CO₂. The coefficients are subjected to the *Second Assessment Report* (1995) issued by the Intergovernmental Panel on Climate Change (IPCC).

³ Abbreviation of "Land Use, Land-Use Change and Forestry"

 $^{^4}$ The sum of CO₂, CH₄ and N₂O emissions converted to CO₂ equivalents multiplied by their respective GWP.

⁵ Japan's base year under the Kyoto Protocol for CO_2 , CH_4 , N_2O emissions is FY 1990, while FY 1995 is the base year for HFCs, PFCs, and SF₆ emissions.

⁶ Potential emissions are reported in Common Reporting Format (CRF) for CY 1990 to 1994.

⁷ Since the inventory to be submitted under the UNFCCC reports all GHG emissions and removals from the LULUCF Sector, these values do not correspond to emissions and removals which can be accounted for compliance under the Kyoto Protocol (for 'forest management', 13 million carbon tonnes as an upper limit for Japan is given in the Appendix to the Annex to Decision 16/CMP.1.)

were 21.3 million tonnes (in CO_2 eq.), accounting for 1.7% of total GHGs emissions. They decreased by 33.3% since FY 1990 and decreased by 2.1% compared to the previous year. Nitrous oxide emissions in FY 2008 (excl. LULUCF) were 22.5 million tonnes (in CO_2 eq.), accounting for 1.8% of total GHGs emissions. They decreased by 28.7% since FY 1990 and decreased by 0.5% compared to the previous year.

Hydrofluorocarbons emissions in CY 2008 were 15.3 million tonnes (in CO₂ eq.), accounting for 1.2% of total GHGs emissions. They decreased by 24.7% since CY 1995 and increased by 15.0% compared to the previous year. Perfluorocarbons emissions in CY 2008 were 4.6 million tonnes (in CO₂ eq.), accounting for 0.4% of total GHGs emissions. They decreased by 67.6% since CY 1995 and decreased by 28.0% compared to the previous year. Hexafluoride emissions in CY 2008 were 3.8 million tonnes (in CO₂ eq.), accounting for 0.3% of total GHGs emissions. They decreased by 77.8% since CY 1995 and decreased by 14.7% compared to the previous year.

[Million tonnes CO ₂ eq.]	GWP	Base year of KP	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
CO ₂ (excl. LULUCF)	1	1,144.1	1,143.4	1,152.8	1,160.9	1,153.6	1,213.4	1,226.5	1,238.8	1,234.6	1,198.6	1,233.6	1,254.3
CO ₂ (incl. LULUCF)	1	NA	1,080.0	1,082.1	1,090.9	1,081.0	1,139.5	1,152.5	1,160.3	1,155.7	1,119.7	1,154.2	1,174.0
CO ₂ (LULUCF only)	1	NA	-63.5	-70.7	-70.0	-72.5	-73.9	-73.9	-78.5	-79.0	-78.9	-79.4	-80.3
CH ₄ (excl. LULUCF)	21	33.4	31.9	31.7	31.4	31.1	30.4	29.5	28.8	27.8	27.0	26.4	25.8
CH ₄ (incl. LULUCF)	21	NA	31.9	31.7	31.4	31.1	30.5	29.5	28.9	27.8	27.0	26.4	25.8
N2O (excl. LULUCF)	310	32.6	31.5	31.0	31.1	30.8	31.9	32.3	33.4	34.0	32.5	26.1	28.7
N2O (incl. LULUCF)	310	NA	31.6	31.1	31.2	30.8	32.0	32.4	33.4	34.1	32.6	26.1	28.7
HFCs	HFC-134a: 1,300 etc.	20.2	NE	NE	NE	NE	NE	20.3	19.9	19.9	19.4	19.9	18.8
PFCs	PFC-14: 6,500 etc.	14.0	NE	NE	NE	NE	NE	14.2	14.8	16.2	13.4	10.4	9.5
SF ₆	23,900	16.9	NE	NE	NE	NE	NE	17.0	17.5	15.0	13.6	9.3	7.2
Gross Total (excl. LU	JLUCF)	1,261.3	1,206.8	1,215.4	1,223.4	1,215.4	1,275.8	1,339.8	1,353.2	1,347.5	1,304.6	1,325.7	1,344.3
Net Total (incl. LUI	LUCF)	NA	1,143.5	1,144.8	1,153.5	1,143.0	1,202.0	1,265.9	1,274.8	1,268.6	1,225.7	1,246.4	1,264.0
[Million tonnes CO2 eq.]										Emission increase from	Emission increase from	Emission increase from	Emission
	GWP	2001	2002	2003	2004	2005	2006	2007	2008	the base year of KP	1990 (2008)	1995 (2008)	increase from previous year (2008)
CO ₂ (excl. LULUCF)	GWP 1	2001	2002	2003	2004	2005 1,286.0	2006	2007	2008	the base year	1990	1995	previous year
CO ₂										the base year of KP	1990 (2008)	1995	previous year (2008)
CO ₂ (excl. LULUCF) CO ₂	1	1,238.3	1,276.0	1,281.6	1,281.5	1,286.0	1,266.7	1,300.6	1,214.4	the base year of KP	1990 (2008) 6.2%	1995	previous year (2008) -6.6%
CO2 (excl. LULUCF) CO2 (incl. LULUCF) CO2	1	1,238.3	1,276.0	1,281.6	1,281.5	1,286.0 1,199.8	1,266.7	1,300.6	1,214.4	the base year of KP 6.1%	1990 (2008) 6.2% 5.2%	1995 (2008) - -	previous year (2008) -6.6% -6.8%
CO2 (excl.LULUCF) CO2 (incl.LULUCF) CO2 (LULUCF only) CH4	1 1 1	1,238.3 1,157.7 -80.6	1,276.0 1,194.1 -81.9	1,281.6 1,189.8 -91.8	1,281.5 1,189.6 -91.9	1,286.0 1,199.8 -86.1	1,266.7 1,184.8 -81.9	1,300.6 1,218.8 -81.8	1,214.4 1,135.6 -78.8	the base year of KP 6.1% - -	1990 (2008) 6.2% 5.2% 24.2%	1995 (2008) - -	revious year (2008) -6.6% -6.8% -3.6%
CO2 (excl. LULUCF) CO2 (incl. LULUCF) CO2 (LULUCF only) CH4 (excl. LULUCF) CH4	1 1 1 21	1,238.3 1,157.7 -80.6 25.0	1,276.0 1,194.1 -81.9 24.0	1,281.6 1,189.8 -91.8 23.5	1,281.5 1,189.6 -91.9 23.1	1,286.0 1,199.8 -86.1 22.7	1,266.7 1,184.8 -81.9 22.3	1,300.6 1,218.8 -81.8 21.7	1,214.4 1,135.6 -78.8 21.3	the base year of KP 6.1% - - -36.2%	1990 (2008) 6.2% 5.2% 24.2% -33.3%	1995 (2008) - -	previous year (2008) -6.6% -6.8% -3.6% -2.1%
CO2 (exd. LULUCF) CO2 (incl. LULUCF) CO2 (LULUCF) CO4 (LULUCF) CH4 (exd. LULUCF) CH4 (incl. LULUCF) N2O	1 1 1 21 21	1,238.3 1,157.7 -80.6 25.0 25.0	1,276.0 1,194.1 -81.9 24.0 24.1	1,281.6 1,189.8 -91.8 23.5 23.5	1,281.5 1,189.6 -91.9 23.1 23.1	1,286.0 1,199.8 -86.1 22.7 22.7	1,266.7 1,184.8 -81.9 22.3 22.3	1,300.6 1,218.8 -81.8 21.7 21.7	1,214.4 1,135.6 -78.8 21.3 21.3	the base year of KP 6.1% - - -36.2% -	1990 (2008) 6.2% 5.2% 24.2% -33.3% -33.2%	1995 (2008) - - - - - -	previous year (2008) -6.6% -6.8% -3.6% -2.1% -2.0%
CO2 (excl. LULUCF) CO2 (incl. LULUCF) CO2 (LULUCF only) CH4 (excl. LULUCF) CH4 (incl. LULUCF) N2O N2O	1 1 21 21 310	1,238.3 1,157.7 -80.6 25.0 25.0 25.3	1,276.0 1,194.1 -81.9 24.0 24.1 24.5	1,281.6 1,189.8 -91.8 23.5 23.5 23.5 24.2	1,281.5 1,189.6 -91.9 23.1 23.1 24.3	1,286.0 1,199.8 -86.1 22.7 22.7 23.8	1,266.7 1,184.8 -81.9 22.3 22.3 22.3 23.9	1,300.6 1,218.8 -81.8 21.7 21.7 22.6	1,214.4 1,135.6 -78.8 21.3 21.3 21.3 22.5	the base year of KP 6.1% - - -36.2% - - 31.2%	1990 (2008) 6.2% 5.2% 24.2% -33.3% -33.2% -28.7%	1995 (2008) - - - - - -	previous year (2008) -6.6% -6.8% -3.6% -2.1% -2.0% -0.5%
CO2 (exel. LULUCF) CO2 (inel. LULUCF) CO2 (LULUCF only) CH4 (exel. LULUCF) CH4 (inel. LULUCF) N2O (exel. LULUCF) N2O (inel. LULUCF)	1 1 21 21 310 310 HFC-134a:	1,238.3 1,157.7 -80.6 25.0 25.0 25.3 25.3	1,276.0 1,194.1 81.9 24.0 24.1 24.5 24.5	1,281.6 1,189.8 -91.8 23.5 23.5 24.2 24.2	1,281.5 1,189.6 -91.9 23.1 23.1 24.3 24.3	1,286.0 1,199.8 86.1 22.7 22.7 23.8 23.9	1,266.7 1,184.8 81.9 22.3 22.3 23.9 23.9	1,300.6 1,218.8 81.8 21.7 21.7 22.6 22.6	1,214.4 1,135.6 -78.8 21.3 21.3 22.5 22.5	the base year of KP 6.1% - -36.2% - 31.2%	1990 (2008) 6.2% 5.2% 24.2% -33.3% -33.2% -28.7% -28.9%	1995 (2008) 	previous year (2008) -6.6% -6.8% -3.6% -2.1% -2.0% -0.5% -0.5%
CO2 (excl. LULUCF) CO2 (incl. LULUCF) CO2 (LULUCF only) CH4 (excl. LULUCF) CH4 (incl. LULUCF) N2O (excl. LULUCF) N2O (incl. LULUCF) HFCs	1 1 21 21 310 HFC-134a: 1,300 etc. PFC-14:	1,238.3 1,157.7 -80.6 25.0 25.0 25.3 25.3 16.2	1,276.0 1,194.1 -81.9 24.0 24.1 24.5 24.5 13.7	1,281.6 1,189.8 -91.8 23.5 23.5 24.2 24.2 13.8	1,281.5 1,189.6 -91.9 23.1 23.1 24.3 24.3 10.6	1,286.0 1,199.8 -86.1 22.7 22.7 23.8 23.9 10.6	1,266.7 1,184.8 -81.9 22.3 22.3 23.9 23.9 11.7	1,300.6 1,218.8 -81.8 21.7 21.7 22.6 22.6 13.3	1,214.4 1,135.6 -78.8 21.3 21.3 22.5 22.5 15.3	the base year of KP - - -36.2% - - - 31.2% - - 24.5%	1990 (2008) 6.2% 5.2% 24.2% -33.3% -33.2% -28.7% -28.9% -	1995 (2008) 	previous year (2008) -6.6% -6.8% -3.6% -2.1% -2.1% -0.5% -0.5% 15.0%
CO2 (exel. LULUCF) CO2 (ind. LULUCF) CO2 (LULUCF only) CH4 (exel. LULUCF) CH4 (ind. LULUCF) N2O (exel. LULUCF) N2O (ind. LULUCF) HFCs PFCs	1 1 21 21 310 310 HFC-134a: 1,300 etc. PFC-14: 6,500 etc. 23,900	1,238.3 1,157.7 -80.6 25.0 25.0 25.3 25.3 25.3 16.2 7.9	1,276.0 1,194.1 -81.9 24.0 24.1 24.5 24.5 24.5 13.7 7.4	1,281.6 1,189.8 -91.8 23.5 23.5 24.2 24.2 24.2 13.8 7.2	1,281.5 1,189.6 -91.9 23.1 24.3 24.3 10.6 7.5	1,286.0 1,199.8 86.1 22.7 23.8 23.9 10.6 7.0	1,266.7 1,184.8 -81.9 22.3 23.9 23.9 23.9 11.7 7.3	1,300.6 1,218.8 81.8 21.7 21.7 22.6 22.6 13.3 6.4	1,214.4 1,135.6 -78.8 21.3 21.3 22.5 22.5 22.5 15.3 4.6	the base year of KP - - -36.2% - - -31.2% - - -24.5% -67.1%	1990 (2008) 6.2% 5.2% -33.3% -33.2% -28.7% -28.9% -	1995 (2008) - - - - - - - - - - - - - - - - - - -	previous year (2008) 6.6% 6.8% 3.6% 2.1% 2.0% 2.0% 0.5% 0.5% 0.5% 0.5% 2.8.0%

Table 2-1 Trends in greenhouse gas emissions and removals in Japan

* NA : Not Applicable * NE : Not Estimated

* LULUCF: Land Use, Land-Use Change and Forestry

2.1.2. CO₂ Emissions per Capita

Total CO_2 emissions in FY 2008 (excl. LULUCF) were 1,214 million tonnes, and on a per capita basis, they were 9.51 tonnes. Compared to FY 1990, they increased by 6.2% in total emissions, and increased by 2.8% in per capita emissions. Compared to the previous year, they decreased by 6.6% in total emissions, and decreased by 6.6% in per capita emissions.



Figure 2-2 Trends in total CO₂ emissions and CO₂ emissions per capita Source of population data: Ministry of Public Management, Home Affairs, Posts and Telecommunications Japan, *Population Census* and *Annual Report on Current Population Estimates*

2.1.3. CO₂ Emissions per Unit of GDP

Carbon dioxide emissions per unit of GDP (million yen) in FY 2008 were 2.24 tonnes. They decreased by 11.0% since FY 1990 and decreased by 3.0% compared to the previous year.

Figure 2-3 Trends in CO₂ emissions per unit of GDP

Source of GDP data: Cabinet Office, Government of Japan, Annual Report on National Accounts

2.2. Description and Interpretation of Emission and Removal Trends by Gas

2.2.1. CO₂

Carbon dioxide emissions in FY 2008 were 1,214 million tonnes (excl. LULUCF), accounting for 94.7% of total GHGs emissions. They increased by 6.2% since FY 1990 and decreased by 6.6% compared to the previous year.

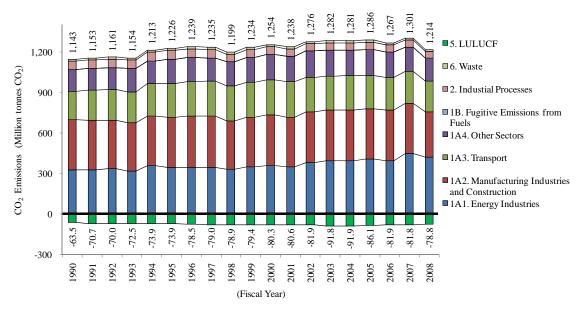
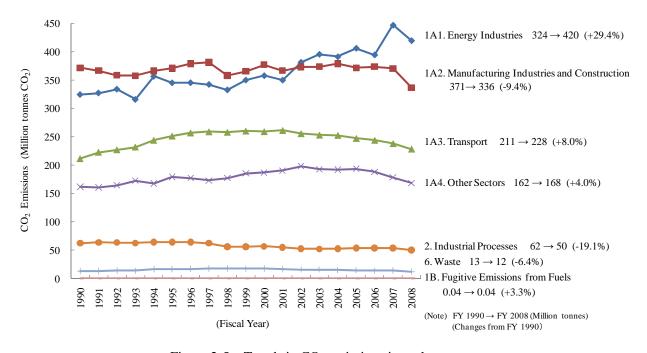


Figure 2-4 Trends in CO₂ emissions

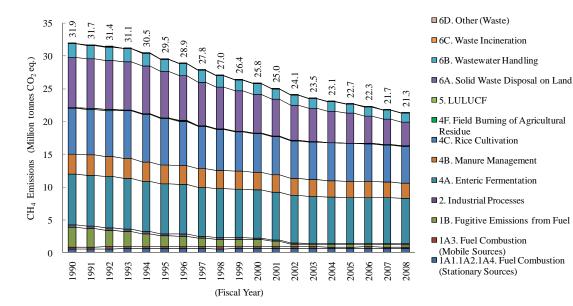

The breakdown of CO_2 emissions in FY 2008 shows that the largest source is the Fuel Combustion, accounting for 94.9%. It is followed by the Industrial Processes (4.1%) and the Waste sectors (1.0%). As for the breakdown of CO_2 emissions within the Fuel Combustion, the Energy Industries accounts for 36.4% and is followed by the Industries at 29.2%, the Transport at 19.8%, and the Other Sectors⁸ at 14.6%.


By looking at the changes in emissions by sector, emissions from the Fuel Combustion in the Energy Industries, which accounts for about 40% of total CO_2 emissions, increased by 29.4% since FY 1990 and decreased by 6.1% compared to the previous year. Emissions from the Industries decreased by 9.4% since FY 1990 and decreased by 9.1% compared to the previous year. Emissions from the Transport increased by 8.0% compared to FY 1990 and decreased by 4.1% compared to the previous year. Emissions from the Other Sectors increased by 4.0% since FY 1990 and decreased by 5.6% compared to the previous year.

The main driving factor for the increase in CO_2 emissions since FY 1990 is the increase in fossil fuel consumption in the Energy Industries as a result of increase in demand for electric power. The main driving factor for the decrease in CO_2 emissions compared to the previous year is the drop in energy demand of all the sub-sectors in the Industries sector as the result of the severe economic recession induced by the financial crisis in the second half of FY 2008.

⁸ It covers emissions from Commercial/Institutional, Residential and Agriculture/Forestry/Fisheries.

Carbon dioxide removals in FY 2008 were 78.8 million tonnes, and they were equivalent to 6.5% of total GHGs emissions. They increased by 24.2% since FY 1990 and decreased by 3.6% compared to the previous year.

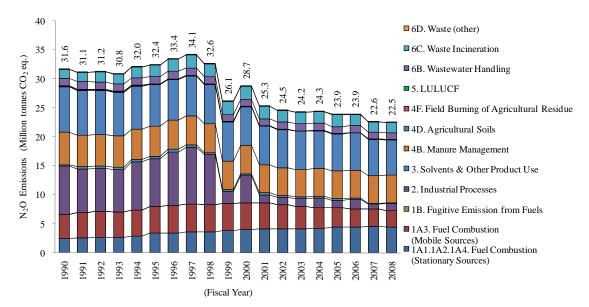

[Thousand tonnes CO ₂]							
Category	1990	1995	2000	2005	2006	2007	2008
1A. Fuel Combustion	1,068,246	1,145,763	1,180,023	1,217,686	1,199,261	1,232,905	1,151,985
1A1. Energy Industries	324,253	344,948	357,574	406,038	394,358	446,858	419,515
Public Electricity and Heat Production	297,074	315,399	330,863	378,920	370,261	423,156	394,116
Petroleum Refining	15,893	16,956	17,285	16,441	16,098	16,018	14,168
Manufacture of Solid Fuels and Other Energy Industries	11,286	12,592	9,426	10,677	7,999	7,684	11,231
1A2. Manufacturing Industries and Construction	371,298	370,534	376,758	371,219	373,271	370,203	336,375
Iron and Steel	149,600	141,862	150,776	152,741	154,603	159,979	143,278
Non-Ferrous Metals	6,092	4,770	3,042	2,634	2,702	2,659	2,333
Chemicals	64,723	74,800	67,211	58,646	58,899	59,302	53,279
Pulp, Paper and Print	25,825	29,449	29,028	26,547	25,506	24,924	22,837
Food Processing, Beverages and Tobacco	13,129	14,407	13,161	11,326	10,407	9,758	8,811
Other Manufacturing	111,929	105,245	113,539	119,326	121,153	113,581	105,836
1A3. Transport	211,054	251,167	259,076	247,010	243,632	237,757	227,980
Civil Aviation	7,162	10,278	10,677	10,799	11,178	10,876	10,277
Road Transportation	189,228	225,381	232,827	222,652	219,169	214,087	205,417
Railways	932	819	707	644	645	624	624
Navigation	13,731	14,687	14,865	12,915	12,640	12,170	11,662
1A4. Other Sectors	161,641	179,115	186,615	193,419	187,999	178,087	168,115
Commercial/Institutional	83,593	93,269	101,450	110,678	110,857	102,766	98,053
Residential	56,668	66,320	68,958	67,583	63,466	62,590	59,023
Agriculture/Forestry/Fisheries	21,380	19,526	16,207	15,158	13,675	12,730	11,039
IB. Fugitive Emissions from Fuels	37	51	36	38	36	38	38
2. Industrial Processes	62,183	64,124	56,731	53,751	53,754	53,622	50,284
Mineral Products	57,397	59,339	52,411	50,430	50,463	50,217	47,384
Chemical Industry	4,430	4,428	4,072	3,079	3,114	3,193	2,744
Metal Production	356	357	248	242	178	212	156
5. LULUCF	-63,460	-73,938	-80,299	-86,147	-81,894	-81,814	-78,839
5. Waste	12,966	16,534	17,494	14,491	13,655	14,010	12,131
Total (including LULUCF)	1,079,972	1,152,535	1,173,985	1,199,820	1,184,811	1,218,760	1,135,599
Total (excluding LULUCF)	1,143,432	1,226,472	1,254,285	1,285,966	1,266,706	1,300,575	1,214,438
⁴ LULUCF: Land Use, Land-Use Change and Forestry							

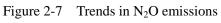
Trends in CO₂ emissions and removals in each sector Table 2-2

2.2.2. CH₄

Methane emissions in FY 2008 were 21.3 million tonnes (in CO_2 eq., incl. LULUCF), accounting for 1.7% of total GHGs emissions. They decreased by 33.2% since FY 1990 and decreased by 2.0% compared to the previous year. Their decrease since FY 1990 (-49%) is mainly a result of a decrease in emissions from the Waste sector (e.g. Solid Waste Disposal on Land (SWDS)).

The breakdown of CH_4 emissions in FY 2008 shows that the largest source is the Enteric Fermentation, which accounts for 33%. It is followed by the Rice Cultivation (26%) and the SWDS (17%).


[Thousand tonnes CO ₂ eq.]							
Category	1990	1995	2000	2005	2006	2007	2008
1A. Fuel Combustion	880	954	956	872	898	853	835
1A1. Energy Industries	30	34	44	35	37	42	41
1A2. Industries	346	356	344	339	350	353	341
1A3. Transport	297	308	298	236	220	205	189
1A4. Other Sectors	207	255	270	262	291	252	264
1B. Fugitive Emissions from Fuels	3,037	1,610	1,043	396	409	416	408
1B1. Solid Fuels	2,806	1,345	769	74	68	51	46
1B2. Oil & Natural Gas	231	265	274	322	340	365	363
2. Industrial Processes	358	322	196	134	133	134	121
4. Agriculture	17,844	17,684	16,053	15,317	15,219	15,074	14,960
4A. Enteric Fermentation	7,677	7,606	7,370	7,002	7,000	6,974	6,945
4B. Manure Management	3,094	2,893	2,678	2,503	2,439	2,374	2,328
4C. Rice Cultivation	6,960	7,083	5,920	5,739	5,707	5,652	5,614
4F. Field Burning of Agricultural Residue	113	102	86	72	73	73	74
5. LULUCF	8	9	8	9	2	2	22
6. Waste	9,776	8,952	7,540	5,948	5,604	5,268	4,958
6A. Solid Waste Disposal on Land	7,628	7,065	5,877	4,515	4,203	3,909	3,591
6B. Wastewater Handling	2,121	1,861	1,636	1,404	1,371	1,329	1,338
6C. Waste Incineration	13	15	13	14	13	12	12
6D. Other (Waste)	14	11	13	15	17	18	17
Total (including LULUCF)	31,903	29,531	25,796	22,676	22,265	21,748	21,304
Total (excluding LULUCF)	31,894	29,522	25,788	22,667	22,262	21,746	21,283


* LULUCF: Land Use, Land-Use Change and Forestry

2.2.3. N₂O

Nitrous oxide emissions in FY 2008 were 22.5 million tonnes (in CO_2 eq., incl. LULUCF), accounting for 1.8% of total GHGs emissions. They decreased by 28.9% since FY 1990 and decreased by 0.5% compared to the previous year. Their decrease since FY 1990 (-85%) is mainly a result of a decrease in emissions from Industrial Processes (e.g. adipic acid production). There is a sharp decline in emissions from the Industrial Processes from FY 1998 to 1999, as N₂O abatement equipment came on stream in the adipic acid production plant in March 1999. However the N₂O emissions increased in FY 2000 because of a decrease in the equipment's efficiency; the emissions decreased again in FY 2001 with the resumption of normal operation.

The breakdown of N_2O emissions in FY 2008 shows that the largest source is the Agricultural Soils accounting for 27%. It is followed by the Manure Management (21%) and the Fuel Combustion (Stationary Sources) (20%).

Category	1990	1995	2000	2005	2006	2007	2008
1A. Fuel Combustion	6,643	8,016	8,559	7,755	7,581	7,515	7,189
1A1. Energy Industries	924	1,414	1,718	2,134	2,123	2,191	2,128
1A2. Industries	1,243	1,616	1,892	1,934	1,972	2,014	1,945
1A3. Transport	4,204	4,650	4,587	3,307	3,111	2,953	2,773
1A4. Other Sectors	272	336	363	380	375	357	342
1B. Fugitive Emissions from Fuels	0.1	0.2	0.1	0.1	0.1	0.1	0.1
2. Industrial Processes	8,267	8,213	4,690	1,300	1,625	860	1,262
3. Solvent & Other Product Use	287	438	341	266	242	160	160
4. Agriculture	13,471	12,394	11,624	11,249	11,256	11,072	10,885
4B. Manure Management	5,533	5,152	4,885	4,749	4,756	4,773	4,768
4D. Agricultural Soils	7,841	7,160	6,667	6,438	6,437	6,233	6,050
4F. Field Burning of Agricultural Residue	97	81	72	61	63	65	67
5. LULUCF	93	57	30	14	12	9	10
6. Waste	2,822	3,269	3,483	3,272	3,151	2,967	2,963
6B. Wastewater Handling	1,290	1,247	1,211	1,163	1,163	1,142	1,163
6C. Waste Incineration	1,519	2,012	2,260	2,096	1,973	1,809	1,785
6D. Waste (other)	13	10	12	13	15	16	15
Total (including LULUCF)	31,584	32,387	28,727	23,855	23,867	22,583	22,469
Total (excluding LULUCF)	31,490	32,330	28,697	23,841	23,855	22,574	22,460

* LULUCF: Land Use, Land-Use Change and Forestry

2.2.4. HFCs

Hydrofluorocarbons emissions in CY 2008^9 were 15.3 million tonnes (in CO₂ eq.), accounting for 1.2% of total GHGs emissions. They decreased by 24.7% since CY 1995, and increased by 15.0% compared to the previous year. Their decrease since CY 1995 (-97%) is mainly a result of a decrease in HFC-23, a by-product of HCFC-22 production.

The breakdown of HFCs emissions in CY 2008 shows that the largest source is refrigerants of the Refrigeration and Air Conditioning Equipment accounting for 87%, and is followed by the Aerosols / MDI (6%).

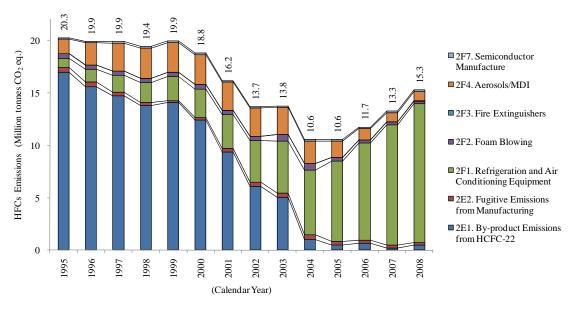


Figure 2-8 Trends in HFCs emissions

[Thousand tonnes CO ₂ eq.]						
Category	1995	2000	2005	2006	2007	2008
2E. Productions of F-gas	17,445	12,660	816	938	498	701
2E1. By-product Emissions from Production of HCFC-22	16,965	12,402	463	657	218	469
2E2. Fugitive Emissions	480	258	353	281	280	232
2F. Consumption of F-gas	2,815	6,141	9,747	10,799	12,775	14,564
2F1. Refrigeration and Air Conditioning Equipment	840	2,689	7,664	9,272	11,438	13,236
2F2. Foam Blowing	452	440	364	310	317	286
2F3. Fire Extinguishers	NE,NO	3.7	5.9	6.0	6.2	6.3
2F4. Aerosols/MDI	1,365	2,834	1,572	1,057	850	890
2F7. Semiconductor Manufacture	158	174	141	154	164	146
Total	20,260	18,800	10,563	11,737	13,273	15,265

Table 2-5 Trends in HFCs emissions

2.2.5. PFCs

Perfluorocarbons emissions in CY 2008 were 4.6 million tonnes (in CO_2 eq.), accounting for 0.4% of total GHGs emissions. They decreased by 67.6% since CY 1995, and decreased by 28.0% compared to the previous year. Their decrease since CY 1995 (-87%) is mainly a result of a decrease in emissions from the Solvents.

⁹ Emissions of HFCs, PFCs and SF₆ are estimated on a calendar year (CY) basis.

The breakdown of PFCs emissions in CY 2008 shows that the largest source is the Semiconductor for Manufacture accounting for 60%. It is followed by the Solvents such as the ones for washing metals (29%) and the Fugitive Emissions from manufacturing (11%).

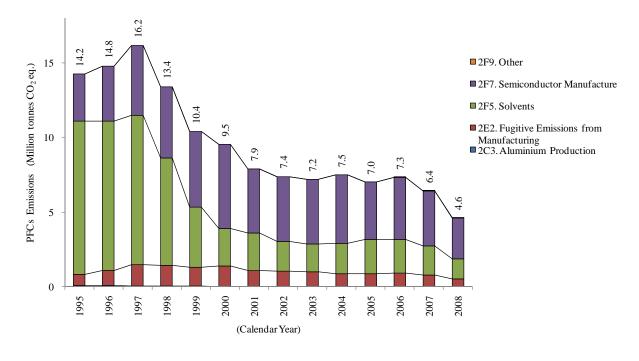
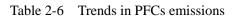
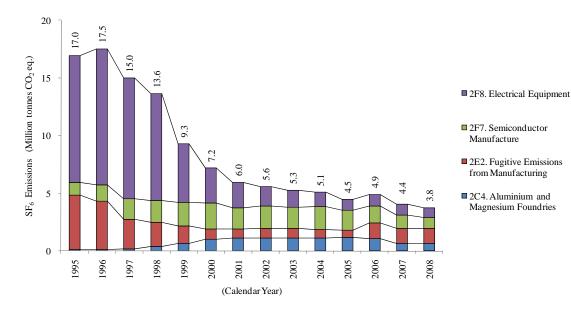



Figure 2-9 Trends in PFCs emissions



[Thousand tonnes CO ₂ eq.]						
Category	1995	2000	2005	2006	2007	2008
2C3. Aluminium Production	70	18	15	15	15	15
2E2. Fugitive Emissions	763	1,359	837	879	783	524
2F. Consumption of F-gas	13,408	8,143	6,150	6,422	5,614	4,078
2F5. Solvents	10,264	2,506	2,289	2,267	1,927	1,318
2F7. Semiconductor Manufacture	3,144	5,637	3,861	4,154	3,685	2,756
2F9. Other	NE,NO	NE,NO	NE,NO	0.9	1.9	2.8
Total	14,240	9,519	7,002	7,316	6,412	4,616

2.2.6. SF₆

Hexafluoride emissions in CY 2008 were 3.8 million tonnes (in CO_2 eq.), accounting for 0.3% of total GHGs emissions. They decreased by 77.8% since CY 1995, and decreased by 14.7% compared to the previous year. Their decrease since CY 1995 (-92%) is mainly a result of a decrease from the Electrical Equipment.

The breakdown of SF_6 emissions in CY 2008 shows that the largest source is the Fugitive Emissions accounting for 34%. It is followed by the Semiconductor Manufacture (25%) and the Electrical Equipment (23%).

Category	1995	2000	2005	2006	2007	2008
2C4. SF ₆ Used in Aluminium and Magnesium Foundries	120	1,028	1,157	1,091	652	
2E2. Fugitive Emissions	4,708	860	646	1,366	1,288	1,
2F. Consumption of F-gas	12,134	5,300	2,676	2,453	2,119	1,
2F7. Semiconductor Manufacture	1,129	2,250	1,733	1,440	1,197	
2F8. Electrical Equipment	11,005	3,050	943	1,014	922	

16,961

7,188

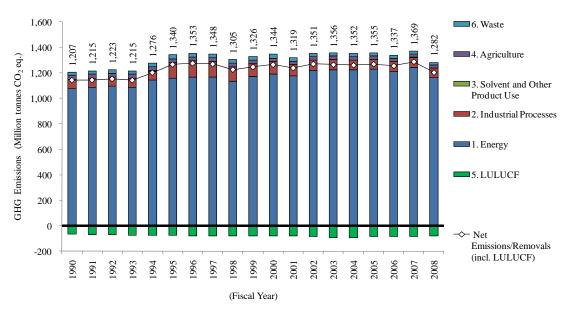
4,478

4,911

4,407

,

Total


652 ,288 ,821 952

868

3,761

2.3. Description and Interpretation of Emission and Removal Trends by Categories

The breakdown of GHGs emissions and removals in FY 2008 by sector¹⁰ shows that the Energy accounts for 90.5% of total GHGs emissions. It is followed by the Industrial Processes (5.9%), the Agriculture (2.0%), the Waste (1.6%) and the Solvents and Other Product Use (0.01%).

Removals by the LULUCF in FY 2008 were equivalent to 6.1% of total GHGs emissions.

Table 2-8 Trends in greenhouse gas emissions and removals in each sector											
[Million tonnes CO2 eq.]	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
1. Energy	1,078.8	1,086.7	1,094.0	1,087.5	1,143.5	1,156.4	1,168.6	1,165.6	1,135.4	1,170.7	1,190.6
2. Industrial Processes	70.8	71.6	71.2	70.3	72.5	124.1	125.6	123.3	111.4	98.0	97.1
3. Solvent and Other Product Use	0.3	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.3
4. Agriculture	31.3	31.2	31.2	31.1	30.7	30.1	29.4	28.8	28.4	27.9	27.7
5. LULUCF	-63.4	-70.6	-69.9	-72.4	-73.8	-73.9	-78.4	-78.9	-78.9	-79.3	-80.3
6. Waste	25.6	25.5	26.6	26.2	28.6	28.8	29.1	29.5	29.1	28.7	28.5
Net Emissions/Removals (incl. LULUCF)	1,143.5	1,144.8	1,153.5	1,143.0	1,202.0	1,265.9	1,274.8	1,268.6	1,225.7	1,246.4	1,264.0
Emissions (excl. LULUCF)	1,206.8	1,215.4	1,223.4	1,215.4	1,275.8	1,339.8	1,353.2	1,347.5	1,304.6	1,325.7	1,344.3
[Million tonnes CO ₂ eq.]	2001	2002	2003	2004	2005	2006	2007	2008			
1. Energy	1,177.7	1,217.5	1,223.2	1,223.1	1,226.7	1,208.2	1,241.7	1,160.5			

Table 2-8	Trends in	greenhouse	gas emissions	s and rem	ovals in e	each sector
		8	0			

[Million tonnes CO2 eq.]	2001	2002	2003	2004	2005	2006	2007	2008
1. Energy	1,177.7	1,217.5	1,223.2	1,223.1	1,226.7	1,208.2	1,241.7	1,160.5
2. Industrial Processes	86.2	80.5	79.7	77.4	77.2	79.5	78.7	75.3
3. Solvent and Other Product Use	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.2
4. Agriculture	27.4	27.2	26.9	26.7	26.6	26.5	26.1	25.8
5. LULUCF	-80.6	-81.9	-91.8	-91.9	-86.1	-81.9	-81.8	-78.8
6. Waste	26.8	25.7	25.4	24.5	23.7	22.4	22.2	20.1
Net Emissions/Removals (incl. LULUCF)	1,238.0	1,269.3	1,263.7	1,260.1	1,268.4	1,254.9	1,287.2	1,203.0
Emissions (excl. LULUCF)	1,318.6	1,351.2	1,355.5	1,352.0	1,354.5	1,336.8	1,369.0	1,281.8

LULUCF: Land Use, Land-Use Change and Forestry

¹⁰ It implies "Category" indicated in the *Revised 1996 IPCC Guidelines* and CRF.

2.3.1. Energy

Emissions from the Energy sector in FY 2008 were 1,160 million tonnes (in CO_2 equivalents). They increased by 7.6% since FY 1990 and decreased by 6.5% compared to the previous year.

The breakdown of GHGs emissions from this sector in FY 2008 shows that the Fuel Combustion accounts for 99.96%. The largest source within the Fuel Combustion is the Liquid Fuel CO₂, which accounted for 45%, and is then followed by the Solid Fuel CO₂ (36%) and the Gaseous Fuel CO₂ (17%).

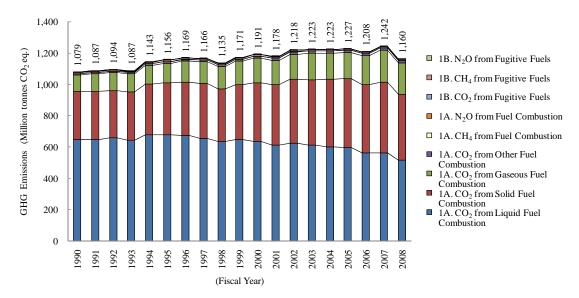


Figure 2-12 Trends in greenhouse gas emissions from the Energy sector

Table 2-9 Trends in greenhouse gas emissions from the Energy sector

[Thousand tonnes CO2 eq.]							
Source Category	1990	1995	2000	2005	2006	2007	2008
1A. Fuel Combustion	1,075,769	1,154,733	1,189,538	1,226,313	1,207,739	1,241,273	1,160,009
Liquid Euel CO ₂	646,223	677,349	635,121	597,813	562,037	563,675	518,131
Solid Fuel CO ₂	308,620	331,720	376,521	437,937	436,698	451,548	420,523
Gaseous Fuel CO ₂	104,301	126,198	155,261	166,823	186,374	203,273	199,519
Other Fuels CO ₂ (Waste)	9,102	10,497	13,122	15,113	14,151	14,408	13,812
CH_4	880	954	956	872	898	853	835
N ₂ O	6,643	8,016	8,559	7,755	7,581	7,515	7,189
1B. Fugitive Emissions from Fuel	3,074	1,661	1,079	433	445	454	446
CO_2	37	51	36	38	36	38	38
CH_4	3,037	1,610	1,043	396	409	416	408
N ₂ O	0.1	0.2	0.1	0.1	0.1	0.1	0.1
Total	1,078,843	1,156,394	1,190,617	1,226,747	1,208,184	1,241,727	1,160,455

2.3.2. Industrial Processes

Emissions from the Industrial Processes sector in FY 2008 were 75.3 million tonnes (in CO_2 eq.). They increased by 6.4% since FY 1990, and decreased by 4.3% compared to the previous year.

It should be noted that actual emissions of HFCs, PFCs, and SF_6 are not estimated (NE) for CY 1990 to 1994.

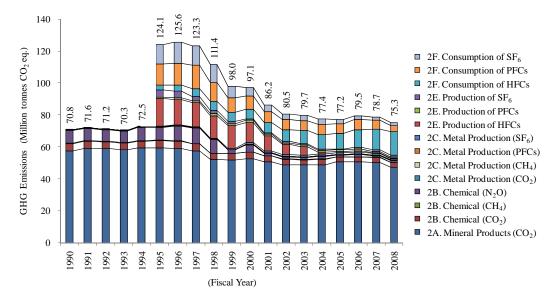


Figure 2-13 Trends in greenhouse gas emissions from the Industrial Processes sector

The breakdown of GHGs emissions from this sector in FY 2008 shows that the largest source is the Mineral Products such as CO_2 emissions from limestone in the cement production, accounting for 63%. It is followed by the Consumption of HFCs (19%) and the Consumption of PFCs (5%).

The main driving factors for decreases in CO_2 , CH_4 and N_2O emissions since FY 1990 are the decrease in CO_2 emissions from cement production as the clinker production declined, and the decrease in N_2O emissions from adipic acid production as the N_2O abatement equipment came on stream. The main driving factors for decreases in HFCs, PFCs and SF₆ emissions since CY 1995 are the promotion of substitute materials use and of the capture and destruction of these gases.

[Thousand tonnes CO ₂ eq.]							
Category	1990	1995	2000	2005	2006	2007	2008
2A. Mineral Products (CO ₂)	57,397	59,339	52,411	50,430	50,463	50,217	47,384
2B. Chemical Industry	13,036	12,945	8,941	4,496	4,854	4,170	4,113
CO ₂	4,430	4,428	4,072	3,079	3,114	3,193	2,744
CH ₄	338	304	179	117	116	117	106
N ₂ O	8,267	8,213	4,690	1,300	1,625	860	1,262
2C. Metal Production	375	564	1,311	1,431	1,301	1,333	838
CO ₂	356	357	248	242	178	212	156
CH ₄	19	18	17	17	17	17	15
PFCs	NE	70	18	15	15	15	15
SF_6	NE	120	1,028	1,157	1,091	1,089	652
2E. Production of F-gas	NE	22,916	14,879	2,299	3,184	2,479	2,513
HFCs	NE	17,445	12,660	816	938	498	701
PFCs	NE	763	1,359	837	879	783	524
SF_6	NE	4,708	860	646	1,366	1,199	1,288
2F. Consumption of F-gas	NE	28,356	19,584	18,572	19,674	20,509	20,462
HFCs	NE	2,815	6,141	9,747	10,799	12,775	14,564
PFCs	NE	13,408	8,143	6,150	6,422	5,614	4,078
SF ₆	NE	12,134	5,300	2,676	2,453	2,119	1,821
Total	70,808	124,121	97,126	77,229	79,476	78,709	75,310

Table 2-10 Trends in greenhouse gas emissions from the Industrial Processes sector [Thousand tonnes CO₂ eq.]

2.3.3. Solvent and Other Product Use

Emissions from the Solvents and Other Product Use sector in FY 2008 were 160 thousand tonnes (in CO_2 eq.). They decreased by 44.1% since FY 1990, and increased by 0.3% compared to the previous year. The only substance subject for estimation in this sector is laughing gas (N₂O) used as a general anesthetic in hospitals.

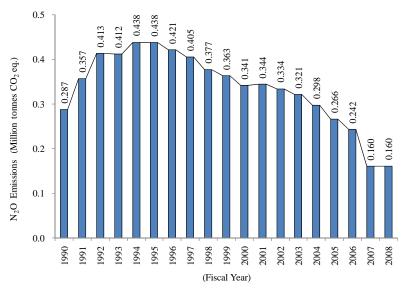


Figure 2-14 Trends in greenhouse gas emissions from the Solvent and Other Product Use sector

2.3.4. Agriculture

Emissions from the Agriculture sector in FY 2008 were 25.8 million tonnes (in CO_2 eq.). They decreased by 17.5% since FY 1990 and decreased by 1.2% compared to the previous year.

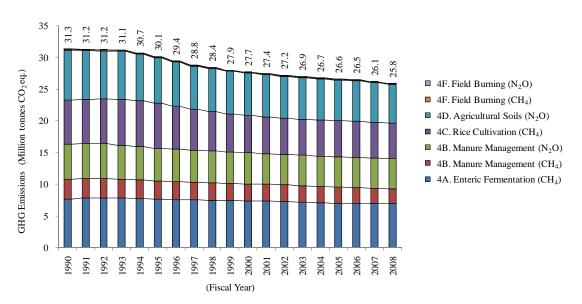


Figure 2-15 Trends in greenhouse gas emissions from the Agriculture sector

The breakdown of GHGs emissions from this sector in FY 2008 shows that the largest source is the Enteric Fermentation accounting for 27%. It is followed by the Agricultural Soils (23%) as a result of the nitrogen-based fertilizer applications, and the Rice Cultivation (22%).

The main driving factor for decrease in emissions since FY 1990 is the decrease in CH_4 emissions from the Rice Cultivation as a result of crop acreage decline, and the decrease in N_2O emissions from the Agricultural Soils, because the amount of fertilizers applied to cropland had decreased.

[I housand tonnes CO ₂ eq.]							
Category	1990	1995	2000	2005	2006	2007	2008
4A. Enteric Fermentation(CH ₄)	7,677	7,606	7,370	7,002	7,000	6,974	6,945
4B. Manure Management	8,627	8,045	7,563	7,253	7,195	7,148	7,095
CH ₄	3,094	2,893	2,678	2,503	2,439	2,374	2,328
N_2O	5,533	5,152	4,885	4,749	4,756	4,773	4,768
4C. Rice Cultivation(CH ₄)	6,960	7,083	5,920	5,739	5,707	5,652	5,614
4D. Agricultural Soils (N ₂ O)	7,841	7,160	6,667	6,438	6,437	6,233	6,050
4F. Field Burning of Agricultural Res	210	183	158	134	135	138	141
CH ₄	113	102	86	72	73	73	74
N ₂ O	97	81	72	61	63	65	67
Total	31,315	30,078	27,678	26,566	26,475	26,146	25,845

 Table 2-11
 Trends in greenhouse gas emissions from the Agriculture sector

 [Thousand tonnes CO2 eq.]

2.3.5. Land Use, Land Use Change and Forestry (LULUCF)

Net Removals (incl. CO_2 , CH_4 and N_2O emissions) from the LULUCF sector in FY 2008 was 78.8 million tonnes (in CO_2 eq.). They increased by 24.4% since FY 1990 and decreased by 3.7% compared to the previous year.

The breakdown of GHGs emissions and removals from this sector in FY 2008 shows that the largest sink is the Forest land and its removals were 79.9 million tonnes accounting for 101% of this sector's net total emissions / removals.

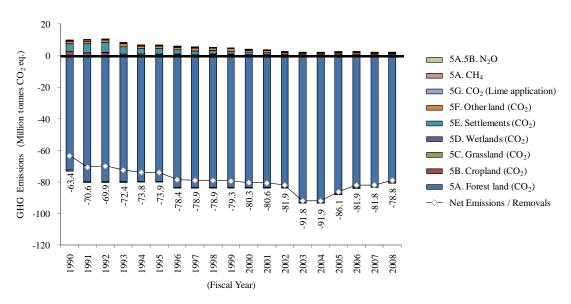


Figure 2-16 Trends in greenhouse gas emissions and removals from the LULUCF sector

[Thousand tonnes C	CO ₂ eq.]						
Category	1990	1995	2000	2005	2006	2007	2008
5A. Forest land	-72,418	-79,676	-83,467	-87,503	-83,397	-82,871	-79,911
CO_2	-72,428	-79,685	-83,476	-87,513	-83,399	-82,873	-79,934
CH_4	8	9	8	9	2	2	22
N ₂ O	0.8	0.9	0.8	0.9	0.2	0.2	2.2
5B. Cropland	2,672	863	368	212	269	251	231
CO_2	2,579	806	340	199	257	243	223
CH_4	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO
N ₂ O	93	56	29	13	12	9	7
5C. Grassland	-563	-517	-580	-668	-682	-674	-744
CO_2	-563	-517	-580	-668	-682	-674	-744
CH_4	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO
N ₂ O	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO
5D. Wetlands	90	286	353	62	78	135	92
CO_2	90	286	353	62	78	135	92
CH_4	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO
N ₂ O	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO
5E. Settlements	4,726	3,357	1,469	738	449	231	831
CO_2	4,726	3,357	1,469	738	449	231	831
CH_4	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO
N ₂ O	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO	NE,NO
5F. Other land	1,586	1,511	1,261	805	1,173	800	388
CO_2	1,586	1,511	1,261	805	1,173	800	388
CH_4	NO	NO	NO	NO	NO	NO	NO
N ₂ O	NO	NO	NO	NO	NO	NO	NO
5G. Other	550	303	333	231	230	325	306
CO ₂	550	303	333	231	230	325	306
Total	-63,359	-73,872	-80,262	-86,123	-81,880	-81,804	-78,808

Table 2-12Trends in greenhouse gas emissions and removals from the LULUCF sector

2.3.6. Waste

Emissions from the Waste sector in FY 2008 were 20.1 million tonnes (in CO_2 eq.). They decreased by 21.6% since FY 1990 and decreased by 9.9% compared to the previous year.

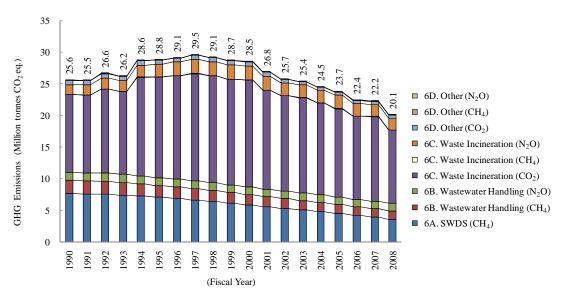


Figure 2-17 Trends in greenhouse gas emissions from the Waste sector

The breakdown of GHGs emissions from this sector in FY 2008 shows that the largest source is the Waste Incineration (CO₂), associated with waste derived from fossil fuels such as waste plastic and waste oil, accounting for 58%. It is followed by the SWDS (CH₄) (18%) and the Waste Incineration (N₂O) (9%), associated with waste substances that do not have a fossil fuel origin.

The main driving factor for decrease in emissions since FY 1990 is the decrease in CH_4 emissions from the SWDS as a result of decrease in the amount of waste to be disposed of.

[Thousand tonnes CO ₂ eq.]							
Category	1990	1995	2000	2005	2006	2007	2008
6A. Solid Waste Disposal on Land (CH ₄)	7,628	7,065	5,877	4,515	4,203	3,909	3,591
6B. Wastewater Handling	3,410	3,108	2,848	2,567	2,534	2,470	2,501
CH ₄	2,121	1,861	1,636	1,404	1,371	1,329	1,338
N ₂ O	1,290	1,247	1,211	1,163	1,163	1,142	1,163
6C. Waste Incineration	13,796	17,894	19,111	16,095	15,119	15,271	13,398
CO ₂	12,263	15,867	16,838	13,984	13,133	13,449	11,600
CH ₄	13	15	13	14	13	12	12
N ₂ O	1,519	2,012	2,260	2,096	1,973	1,809	1,785
6D. Other	730	689	681	534	555	595	562
CO ₂	703	668	656	507	522	561	530
CH ₄	14	11	13	15	17	18	17
N ₂ O	13	10	12	13	15	16	15
Total	25,564	28,755	28,517	23,711	22,410	22,245	20,052

 Table 2-13
 Trends in greenhouse gas emissions from the Waste sector

2.4. Description and Interpretation of Emission Trends for Indirect GHGs and SO2

Under the UNFCCC, it is required to report emissions not only 6 types of GHGs (CO₂, CH₄, N₂O, HFCs, PFCs and SF₆) that are controlled by the Kyoto Protocol, but also emissions of indirect GHGs (NO_X, CO and NMVOC) as well as SO₂. Their emission trends are indicated below.

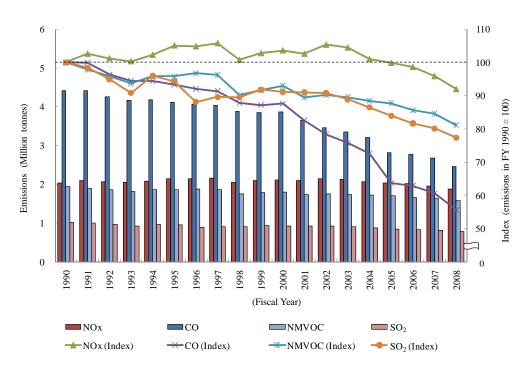


Figure 2-18 Trends in emissions of indirect greenhouse gases and SO₂

Nitrogen oxide (NO_X) emissions in FY 2008 were 1,874 thousand tonnes. They decreased by 8.0% since FY 1990 and decreased by 4.0% compared to the previous year.

Carbon monoxide (CO) emissions in FY 2008 were 2,456 thousand tonnes. They decreased by 44.4% since FY 1990 and decreased by 8.2% compared to the previous year.

Non-methane volatile organic compounds (NMVOC) emissions in FY 2008 were 1,571 thousand tonnes. They decrease by 18.9% since FY 1990 and decreased by 4.0% compared to the previous year.

Sulfur dioxide (SO₂) emissions in FY 2008 were 783 thousand tonnes. They decreased by 22.6% since FY 1990 and decreased by 3.4% compared to the previous year.

References

- 1. Cabinet Office, Government of Japan, Annual Report on National Accounts.
- 2. Intergovernmental Panel on Climate Change, Second Assessment Report, 1995.
- 3. Ministry of Public Management, Home Affairs, Posts and Telecommunications Japan, *Annual Report* on Current Population Estimates.
- 4. Ministry of Public Management, Home Affairs, Posts and Telecommunications Japan, *Population Census*.
- 5. Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report, February 2006.

Chapter 3. Energy (CRF sector 1)

3.1. Overview of Sector

Emissions from the energy sector consist of two main categories: fuel combustion and fugitive emissions from fuels. Fuel combustion includes emissions released into the atmosphere when fossil fuels (e.g., coal, oil products, and natural gas) are combusted. Fugitive emissions are intentional or unintentional releases of gases from fossil fuels by anthropogenic activities.

In Japan, fossil fuels are used to produce energy for a wide variety of purposes (e.g., production, transportation, and consumption of energy products) and CO_2 (Carbon dioxide), CH_4 (Methane), N_2O (Nitrous Oxide), NO_x (Nitrogen Oxide), CO (Carbon Monoxide), and NMVOC (Non-Methane Volatile Organic Compounds) are emitted in the process.

In 2008, GHG emissions from energy sector accounted to 1,160,455 Gg-CO₂, and represented 90.5% of the Japan's total GHG emissions. The emissions from energy sector had increased by 7.6% compare to 1990.

3.2. Fuel Combustion (1.A.)

This category covers GHG emissions from combustion of fossil fuels such as coal, oil, and natural gas, and incineration of waste for energy purposes and with energy recovery.¹

This section includes GHG emissions from five sources: Energy Industries (1.A.1)—emissions from power generation and heat supply; Manufacturing Industries and Construction (1.A.2)—emissions from manufacturing industry and construction; Transport (1.A.3)—emissions from aviation, railways, road transport and shipping; Other Sectors (1.A.4)—emissions from commercial/institutional, residential, and agriculture/forestry/fishing sources; and Other (1.A.5)—emissions from the other sector.

In FY 2008, emissions from fuel combustion were 1,160,009 Gg-CO₂, and represented 90.5% of GHG of the Japan's total GHG emissions. The emissions had increased by 7.8% compared to 1990.

GHG emissions from fuel combustion in FY 2008 had decreased by 6.5% compared to FY 2007. The primary reason for the emission reduction in FY 2008 as compared to FY 2007 was the drop in energy demand of all the sectors in the Industries sector as the result of the severe economic recession induced by the financial crisis in the second half of FY 2008.

¹ These emissions from waste incineration had been reported in the waste sector in 2008 submissions, regardless of use as energy or energy recovery. However, to comply with ERT observations and the requirements of IPCC Guidelines, the emissions are reported in the energy sector since 2009 submissions.

		Table 3-1 Trends								
Gas		Item	Unit	1990	1995	2000	2005	2006	2007	2008
		 a. Public Electricity and Heat Production 	Gg-CO ₂	297,074	315,399	330,863	378,920	370,261	423,156	394,116
	1.A.1. Energy Industries		Gg-CO ₂	15,893	16,956	17,285	16,441	16,098	16,018	14,168
	1.1.1.1. Energy industries	c. Manufacture of Solid Fuels						,	,	
		and Other Energy Industries	Gg-CO ₂	11,286	12,592	9,426	10,677	7,999	7,684	11,231
		a.Iron and Steel	Gg-CO ₂	149,600	141,862	150,776	152,741	154,603	159,979	143,278
		b. Non-Ferrous Metals	Gg-CO ₂	6,092	4,770	3,042	2,634	2,702	2,659	2,333
	1.A.2. Manufacturing	c. Chemicals	Gg-CO ₂	64,723	74,800	67,211	58,646	58,899	59,302	53,279
	Industries and	d. Pulp, Paper and Print	Gg-CO ₂	25,825	29,449	29,028	26,547	25,506	24,924	22,837
	Construction	e. Food Processing, Beverages	Gg-CO ₂	13,129	14,407	13,161	11,326	10,407	9,758	8,811
CO_2		and Tobacco f. Other	C ~ C 0	111,929	105,245	113,539	119,326	121,153	113,581	105,836
2		a. Civil Aviation	Gg-CO ₂ Gg-CO ₂	7,162	10,278	10,677	119,320	11,178	10,876	10,277
		b. Road Transportation	Gg-CO ₂ Gg-CO ₂	189,228	225,381	232,827	222,652	219,169	214,087	205,417
	1.A.3. Transport	c. Railways	Gg-CO ₂	932	819	707	644	645	624	624
		d. Navigation	Gg-CO ₂	13,731	14,687	14,865	12,915	12,640	12,170	11,662
ľ		a. Commercial/Institutional	Gg-CO ₂	83,593	93,269	101,450	110,678	110,857	102,766	98,053
	1.A.4. Other Sectors	b. Residential	Gg-CO ₂	56,668	66,320	68,958	67,583	63,466	62,590	59,023
, l		c.Agriculture/Forestry/Fisheries	Gg-CO ₂	21,380	19,526	16,207	15,158	13,675	12,730	11,039
ſ	1.A.5 Other	a. Stationary	Gg-CO ₂	NO	NO	NO	NO	NO	NO	NO
	1.A.5 Oliei	b. Mobile	Gg-CO ₂	NO	NO	NO	NO	NO	NO	NO
_ [Total	Gg-CO ₂	1,068,246	1,145,763	1,180,023	1,217,686	1,199,261	1,232,905	1,151,985
		a. Public Electricity and Heat	Ca CH	1.35	1.55	1.95	1.54	1 41	1.77	1.70
		Production	Gg-CH ₄					1.61		
	1.A.1. Energy Industries		Gg-CH ₄	0.05	0.06	0.07	0.07	0.07	0.07	0.06
		c. Manufacture of Solid Fuels	Gg-CH ₄	0.02	0.03	0.06	0.05	0.08	0.17	0.17
		and Other Energy Industries	-	4.50	4.00	4.40	2.05	4.20	1.24	
		a.Iron and Steel	Gg-CH ₄	4.59 0.29	4.22 0.25	4.49 0.20	3.95 0.16	4.20 0.16	4.24 0.16	3.88
	1.A.2. Manufacturing	b. Non-Ferrous Metals c. Chemicals	Gg-CH ₄	0.29	0.25	0.20	0.16	0.16	0.16	0.13
	Industries and	d. Pulp, Paper and Print	Gg-CH ₄ Gg-CH ₄	0.21	0.20	0.23	0.23	0.24	0.24	0.22
	Construction	e. Food Processing, Beverages								
	Construction	and Tobacco	Gg-CH ₄	0.11	0.14	0.13	0.13	0.12	0.12	0.12
		f. Other	Gg-CH ₄	10.38	11.20	10.41	10.76	11.06	11.16	11.08
CH ₄		 a. Civil Aviation 	Gg-CH ₄	0.14	0.17	0.21	0.23	0.24	0.23	0.22
	1.A.3. Transport	b. Road Transportation	Gg-CH ₄	12.70	13.11	12.54	9.78	9.03	8.37	7.66
	1.A.S. Haisport	c. Railways	Gg-CH ₄	0.06	0.05	0.05	0.04	0.04	0.04	0.04
		d. Navigation	Gg-CH ₄	1.26	1.35	1.39	1.21	1.18	1.13	1.08
		a. Commercial/Institutional	Gg-CH ₄	1.02	3.19	4.38	4.46	6.38	4.70	5.69
	1.A.4. Other Sectors	b. Residential	Gg-CH ₄	8.23	8.61	8.15	7.76	7.21	7.05	6.64
		c.Agriculture/Forestry/Fisheries	Gg-CH ₄	0.61	0.35	0.32	0.28	0.26	0.24	0.23
	1.A.5 Other	a. Stationary b. Mobile	Gg-CH ₄	NO NO	NO NO	NO NO	NO NO	NO NO	NO NO	NO NO
		D. MODILE	Gg-CH ₄						1	
		Total	Gg-CH ₄	41.90	45.42	45.50	41.54	42.76	40.61	39.75
			Gg-CO2eq	880	954	956	872	898	853	835
		a. Public Electricity and Heat	Gg-N ₂ O	2.88	4.40	5.32	6.67	6.63	6.84	6.65
		Production	-							
	1.A.1. Energy Industries	-	Gg-N ₂ O	0.08	0.14	0.20	0.19	0.19	0.19	0.18
		 Manufacture of Solid Fuels and Other Energy Industries 	Gg-N ₂ O	0.02	0.02	0.02	0.02	0.02	0.04	0.04
_ F		a.Iron and Steel	Gg-N ₂ O	1.24	1.25	1.24	1.25	1.26	1.28	1.21
		b. Non-Ferrous Metals	Gg-N ₂ O Gg-N ₂ O	0.15	0.13	0.10	0.03	0.03	0.03	0.03
	1.A.2. Manufacturing	c. Chemicals	Gg-N ₂ O Gg-N ₂ O	0.13	0.13	0.10	0.03	0.03	0.03	0.03
	Industries and	d. Pulp, Paper and Print	Gg-N ₂ O Gg-N ₂ O	0.43	0.89	0.93	0.90	0.87	0.93	1.00
	Construction	e. Food Processing, Beverages								
		and Tobacco	Gg-N ₂ O	0.06	0.07	0.07	0.06	0.05	0.05	0.05
N		f. Other	Gg-N ₂ O	1.70	1.95	2.93	3.26	3.41	3.34	3.06
N ₂ O		a. Civil Aviation	Gg-N ₂ O	0.23	0.30	0.34	0.35	0.36	0.35	0.33
	1.A.3. Transport	b. Road Transportation	Gg-N ₂ O	12.59	13.96	13.76	9.71	9.07	8.59	8.05
	1.1.5. Hansport	c. Railways	Gg-N ₂ O	0.39	0.34	0.29	0.27	0.27	0.26	0.26
		d. Navigation	Gg-N ₂ O	0.36	0.39	0.40	0.35	0.34	0.32	0.31
	11101 0	a. Commercial/Institutional	Gg-N ₂ O	0.38	0.59	0.69	0.77	0.79	0.75	0.73
	1.A.4. Other Sectors	b. Residential	Gg-N ₂ O	0.29	0.33	0.34	0.33	0.30	0.29	0.27
ŀ		c.Agriculture/Forestry/Fisheries	Gg-N ₂ O	0.21	0.16	0.14	0.13	0.12	0.11	0.10
	1.A.5 Other	a. Stationary	Gg-N ₂ O	NO	NO	NO	NO	NO	NO NO	NO
ŀ		b. Mobile	Gg-N ₂ O	NO	NO	NO	NO	NO		NO
		Total	Gg-N ₂ O	21.43	25.86	27.61	25.01	24.45	24.24	23.19
			Gg-CO2eq	6,643	8,016	8,559	7,755	7,581	7,515	7,189
	Total of	all gases	Gg-CO ₂ eq	1,075,769	1,154,733	1,189,538	1,226,313	1,207,739	1,241,273	1,160,009
	01	~	U · · · · · · · · · · · · · · · · · · ·	, ,.	, , ,	,,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, ,=	,

Table 3-1 Trends in GHGs emissions from fuel combustion (1.A)

3.2.1. Energy Industries (1.A.1.)

a) Source/Sink Category Description

This source category provides methods estimating CO_2 emissions from Public Electricity and Heat Production (1.A.1.a), Petroleum Refining (1.A.1.b), and Manufacture of Solid Fuels and Other Energy Industries (1.A.1.c).

b) Methodological Issues

The estimation methods, activity data, emission factors, and other parameters used in the Energy Industry (1.A.1), Manufacturing Industry and Construction (1.A.2) and Other Sectors (1.A.4) are basically common. Therefore, the estimation method and data used for all of them is summarized in this section.

The estimation method for waste incineration with energy use and energy recovery is described in Chapter.8.

$[CO_2]$

• Estimation Method

Tier 1 Sectoral Approach has been used in accordance with the decision tree of the *Good Practice Guidance (2000)* (Page 2.10, Fig. 2.1) to calculate emissions. Country-specific emission factors are used for all types of fuel.

$E = \sum_{ij} \left[(A_{ij} - N_{ij}) \times GCV_i \times 10^{-3} \times EF_i \times OF_i \right] \times 44$	/12
--	-----

E	: CO ₂ emissions from fossil fuel combustion [tCO ₂]
А	: Energy consumption [t, kl, m ³]
Ν	: Non-energy product use of fossil fuels [t, kl, m ³]
GCV	: Gross calorific value [MJ/kg, MJ/l, MJ/m ³]
EF	: Carbon content of the fuel [tC/TJ]
OF	: Oxidation factor
i	: Type of energy
j	: Sector

The emissions from waste incineration with energy recovery are reported in Fuel Combustion (1.A.) in accordance with the *1996 Revised IPCC Guidelines* and the *Good Practice Guidance (2000)*. The fuel type is classified as "Other fuels".

Estimation method, emission factors and activity data for emission from waste incineration with energy recovery is same as those used in the waste incineration (6.C.) in accordance with the *1996 Revised IPCC Guidelines*. Please refer to Chapter 8 for further details on estimation methods.

• Emission Factors

Carbon emission factors

The carbon content of fuels expressed as the unit of calorific value (Gross Calorific Value) was used for carbon emission factors. The emission factors are country-specific values except a part of fuels that applied the default value provided in the *2006 IPCC Guidelines*.

Emission factors were developed based on three different concepts; (a) Energy sources other than Blast Furnace Gas (BFG) and Town gas, (b) BFG, and (c) Town gas.

Table 3-2 provides the emission factors for CO_2 by fuel types.

	Fuel	Unit	1990	1995	2000	2005	2006	2007	2008	References
	Steel Making Coal	tC/TJ	24.51	24.51	24.51	24.51	24.51	24.51	24.51	-
	Coking Coal	tC/TJ	24.51	24.51	24.51	24.51	24.51	24.51	24.51	2006 IPCC Guidelines for National Greenhouse Gas Inventories
	PCI Coal	tC/TJ	24.51	24.51	24.51	24.51	24.51	24.51	24.51	same as Coking Coal
	Imported Steam Coal	tC/TJ	24.71	24.71	24.71	24.71	24.71	24.71	24.71	-
7	Imported Coal : for general use	tC/TJ	24.71	24.71	24.71	24.71	24.71	24.71	24.71	Environmental Agency, The Report on Estimation of CO ₂ Emissions in Japan
Coal	Imported Coal : for power	tC/TJ	24.71	24.71	24.71	24.71	24.71	24.71	24.71	same as Imported Coal : for general use
	Indigenous Steam Coal	tC/TJ	24.90	24.90	24.90	24.90	24.90	24.90	24.90	Environmental Agency, The Report on Estimation of CO ₂ Emissions in Japan
	Underground	tC/TJ	24.90	24.90	24.90	24.90	24.90	24.90	24.90	same as Indigenous Steam Coal
	Open Pit	tC/TJ	24.90	24.90	24.90	24.90	24.90	24.90	24.90	same as Indigenous Steam Coal
	Hard Coal, Anthracite & Lignite	tC/TJ	25.46	25.46	25.46	25.46	25.46	25.46	25.46	2006 IPCC Guidelines for National Greenhouse Gas Inventories
-	Coke	tC/TJ	29.38	29.38	29.38	29.38	29.38	29.38	29.38	Environmental Agency, The Report on Estimation of CO ₂ Emissions in Japan
	Coal Tar	tC/TJ	20.90	20.90	20.90	20.90	20.90	20.90	20.90	2006 IPCC Guidelines for National Greenhouse Gas Inventories
ucts	Coal Briquette	tC/TJ	29.38	29.38	29.38	29.38	29.38	29.38	29.38	Environmental Agency, The Report on Estimation of CO ₂ Emissions in Japan
Coal Products	Coke Oven Gas	tC/TJ	10.99	10.99	10.99	10.99	10.99	10.99	10.99	2006 IPCC Guidelines for National Greenhouse Gas Inventories
al F										established with annually calculated value in order to keep carbon balance in
ට	Blast Furnace Gas	tC/TJ	27.28	26.91	26.60	26.48	26.38	26.34	26.44	blast furnace and L.D. converter
	Converter Furnace Gas	tC/TJ	38.44	38.44	38.44	38.44	38.44	38.44	38.44	2006 IPCC Guidelines for National Greenhouse Gas Inventories
	Crude Oil for Refinery	tC/TJ	18.66	18.66	18.66	18.66	18.66	18.66	18.66	Environmental Agency, The Report on Estimation of CO ₂ Emissions in Japan
	Crude Oil for Power Generation	tC/TJ	18.66	18.66	18.66	18.66	18.66	18.66	18.66	Environmental Agency, The Report on Estimation of CO ₂ Emissions in Japan
Oil	Bituminous Mixture Fuel	tC/TJ	19.96	19.96	19.96	19.96	19.96	19.96	19.96	2006 IPCC Guidelines for National Greenhouse Gas Inventories
0										GHGs Estimation Methods Committee Report (Ministry of the
	Natural Gas Liquid & Condensate	tC/TJ	18.40	18.40	18.40	18.40	18.40	18.40	18.40	Environment, Committee for the Greenhouse Gases Emissions Estimation
										Methods)
	Slack Gasoline	tC/TJ	18.17	18.17	18.17	18.17	18.17	18.17	18.17	adopted the value of Naphtha
	Slack Kerosene	tC/TJ	18.51	18.51	18.51	18.51	18.51	18.51	18.51	adopted the value of Kerosene
	Slack Diesel Oil or Gas Oil	tC/TJ	18.73	18.73	18.73	18.73	18.73	18.73	18.73	adopted the value of Diesel Oil or Gas Oil
	Slack Fuel Oil	tC/TJ	19.54	19.54	19.54	19.54	19.54	19.54	19.54	adopted the value of Heating Oil C
	Cracked Gasoline	tC/TJ	18.17	18.17	18.17	18.17	18.17	18.17	18.17	adopted the value of Naphtha
	Cracked Diesel Oil or Gas Oil	tC/TJ	18.73	18.73	18.73	18.73	18.73	18.73	18.73	adopted the value of Diesel Oil or Gas Oil
	Feedstock Oil for Refinery and Mixing	tC/TJ	18.66	18.66	18.66	18.66	18.66	18.66	18.66	adopted the value of Crude Oil for Refinery
	Naphtha	tC/TJ	18.17	18.17	18.17	18.17	18.17	18.17	18.17	Environmental Agency, The Report on Estimation of CO2 Emissions in Japan
	Reformed Material Oil	tC/TJ	18.29	18.29	18.29	18.29	18.29	18.29	18.29	adopted the value of Gasoline
	Gasoline	tC/TJ	18.29	18.29	18.29	18.29	18.29	18.29	18.29	Environmental Agency, The Report on Estimation of CO ₂ Emissions in Japan
	Premium Gasoline	tC/TJ	18.29	18.29	18.29	18.29	18.29	18.29	18.29	same as Gasoline
	Regular Gasoline	tC/TJ	18.29	18.29	18.29	18.29	18.29	18.29	18.29	same as Gasoline
cts	Jet Fuel	tC/TJ	18.31	18.31	18.31	18.31	18.31	18.31	18.31	Environmental Agency, The Report on Estimation of CO ₂ Emissions in Japan
Products	Kerosene	tC/TJ	18.51	18.51	18.51	18.51	18.51	18.51	18.51	Environmental Agency, The Report on Estimation of CO_2 Emissions in Japan
l Pr	Gas Oil or Diesel Oil	tC/TJ	18.73	18.73	18.73	18.73	18.73	18.73	18.73	Environmental Agency, The Report on Estimation of CO ₂ Emissions in Japan
0il	Fuel Oil A	tC/TJ	18.90	18.90	18.90	18.90	18.90	18.90	18.90	Environmental Agency, The Report on Estimation of CO ₂ Emissions in Japan
	Fuel Oil C	tC/TJ	19.54	19.54	19.54	19.54	19.54	19.54	19.54	Environmental Agency, The Report on Estimation of CO ₂ Emissions in Japan
	Fuel Oil B	tC/TJ	19.22	19.22	19.22	19.22	19.22	19.22	19.22	Environmental Agency, The Report on Estimation of CO ₂ Emissions in Japan
	Fuel Oil C	tC/TJ	19.54	19.54	19.54	19.54	19.54	19.54	19.54	Environmental Agency, The Report on Estimation of CO ₂ Emissions in Japan
	Fuel Oil C for Power Generation	tC/TJ	19.54	19.54	19.54	19.54	19.54	19.54	19.54	Environmental Agency, The Report on Estimation of CO ₂ Emissions in Japan
	Lublicating Oil	tC/TJ	19.22	19.22	19.22	19.22	19.22	19.22	19.22	Environmental Agency, The Report on Estimation of CO ₂ Emissions in Japan
	Asphalt	tC/TJ	20.77	20.77	20.77	20.77	20.77	20.77	20.77	Environmental Agency, The Report on Estimation of CO ₂ Emissions in Japan
	Non Asphalt Heavy Oil Products	tC/TJ	20.77	20.77	20.77	20.77	20.77	20.77	20.77	Environmental Agency, The Report on Estimation of CO ₂ Emissions in Japan
	Oil Coke	tC/TJ	25.35	25.35	25.35	25.35	25.35	25.35	25.35	Environmental Agency, The Report on Estimation of CO ₂ Emissions in Japan
	Galvanic Furnace Gas	tC/TJ	38.44	38.44	38.44	38.44	38.44	38.44	38.44	adopted the value of Converter Furnace Gas
	Refinary Gas	tC/TJ	14.15	14.15	14.15	14.15	14.15	14.15	14.15	Environmental Agency, The Report on Estimation of CO ₂ Emissions in Japan
	Liquified Petroleum Gas	tC/TJ	16.32	16.32	16.32	16.13	16.13	16.13	16.13	GHGs Estimation Methods Committee Report (Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation
	Exquincu i ettoreun das	10/15	10.05	10.02	10.05	10.15	10.10	10.15	10.15	Methods)
	Liquefied Natural Gas	tC/TJ	13.47	13.47	13.47	13.47	13.47	13.47	13.47	Environmental Agency, The Report on Estimation of CO2 Emissions in Japan
Gas	Indigenous Natural Gas	tC/TJ	13.90	13.90	13.90	13.90	13.90	13.90	13.90	2006 IPCC Guidelines for National Greenhouse Gas Inventories
ıral	Indigenous Natura l Gas	tC/TJ	13.90	13.90	13.90	13.90	13.90	13.90	13.90	adopted the value of Indigenous Natural Gas
Natural	Coal Mining Gas	tC/TJ	13.47	13.47	13.47	13.47	13.47	13.47	13.47	Environmental Agency, The Report on Estimation of CO2 Emissions in Japan
1	Off-gas from Crude Oil	tC/TJ	13.90	13.90	13.90	13.90	13.90	13.90	13.90	adopted the value of Indigenous Natural Gas
s	Town Gas	tC/TJ	14.04	13.99	13.80	13.65	13.66	13.58	13.66	same as Town Gas
ı Ga	T C	LC/TEL	14.04	19.00	10.00	19.07	19.00	19 70	10.00	established with annually calculated value in order to keep carbon balance in
Town Gas	Town Gas	tC/TJ	14.04	13.99	13.80	13.65	13.66	13.58	13.66	prodeced town gas
Ĕ	Small Scale Town Gas	tC/TJ	16.32	16.32	16.32	16.13	16.13	16.13	16.13	adopted the value of LPG
										·

Table 3-2 Emission factors for fuel combustion in gross calorific value

(a)Energy sources other than Blast Furnace Gas (BFG) and Town gas

Carbon emission factors of energy sources other than Blast Furnace Gas (BFG) and Town gas were used values provided in "The Report on Estimation of CO_2 Emissions in Japan (Environmental Agency, 1992)", "GHGs Estimation Methods Committee Report (Committee for the Greenhouse Gases Emissions Estimation Methods, The Ministry of Environment)" and "2006 IPCC Guidelines".

In the choice of carbon emission factors, adequacy assessment was conducted for emission factors in *the Report on Estimation of CO*₂ *Emissions in Japan* (Environmental Agency, 1992), which were used in the inventories submitted in 2005 based on the following 3 criteria, and the values assessed as adequate continue to be used in this inventory

- · Comparison with theoretical upper and lower limit
- · Comparison with default values indicated in the Revised 1996 IPCC Guidelines
- Carbon balance assessment for energy group with Energy Balance Table (*General Energy Statistics*).

The values assessed as inadequate were substituted by the values given in *GHGs Estimation Methods Committee Report* (Committee for the Greenhouse gases Emissions Estimation Methods, Ministry of the Environment) and 2006 IPCC Guidelines.

(b) Blast Furnace Gas (BFG)

During iron and steel production process, in the blast furnace and L.D. converter, the amount of energy and carbon contained in coke and PCI coal which are injected to the processes and these contained in BFG and LDG which are calculated should be theoretically balanced. Since the composition of BFG is unstable, emission factors for BFG was established with annually calculated value in order to keep carbon balance in blast furnace and L.D. converter during the iron and steel production process.

Emission factor for BFG was established with annually calculated value in order to keep carbon balance in blast furnace and L.D. converter during iron and steel production process. The amount of carbon excluded carbon contained in LDG from carbon (contained in 'Coke' and 'PCI coal') injected to blast furnace indicated under 'Steel process gas' is considered to be carbon contained in BFG. Emission factor for BFG was established as carbon described above divided by calorific values of BFG generated. The equation for emission factor and the overview of carbon flow for iron & steel and calculation process are shown below.

Calculation to establish emission factor for BFG is conducted every year.

$$EF_{BFG} = \left[\left(A_{coal} \times EF_{coal} + A_{coke} \times EF_{coke} \right) - A_{LDG} \times EF_{LDG} \right] / A_{BFG}$$

EF: Carbon emission factor [tC/TJ]A: Fuel consumption [TJ]BFG: Blast Furnace Gascoal: PCI coalcoke: cokeLDG: L.D converter gas

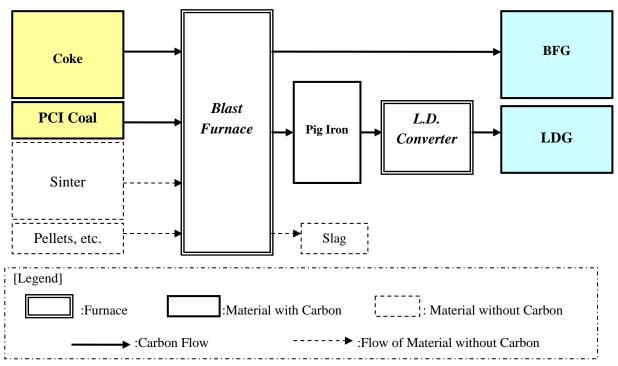


Figure 3-1 Overview of carbon flow for iron & steel

-									
Steel Process Gas		1990	1995	2000	2005	2006	2007	2008	Note
Input									
PCI Coal	Gg-C	1,574	2,593	3,518	3,111	3,226	3,515	2,950	Α
Coke	Gg-C	12,830	11,432	12,021	11,382	11,627	11,782	10,818	В
Input Total	Gg-C	14,404	14,024	15,539	14,492	14,853	15,297	13,768	C: A + B
Output									
LDG	Gg-C	2,541	2,359	2,726	2,804	2,999	3,038	2,727	D
Difference	Gg-C	11,863	11,665	12,813	11,688	11,854	12,259	11,041	E: C - D
Output									
BFG	TJ	434,801	433,504	481,768	441,357	449,335	465,388	417,636	F
EF BFG	t-C/TJ	27.28	26.91	26.60	26.48	26.38	26.34	26.44	E / F

Table 3-3 Calculation of Emission Factors for BFG

(c) Town gas

'Town gas' consists of 'Town gas' provided by town gas supplier and 'Small scale town gas' provided by small scale town gas supplier.

In the case of small scale town gas supplier:

Because most part of small scale town gas is LPG, the same emission factor for LPG was adopted for small scale town gas

In the case of town gas supplier:

Town gas is produced from the mixture of raw materials and air dilution. In order to calculate town gas emission factors, total carbon contained in fossil fuel used as raw materials was divided by the total calorific value of produced town gas. Emission factors for town gas were established based on carbon balance in 'Town gas production'. To calculate town gas emission factors, the total carbon in fossil fuel inputs used as raw materials (COG, Kerosene, Refinery gas, LPG, LNG

Chapter 3. Energy

and Indigenous natural gas) was divided by the total calorific value of the town gas production. Calculation to establish emission factor for town gas is conducted every year.

$$EF_{TG} = \sum \left(A_i \times EF_i \right) / P_{TG}$$

EF : Carbon emission factor [tC/TJ]

- A : Fuel consumption [TJ]
- P : Calorific value of the town gas production [TJ]
- TG : Town gas

i

: Feedstocks (COG, Kerosene, Refinery gas, LPG, LNG, Indigenous natural gas)

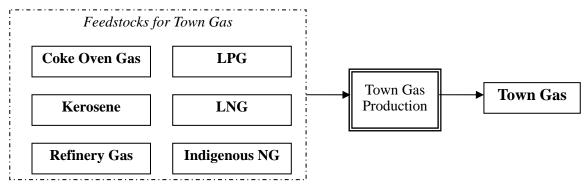


Figure 3-2 Manufacturing Flow for Town Gas

Town Gas Production		1990	1995	2000	2005	2006	2007	2008	Note
Input									
COG	Gg-C	211	134	105	22	0	0	0	a1
Kerosene	Gg-C	200	275	69	6	0	0	0	a2
Refinery Gas	Gg-C	186	199	186	145	101	95	88	a3
LPG	Gg-C	1,931	2,104	1,791	1,069	732	727	679	a4
LNG	Gg-C	6,253	9,107	11,642	16,563	18,594	19,774	19,378	a5
Indigenous NG	Gg-C	551	661	848	1,190	1,534	1,748	1,822	a6
Input Tota	al Gg-C	9,331	12,480	14,641	18,994	20,960	22,344	21,967	Α: Σ a
Output									
Town Gas	TJ	664,661	892,307	1,061,122	1,391,962	1,534,754	1,644,783	1,607,992	В
EF Town Gas	t-C/TJ	14.04	13.99	13.80	13.65	13.66	13.58	13.66	A/B

Table 3-4 Calculation of Emission Factors for Town Gas

> Oxidation factor

For each type of energy, country-specific oxidation factors were established considering the actual conditions of fuel combustion in Japan based on survey on related industrial groups, manufacturing corporations and experts.

Gaseous Fuels

Every result of measurement of soot concentration of boiler to generate powers in 2004 for gaseous fuels combustion shows that no soot was emitted; therefore, it is considered that gaseous fuels are completely combusted. The results of questionnaires also show that gaseous fuels are completely combusted. Hence, oxidation factor for gaseous fuels combustion was set to 1.0.

Fired condition	Provider	Survey
Complete combustion	The Federation for Electric Power	measurement of soot concentration of
	Companies Japan (FEPC)	boiler to generate powers in 2004

Table 3-5	Data of gaseous	fuel combustion
-----------	-----------------	-----------------

Liquid Fuels (Petroleum Fuels)

Carbon contained in liquid fuel is considered to be almost completely combusted; however, unburned fuel loss, about 0.5%, may occur depending on its fired condition. Because the data of actual measurement was not available, considering meticulous combustion management and smoke treatment in Japan, oxidation factor for liquid fuels combustion was set to 1.0.

Solid Fuels

Oxidation factor for solid fuels varies depending on fired condition, type of furnace, and coal property; therefore, it is quite difficult to obtain representational data set of actual measurement of unburned fuel loss. Meanwhile, almost all the unburned carbon generated during combustion in furnace is considered to be contained in coal ash. Coal ash is effectively utilized or landfilled. Carbon contained in coal ash which is used as raw material of cement is oxidized to CO_2 and emitted into the atmosphere during calcinations processes.

Average oxidation factor from 1990 to 2003 considering unburned carbon oxidized in firing process of coal ash eventually is 0.996, expressed as 3 significant digits. 2 significant digits are considered to be adequate in the view of other coefficients' accuracy; therefore, oxidation factor for solid fuels is set to 1.0 rounding off to two significant digits.

• Activity Data

The data given in the *General Energy Statistics* compiled by the Agency for Natural Resources and Energy were used for the activity data. The *General Energy Statistics* (Energy Balance Table) provides a comprehensive overview of domestic energy supply and demand to grasp what are converted from energy sources, such as coal, oil, natural gas and others, provided in Japan and what are consumed in what sectors. The objective of this *General Energy Statistics* is to help to quantitatively understand energy supply and demand and to make judgments about the situation, in addition to helping with planning for energy and environmental policy, and with measuring, assessing, and otherwise gauging policy effectiveness.

General Energy Statistics (Energy Balance Table) indicates an overview of domestic energy supply and demand, shows the main energy sources used in Japan as "Columns" and the supply, conversion and consumption sectors as "Rows", in a matrix. Specifically, columns comprise 11 major categories (coal, coal products, oil, oil products, natural gas, town gas, new and renewable energy, large-scale hydropower, nuclear power, electricity, and heat) and the necessary sub-categories and a more detailed breakdown of the sub-categories. Rows comprise 3 major sectors — primary energy supply (primary supply), energy conversion (conversion), and final energy consumption (final consumption) — plus the necessary sub-categories and a more detailed breakdown of the sub-categories.

In calculating the energy supply and demand amounts for *General Energy Statistics*, it is assumed that each energy source, such as gasoline or electricity, is homogeneous in terms of gross calorific value per original unit (MJ/kg, MJ/L, MJ/m³), and that homogeneous energy sources are supplied, converted,

Chapter 3. Energy

and consumed. Values for supply, conversion, and consumption in original units as determined from official statistical sources are multiplied by gross calorific value per original unit to obtain energy supply and demand amounts.

The calculation process in the General Energy Statistics is as follows:

- (1) Set calorific values and carbon emission factors.
- (2) Build energy supply and demand modules.
- (3) Prepare original unit tables (integrate modules and prepare main table and summary table) (units in t, kL, m³, etc).
- (4) Prepare energy unit tables (Units are J).
- (5) Prepare energy-derived carbon tables (given are carbon content).

General Energy Statistics adopts "actual calorific values" based on calculation based on annual official statistics for some fuel types which can be recalculated. For other fuel types which cannot be recalculated and whose composition is stable, "standard calorific values" based on relevant official statistics and document are adopted.

The complete Energy Balance Tables for the years since FY 1990 are available on the following internet site:

<u>http://www.enecho.meti.go.jp/info/statistics/jukyu/result-2.htm</u> (Japanese version only) Please refer to the simplified energy balance tables provided in Annex 2.

For the activity data for energy industries, the data reported in the following sectors in the *General Energy Statistics* were used: "Power Generation, General Electric Utilities" [#2110, codes in bracket indicate column and row number indicated in the *Interpretation of General Energy Statistics*] which reports energy consumption associated with electric power generation by electric power suppliers, and "Power Generation, Independent Power Producing" [#2150]; "District Heat Supply" [#2350] which provides energy consumption associated with heat energy and cold energy by thermal energy suppliers; "Own use, General Electric Utilities" [#2911] which reports energy consumption associated with captive (own) use of energy industries; "Own use, Independent Power Producing" [#2912]; "Own use, District Heat Supply" [#2913]; "Own use, Oil Refinery" [#2916]; "Own use, Town Gas" [#2914]; "Own Use, Steel Coke" [#2915]; and "Own use, Other Conversion" [#2917] (Numbers in parentheses indicate corresponding sector numbers in the *General Energy Statistics*).

Table 3-6 shows the correspondence between sectors of Japan's Energy Balance Table from the *General Energy Statistics* and those of the CRF.

	CRF		Japan's Energy Balance Table	
1A	1	Energy Industries		
			Power Genertion, General Electric Utilities	#2110
			Own use, General Electric Utilities	#2911
	1410	A1a Public Electricity and Heat Production	Power Genertion, Independent Power Producing	#2150
	IAIa		Own use, Independent Power Producing	#2912
			District Heat Supply	#2350
			Own use, District Heat Supply	#2913
	1A1b	Petroleum Refining	Own use, Oil Refinary	#2916
	1A1c	Manufacture of Solid Fuels and	Own use, Town Gas	#2914
			Own use, Steel Coke	#2915
		Other Energy Industries	Own use, Other Conversion	#2917

Table 3-6 Correspondence between sectors of Japan's Energy Balance Table and of the CRF (1.A.1)

➤ Gross calorific value

Gross calorific values used in Japan's Energy Balance Table (*General Energy Statistics*) are adopted. Table 3-7 shows trends in gross calorific value for each fuel type. Japan's Energy Balance Table (*General Energy Statistics*) is adopting actual calorific values based on calculation based on annual official statistics for some fuel types which can be recalculated. For other fuel types which cannot be recalculated and whose composition is stable, "standard calorific values" based on relevant official statistics and documents are adopted. The "standard calorific value" is revised once every about 5 years.

Chapter 3. Energy

	Table 3-7 Trends			value o		ier type			
Fuel		Unit	1990	1995	2000	2005	2006	2007	2008
	Steel Making Coal		31.81	31.81	28.90	29.00	29.00	29.00	29.00
	Coking Coal	MJ/kg	31.81	30.53	29.10	29.10	29.10	29.10	29.10
	PCI Coal	MJ/kg	31.81	30.53	28.20	28.20	28.20	28.20	28.20
	Imported Steam Coal	MJ/kg	25.95	25.95	26.60	25.70	25.70	25.70	25.70
Coal	Imported Coal : for general use	MJ/kg	25.95	25.95	26.60	25.70	25.70	25.70	25.70
ů	Imported Coal : for power generation	MJ/kg	24.92	26.13	26.39	25.49	25.62	25.52	25.27
	Indigenous Steam Coal	MJ/kg	24.28	24.28	22.50	22.50	22.50	22.50	22.50
	Underground	MJ/kg	24.28	24.28	23.20	23.20	23.20	23.20	23.20
	Open Pit	MJ/kg	18.70	18.70	18.70	18.70	18.70	18.70	18.70
	Hard Coal, Anthracite & Lignite	MJ/kg	27.21	27.21	27.20	26.90	26.90	26.90	26.90
s	Coke	MJ/kg	30.14	30.14	30.10	29.40	29.40	29.40	29.40
Coal Products	Coal Tar	MJ/kg	37.26	37.26	37.26	37.26	37.26	37.26	37.26
po	Coal Briquette	MJ/kg	23.90	23.90	23.90	23.90	23.90	23.90	23.90
I P1	Coke Oven Gas	MJ/m ³ N	21.51	21.57	21.27	21.42	21.38	21.28	21.20
oa	Blast Furnace Gas	MJ/m ³ N	3.51	3.59	3.64	3.41	3.41	3.41	3.41
0	Converter Furnace Gas	MJ/m ³ N	8.37	8.37	8.41	8.41	8.41	8.41	8.41
	Crude Oil for Refinery	MJ/l	38.34	38.27	38.22	38.11	38.11	38.13	38.15
Oil	Crude Oil for Power Generation	MJ/l	39.05	39.15	39.59	38.50	39.26	39.53	39.54
0	Bituminous Mixture Fuel	MJ/kg	30.06	30.31	29.86	22.44	22.44	22.44	22.44
	Natural Gas Liquid & Condensate	MJ/l	35.74	35.51	35.41	35.03	35.01	35.46	32.90
	Slack Gasoline	MJ/l	33.63	33.63	33.57	33.55	33.55	33.54	33.53
	Slack Kerosene	MJ/l	36.78	36.79	36.76	36.74	36.74	36.74	36.73
	Slack Diesel Oil or Gas Oil	MJ/l	38.56	38.59	38.58	38.57	38.56	38.57	38.56
	Slack Fuel Oil	MJ/l	41.82	41.77	41.79	41.77	41.78	41.81	41.83
	Cracked Gasoline	MJ/l	33.63	33.63	33.57	33.55	33.55	33.54	33.53
	Cracked Diesel Oil or Gas Oil	MJ/l	38.56	38.59	38.58	38.57	38.56	38.57	38.56
	Feedstock Oil for Refinery and Mixing	MJ/l	38.34	38.27	38.22	38.11	38.11	38.13	38.15
	Naphtha	MJ/l	33.63	33.63	33.57	33.55	33.55	33.54	33.53
	Reformed Material Oil	MJ/l	35.09	35.09	35.09	35.09	35.09	35.09	35.09
	Gasoline	MJ/l	34.57	34.61	34.60	34.59	34.58	34.58	34.57
	Premium Gasoline	MJ/l	35.09	35.09	35.09	35.09	35.09	35.09	35.09
6	Regular Gasoline	MJ/l	34.48	34.48	34.48	34.48	34.48	34.48	34.48
Oil Products	Jet Fuel	MJ/l	36.42	36.42	36.70	36.70	36.70	36.70	36.70
odı	Kerosene	MJ/l	36.78	36.79	36.76	36.74	36.74	36.74	36.73
Pr	Gas Oil or Diesel Oil	MJ/l	38.11	38.09	38.18	37.76	37.86	37.96	37.94
0il	Fuel Oil A	MJ/l	39.74	39.61	39.33	39.08	39.97	40.05	39.88
	Fuel Oil C	MJ/l	42.68	42.18	41.97	42.00	41.96	42.16	42.17
	Fuel Oil B	MJ/l	40.19	40.19	40.40	40.40	40.40	40.40	40.40
	Fuel Oil C	MJ/l	42.68	42.18	41.97	42.00	41.96	42.16	42.17
	Fuel Oil C for Power Generation	MJ/l	41.06	41.12	41.33	41.19	41.24	41.21	41.21
	Lublicating Oil	MJ/l	40.19	40.19	40.20	40.20	40.20	40.20	40.20
	Asphalt	MJ/kg	41.64	41.15	40.95	40.97	40.94	41.13	41.15
	Non Asphalt Heavy Oil Products	MJ/kg	41.64	41.15	40.95	40.97	40.94	41.13	41.15
	Oil Coke	MJ/kg	35.58	35.58	35.60	29.90	29.90	29.90	29.90
	Galvanic Furnace Gas	MJ/m ³ N	8.37	8.37	8.41	8.41	8.41	8.41	8.41
	Refinary Gas	MJ/m ³ N	39.35	39.35	44.90	44.90	44.90	44.90	44.90
	Liquified Petroleum Gas	MJ/kg	50.23	50.23	50.20	50.80	50.80	50.80	50.80
ş	Liquefied Natural Gas	MJ/kg	54.60	54.57	54.55	54.57	54.53	54.55	54.55
Natural Gas	Indigenous Natural Gas	MJ/m ³ N	42.09	42.39	42.55	42.87	43.57	44.61	44.71
Iral	Indigenous Natura l Gas	MJ/m ³ N	42.09	42.39	42.55	42.87	43.57	44.61	44.71
atu	Coal Mining Gas	MJ/m ³ N	36.00	36.00	16.70	16.70	16.70	16.70	16.70
Z	Off-gas from Crude Oil	MJ/m ³ N	42.09	42.39	42.55	42.87	43.57	44.61	44.71
z	Town Gas	MJ/m ³ N	41.86	41.86	41.10	44.80	44.80	44.80	44.80
Town Gas	Town Gas	MJ/m ³ N	41.86	41.86	41.10	44.80	44.80	44.80	44.80
нU	Small Scale Town Gas	MJ/m ³ N	100.50	100.50	100.50	100.50	100.50	100.50	100.50
L		, 1110/111 11							

Table 3-7 Trends in gross calorific value of each fuel type

[CH₄, N₂O]

• Estimation Method

Because it is possible to use fuel-specific, sector-specific and furnace-specific activity data, and also to set country-specific emission factors, CH_4 and N_2O emissions from fuel combustion in this category is calculated by using Tier 2 country-specific emission factors in accordance with the *1996 Revised IPCC Guidelines* and *Good Practice Guidance (2000)*. However, in residential and other sectors in which activity data for different furnace types cannot be used, Tier 1 IPCC default emission factors were used.

Estimation equation is as follows. Emissions were calculated by multiplying fuel-specific, furnace-specific and sector-specific activity data by fuel-specific and furnace-specific emission factors.

$$E = \sum \left(EF_{ij} \times A_{ijk} \right)$$

Е	: Emissions from combustion of fuel by stationary sources (kgCH ₄ , kgN ₂ O)
EF_{ij}	: Emission factor for fuel type i, furnace type j (kgCH ₄ /TJ, kgN ₂ O/TJ)
A _{ijk}	: Fuel consumption for fuel type i, furnace type j, sector k (TJ)
i	: Fuel type
j	: Furnace type
k	: Sector

• Emission Factors

Based on data obtained from surveys conducted in Japan (Table 3-9), chimney flue CH_4 , N_2O and O_2 concentrations, and the theoretical (dry) exhaust gas volumes, theoretical air volumes, and higher heating values shown in Table 3-8 were employed to establish emission factors for each kind of facility using the following combustion calculation formula.

$$EF = C_{CH_4,N_2O} \times \{G_0 + (m-1) \times A_0\} \times MW \div V_m \div GCV$$

EF	:	emission factor [kgCH ₄ /TJ, kgN ₂ O/TJ]
$C_{CH^4 \ or \ N^2O}$:	CH ₄ or N ₂ O concentration in exhaust gas [ppm]
G ₀ '	:	theoretical exhaust gas volume for each fuel combustion (dry) [m ³ N/ original unit]
A_0	:	theoretical air volume for each fuel combustion [m ³ N/ original unit]
m	:	air ratio \equiv actual air volume/ theoretical air volume (-)
MW	:	molecular of $CH_4(constant)=16 [g/mol]$ molecular of $N_2O(constant)=44 [g/mol]$
V_{m}	:	one mole ideal gas volume in standardized condition (constant)=22.4 [10 ⁻³ m ³ /mol]
GCV	:	gross calorific value for each fuel combustion [MJ/ original unit]

However, air ratio "m" is approximately provided with O_2 concentration in exhaust gas, as the equation below.

$$m = \frac{21}{21 - C_{O_2}}$$

 C_{O_2} : O_2 concentration in exhaust gas (%)

 CH_4 and N_2O emission factors by each fuel and furnace types were averaged after dividing emission factor of each kind of facilities according to fuel and furnace types (Table 3-10, Table 3-11). Anomalous values were excluded according to t-testing or expert opinion when calculating average values.

For CH_4 and N_2O emissions from electric arc furnaces, combustion calculation was carried out using measurement results for CH_4 and N_2O concentrations in exhaust gas, dry exhaust gas volume per unit time, and calorific value per unit time.

Fuel type	Fixed unit	Theoretical exhaust gas volume (dry) m ³ _N /l,kg,m ³ N	Higher heating value kJ/l,kg,m ³ N,kWh	Theoretical air volume m ³ _N /l,kg,m ³ N	Remarks
Fuel oil A	1	8.900	39,100	9.500	1
Fuel oil B	1	9.300	40,400	9.900	1
Fuel oil C	1	9.500	41,700	10.100	1
Diesel oil	1	8.800	38,200	9.400	1
Kerosene	1	8.400	36,700	9.100	1
Crude oil	1	8.747	38,200	9.340	1
Naphtha	1	7.550	34,100	8.400	1
Other liquid fuels	1	9.288	37,850	9.687	2
Other liquid fuels (heavy)	1	9.064	37,674	9.453	2
Other liquid fuels (light)	1	9.419	35,761	9.824	2
Steam coal	kg	7.210	26,600	7.800	1
Coke	kg	7.220	30,100	7.300	1
Harvested wood	kg	3.450	14,367	3.720	2
Charcoal	kg	7.600	30,500	7.730	3
Other solid fuels	kg	7.000	33,141	7.000	2
Town gas	m ³	9.850	46,047	10.949	2
Coke oven gas (COG)	m ³	4.500	21,100	4.800	1
Blast furnace gas (BFG)	m ³	1.460	3,410	0.626	1
Liquefied natural gas (LNG)	kg	11.766	54,500	13.093	1
Liquefied petroleum gas (LPG)	kg	11.051	50,200	12.045	1
Linz-Donawitz (LD) gas	m ³	2.200	8,410	1.500	1
Refinery gas (offgas)	m ³	11.200	44,900	12.400	1
Other gaseous fuels	m ³	4.587	28,465	4.096	2
Other gaseous fuels (petroleum)	m ³	7.889	40,307	7.045	2
Other gaseous fuels (steel)	m ³	2.812	19,097	2.511	2
Other gaseous fuels (mining)	m ³	3.396	38,177	3.032	2
Other gaseous fuels (other)	m ³	4.839	23,400	4.321	2
Pulping waste liquor	kg	3.245	13,898	3.499	2
Electricity	kWh		3,600		1

Table 3-8 Theoretical exhaust gas and air volumes, higher heating value for different fuels

Note 1: Theoretical exhaust gas and air volumes are the standard values given in the Ministry of the Environment's *General Survey of the Emissions of Air Pollutants*, except for town gas, LNG and LPG, for which values calculated from constituent data were used. For town gas, the constituents of town gas 13A were considered to be representative. Regarding higher heating value, standard calorific values given in General Energy Statistics were used for items marked 1, and standard values given in the *General Survey of the Emissions of Air Pollutants* (based on the 1992 survey) for items marked 2 in the Remarks column. The higher heating value for steam coal (imported) was used for the higher heating value of steam coal. The item marked 3 in the Remarks column was set by the 2005 Committee based on reference materials etc.

	Table 3-9 References for measurement data used in establishment of emission factors
	References
1	Hokkaido Prefecture, Report of GHG Emissions Intensity from Stationary Combustion, 1991
2	Hyogo Prefecture, Report of GHG Emissions Intensity from Stationary Combustion, 1991
3	Osaka Prefecture, Study of GHG Emissions Intensity from Stationary Combustion, 1991
4	Hokkaido Prefecture, Report of GHG Emissions Intensity from Stationary Combustion, 1992
5	Hyogo Prefecture, Report of GHG Emissions Intensity from Stationary Combustion, 1992
6	City of Kitakyusyu, Report of GHG Emissions Intensity from Stationary Combustion, 1992
7	Hyogo Prefecture, Study of GHG Emission Factors from Stationary Combustion, 1993
8	Hyogo Prefecture, Report of GHG Emissions Intensity from Stationary Combustion, 1994
9	Kanagawa Prefecture, Study of GHG Emission Factors from Stationary Combustion, 1995
10	Niigata Prefecture, Study of GHG Emission Factors from Stationary Combustion, 1995
11	Osaka Prefecture, Study of GHG Emission Factors from Stationary Combustion, 1995
12	Hiroshima Prefecture, Study of GHG Emission Factors from Stationary Combustion, 1995
13	Fukuoka Prefecture, Report of GHG Emission Factors from Stationary Combustion, 1995
14	City of Osaka, Study of GHG Emission Factors from Stationary Combustion, 1995
15	City of Kobe, Study of GHG Emission Factors from Stationary Combustion, 1995
16	Hokkaido Prefecture, Study of GHG Emission Factors from Stationary Combustion, 1996
17	Ishikawa Prefecture, Study of GHG Emission Factors from Stationary Combustion, 1996
18	Kyoto Prefecture, Study of GHG Emission Factors from Stationary Combustion, 1996
19	Osaka Prefecture, Study of GHG Emission Factors from Stationary Combustion, 1996
20	Hyogo Prefecture, Study of GHG Emission Factors from Stationary Combustion, 1996
21	Hiroshima Prefecture, Study of GHG Emission Factors from Stationary Combustion, 1996
22	Fukuoka Prefecture, Report of GHG Emission Factors from Stationary Combustion, 1996
23	Kyoto Prefecture, Report of GHG Emission Factors from Stationary Combustion, 1997
24	Hyogo Prefecture, Study of GHG Emission Factors from Stationary Combustion, 1997
25	Fukuoka Prefecture, Report of GHG Emission Factors from Stationary Combustion, 1997
26	Japan Sociality Atmospheric Environment, Reports on Greenhouse gas emissions
	estimation methodology, 1996
27	Osaka Prefecture, Study of GHG Emission Factors from Stationary Combustion, 1999
28	Hyogo Prefecture, Report of GHG Emission Factors from Stationary Combustion, 2000
29	The Institute of Applied Energy, Report for Trend of Fuel Quality in Lowering
	Environmental Atmospheric Quality, 2000
30	Measurement Data prepared by Committee for the Greenhouse Gases Emissions
	Estimation Methods in FY1999
31	Data prepared by the Federation of Electric Power Companies of Japan
32	IPCC, Revised 1996 IPCC Guidelines (Reference Manual), 1997
•	

Table 3-9 References for measuremen	t data used in establishment	of emission factors
-------------------------------------	------------------------------	---------------------

Furnace type	Fuel type	Emission factor	Remarks
Boiler	Fuel oils B and C, crude oil	0.10	Average of 9 facilities
Boiler	Fuel oil A, diesel oil, kerosene, naphtha, other liquid fuels	0.26	Average of 2 facilities
Boiler	Gaseous fuel	0.23	Average of 5 facilities
Boiler	Steam coal, coke, other solid fuels	0.13	Average of 7 facilities
Boiler	Harvested wood, charcoal	75	Average of 4 facilities
Boiler	Pulping waste liquor	4.3	Average of 2 facilities
Sintering furnace for smelting of metals (except copper, lead, zinc)	Solid fuel, liquid fuel, gaseous fuel	31	Average of 6 facilities
Palletizing furnace (steel and non-ferrous metal)	Solid fuel, liquid fuel, gaseous fuel	1.7	Average of 2 facilities
Metal rolling furnace, metal treating furnace, metal forging furnace	Liquid fuel, gaseous fuel	0.43	Average of 11 facilities
Petroleum and gas furnaces	Liquid fuel, gaseous fuel	0.16	Average of 27 facilities
Catalytic regenerator	Coke, carbon	0.054	Average of 11 facilities
Brick kiln, ceramic kiln, and other kiln	Solid fuel, liquid fuel, gaseous fuel	1.5	Average of 2 facilities
Aggregate drying kiln, cement raw material drying kiln, brick raw material drying kiln	Solid fuel, liquid fuel, gaseous fuel	29	Average of 6 facilities
Other drying kilns	Solid fuel, liquid fuel, gaseous fuel	6.6	Average of 8 facilities
Electric arc furnace	Electricity	13	Average of 6 facilities
Other industrial furnaces	Solid fuel	13	Average of 14 facilities
Other industrial furnaces	Liquid fuel	0.83	Average of 14 facilities
Other industrial furnaces	Gaseous fuel	2.3	Average of 6 facilities
Gas turbine	Liquid fuel, gaseous fuel	0.81	Average of 11 facilities
Diesel engine	Liquid fuel, gaseous fuel	0.70	Average of 8 facilities
Gas engine, petrol engine	Liquid fuel, gaseous fuel	54	Average of 6 facilities
Household equipment	Solid fuel	290	IPCC default value converted to higher heating value
Household equipment	Liquid fuel	9.5	IPCC default value converted to higher heating value
Household equipment	Gaseous fuel	4.5	IPCC default value converted to higher heating value
Household equipment	Biomass fuel	290	IPCC default value converted to higher heating value

Table 3-10 CH₄ emission factors for different fuels and furnaces (unit: kg-CH₄/TJ)

Furnace type	Fuel type	Emission factor	Remarks
Boiler	Fuel oils B and C, crude oil	0.22	Average of 10 facilities
Boiler	Fuel oil A, diesel oil, kerosene, naphtha, other liquid fuels	0.19	Average of 2 facilities
Boiler	Gaseous fuel	0.17	Average of 5 facilities
Boiler (other than fluidized bed boilers)	Solid fuel	0.85	Average of 9 facilities
Normal pressure fluidized bed boiler	Solid fuel	54	Average of 11 facilities
Pressurized fluidized bed boiler	Steam coal	5.2	Data from 1 facility
Boiler	Pulping waste liquor	0.17	Average of 2 facilities
Blast furnace	Coke oven gas, blast furnace gas, other gaseous fuel	0.047	Average of 2 facilities
Petroleum furnace, gas furnace	Liquid fuel, gaseous fuel	0.21	Average of 27 facilities
Catalytic regenerator	Coke, carbon	7.3	Average of 12 facilities
Electric arc furnace	Electricity	3.3	Average of 6 facilities
Coke oven	Town gas, coke oven gas, blast furnace gas, converter gas, offgas, other gaseous fuels	0.14	Average of 3 facilities
Other industrial furnace	Solid fuel	1.1	Average of 20 facilities
Other industrial furnace	Liquid fuel	1.8	Average of 31 facilities
Other industrial furnace	Gaseous fuel	1.2	Average of 18 facilities
Gas turbine	Liquid fuel, gaseous fuel	0.58	Average of 12 facilities
Diesel engine	Liquid fuel, gaseous fuel	2.2	Average of 9 facilities
Gas engine, petrol engine	Liquid fuel, gaseous fuel	0.85	Average of 7 facilities
Household equipment	Solid fuel	1.3	IPCC default value converted to higher heating value
Household equipment	Liquid fuel	0.57	IPCC default value converted to higher heating value
Household equipment	Gaseous fuel	0.090	IPCC default value converted to higher heating value
Household equipment	Biomass fuel	3.8	IPCC default value converted to higher heating value

Table 3-11 N₂O emission factors for different fuels and furnaces (unit: kg-N₂O/TJ)

Activity Data

The data are estimated in the General Survey of the Emissions of Air Pollutants which provides details on fuel consumption for each type of furnaces and fuels, because stationary combustion fuel consumption data for the each type of furnaces are not available in the *General Energy Statistics*, Fuel consumption by each sector (Energy Conversion, Industry, Commercial & Others, and Residential) for each type of fuels as presented in the *General Energy Statistics* was further divided among each furnace types proportionally to fuel consumption data in the General Survey of the Emissions of Air Pollutants to obtain the activity data for each sector, each fuel type and each furnace type. However, because fuel consumption data of pressurized and normal pressure fluidized-bed furnaces on General Survey of the Emissions of Air Pollutants are not able to be identified from that of other boilers, fuel consumption of fluidized-bed furnaces are calculated separately. Fuel consumption data of pressurized fluidized-bed furnace were provided by Federation of Electric Power Companies. Fuel consumption data of normal pressure fluidized-bed furnace were provided furnaces since 1990.

The data of solid fuel boilers excepted for fluidized-bed furnaces are estimated by subtracting the data of fluidized-bed furnace from the data of whole solid fuel boiler.

The exhaustive General Survey of the Emissions of Air Pollutants for all facilities emitting soot and smoke were carried out in fiscal 1992, 1995, 1996, and 1999. For years in which exhaustive General Survey of the Emissions of Air Pollutants were not carried out, the percentages of fuel consumption accounted for by each furnace type were interpolated using the data obtained in the years exhaustive survey carried out.

The procedure for calculating activity data is as follows:

1) Fuel consumption data from the General Survey of the Emissions of Air Pollutants is collated respectively for each fuel type, furnace type and sector.

2) The percentage of fuel consumption accounted for by each furnace type is calculated for each fuel type and sector.

3) Fuel consumption for different fuel types and sectors provided in the General Energy Statistics is multiplied by the percentage calculated in (2) to obtain fuel-specific, furnace-specific, and sector-specific activity data.

$$A_{ijk} = A_{EBik} \times_{W_{ijk}}$$

A _{ijk}	: Activity data for fuel type i, furnace type j, sector k (TJ)
A_{EBik}	: Fuel consumption for fuel type i, sector k from General Energy Statistics (TJ)
w _{ijk}	: Ratio of furnace type j associated with consumption of fuel type i in sector k
i	: Fuel type
j	: Furnace type
k	: Sector

$$w_{ijk} = A_{MAPijk} \swarrow \sum_{m} A_{MAPimk}$$

A_{MAPijk} : Fuel consumption for fuel type i, furnace type j, sector k according to General Survey of the Emissions of Air Pollutants (TJ)

4) The fuel-specific, furnace-specific, and sector-specific fuel consumption in the General Survey of the Emissions of Air Pollutants is used as activity data for the consumption of fuels (such as charcoal) not included in the General Energy Statistics, and furnaces for which General Energy Statistics fuel consumption data cannot be used (in specific terms, electricity consumption of electric arc furnaces and carbon fuels of catalytic regenerators).

5) In the residential sector, fuel consumption for different fuel types provided in the General Energy Statistics is used as activity data.

The N_2O emissions from solid fuel in 1.A.1.a (Public Electricity and Heat Production) increased between 1994 and 1995. The reason for the increase is that a new large sized fluidized-bed boiler for power generation went on line in 1995. As a result, the solid fuel consumption of fluidized-bed boiler for public power generation increased in 1995, resulting in an increase of N_2O emissions from solid fuel in this category.

➤ Outline of the General Survey of the Emissions of Air Pollutants

The General Survey of the Emissions of Air Pollutants is a statistical survey conducted to (1) promote reasonable and effective atmospheric environmental policy, (2) obtain information on current activities within the context of the Air Pollutant Control Law (e.g., the current status of regulation of

stationary sources that emit soot and smoke in facilities that are registered to a local government and in facilities that emit ordinary soot or particular soot, and the current status of air pollutant control), (3) develop the submitted data on facilities emitting soot and smoke, and (4) estimate the amounts of air pollutant emissions from facilities that emit soot and smoke. This survey is conducted with survey questionnaires. The response sheets and this survey's explanations are distributed to target facilities mentioned above.

c) Uncertainties and Time-series Consistency

• Uncertainties

$\begin{bmatrix} CO_2 \end{bmatrix}$

Carbon-Hydrogen ratio of hydrocarbons is strongly correlating with calorific value in theory, then, standard deviation of sample data of each fuel's calorific value are used for uncertainty assessment of emission factors based on assumption that deviation of carbon content and that of calorific value is equal. The uncertainty of energy consumption in TJ given in the *General Energy Statistics* was assessed based on the given statistical error of solid fuels, liquid fuels, and gaseous fuels. As a result, the uncertainty for emissions was determined to be 1% for CO₂ emissions from fuel combustion. A summary of uncertainty assessment methods is provided in Annex 7.

$[CH_4, N_2O]$

The uncertainties for emission factors were evaluated on the basis of applied statistical procedures, expert judgment, and default data for each energy type. The uncertainties of activity data were estimated by using standard deviation and the percentage of data collection indicated in General Survey of the Emissions of Air Pollutants. The uncertainties for emissions from fuel combustion were estimated to be 47% for CH_4 emissions and 33% for N_2O emissions. A summary of uncertainty assessment methods are provided in Annex 7.

• Time-series Consistency

The emissions were calculated in a consistent manner in all time series.

The same carbon emission factors have been used from FY 1990 to the current year as discussed in the Emission Factors section, with the exception of blast furnace gas and town gas. These emission factors have been calculated by a consistent estimation method in all time series.

The emission factors for CH_4 and N_2O have been calculated by a consistent estimation method since FY 1990.

The activity data was used from data in *General Energy Statistics* in all time series, and the statistics are made by a consistent estimation method in all time series.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)*. The QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. Details of the QA/QC activities are provided in Annex 6.

e) Source-specific Recalculations

GHG emissions in FY 2007 were recalculated with the revision of the fuel consumption in FY 2007 *General Energy Statistics*.

 CO_2 emissions from LPG since FY 2005 were recalculated due to the revision of the emission factor of LPG following the revision of the gross calorific value for each fuel type reported in the FY 2005 *General Energy Statistics*. CO_2 emissions from small scale town gas since FY 2005 were recalculated because of the revision of the emission factor to which the emission factor of LPG is applied. CO_2 emissions from town gas since FY 2005, its emission factor was established with annually calculated value in order to keep carbon balance, were recalculated because of the revision of the emission factor of LPG which is used as raw material for town gas.

 N_2O emissions from normal pressure fluidized-bed furnace (boiler) since FY 1990 were recalculated, because of changed estimation method for solid fuel consumption to statistical value from estimated figure.

f) Source-specific Planned Improvements

The use of fuel consumption data in the General Survey of the Emissions of Air Pollutants for FY 2002 onward was prohibited for any purposes other than the original one specified for the General Survey of the Emissions of Air Pollutants, while that is not the case with the data in the General Survey of the Emissions of Air Pollutants for FY 1999 and earlier years. The use of General Survey of the Emissions of Air Pollutants in the GHG inventory was added to the purpose of the General Survey of the Emissions of Air Pollutants by the current examination toward the reuse of the General Survey of the Emissions of Air Pollutants and was recently officially accepted. Japan will keep consider applying the latest the General Survey of the Emissions of Air Pollutants of the Emissions of Air Pollutants and was recently officially accepted.

3.2.2. Manufacturing Industries and Construction (1.A.2)

a) Source/Sink Category Description

This category provides the estimation methods for determining CO_2 emissions from Iron and Steel (1.A.2.a); Non-ferrous Metals (1.A.2.b); Chemicals (1.A.2.c); Pulp, Paper, and Print (1.A.2.d); Food Processing, Beverages, and Tobacco (1.A.2.e); and Other (1.A.2.f).

b) Methodological Issues

• Estimation Method

See Section 3.2.1 b) (1.A.1).

• Emission Factors

See Section 3.2.1 b) (1.A.1).

• Activity Data

The data presented in *General Energy Statistics* were used for activity data, as was the case for the Energy Industry (1.A.1).

Activity data for manufacturing industry sectors were calculated by totaling energy consumption from production activities in factories and offices (final energy consumption), energy consumption related to non-utility power generation for use in one's own factories and offices (non-utility power generation), and energy consumption related to steam production for use in own factories and offices (industrial steam) shown in *General Energy Statistics*. Because the energy consumption for production activities in factories and offices contained a certain amount used as raw materials (non-energy use),

this amount was subtracted.

The non-utility power generation and industrial steam generation sectors are included in the energy conversion sector in *General Energy Statistics*. However, the *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories* allocates CO_2 emissions from energy consumption for power or steam generation to the sectors generating that power or steam. As such, these CO_2 emissions are added to those from each industry in the final energy consumption sector and are provided in 1.A.2.

The IEF of CO_2 emissions from liquid fuels in 1.A.2.f (Other) decreases between 1997 and 1998, and increases between 1998 and 1999 because of revisions made to statistics on the manufacturing sector. The manufacturing sector data in Japan's Energy Balance Table (*General Energy Statistics*), the activity data, are based on the Ministry of Economy, Trade and Industry's Yearbook of the Current Survey of Energy Consumption. Subjects to be surveyed to obtain the data for the Yearbook of the Current Survey of Energy Consumption were changed in December, 1997. The survey for the industries of Dyeing, Rubber Product and Non-ferrous metal Product has been discontinued since 1998. Also, since 1998, business institutions or designated items to be surveyed for the industries of Chemicals, Cement & Ceramics, Glass Wares, Iron and Steel, Non-ferrous Metals and Machinery has been changed. For these reasons, and the IEF of CO_2 emissions from liquid fuels in 1.A.2.f (Other) changed. The details are documented and described in Annex.2.

Table 3-12 shows correspondence between sectors of Japan's Energy Balance Table and of the CRF (1.A.2).

Chapter 3. Energy

	CRF	Japan's Energy Balance Table	
2	Manufacturing Industries and		
۵ 	Construction		
	Iron and Steel	Auto: Iron & Steel	#22
1A2a		Steam Generation: Iron & Steel	#23
		Final Energy Consumption, Iron & Steel	#65
		Non-Energy, Iron & Steel	#96
		Auto: Non-Ferrous Metal	#22
1A2b	Non-Ferrous Metals	Steam Generation: Non-Ferrous Metal	#23
11120	Non-rentous Metais	Final Energy Consumption, Non-Ferrous Metal	#6
		Non-Energy, Non-Ferrous Metal	#9
		Auto: Chemical Textiles	#2:
		Steam Generation: Chemical Textiles	#2
	Chemicals	Final Energy Consumption, Chemical Textiles	#6
1A2c		Non-Energy, Chemical Textiles	#9
		Auto: Chemical	#2:
		Steam Generation: Chemical	#23
		Final Energy Consumption, Chemical	#6
		Non-Energy, Chemical	#9
	Pulp, Paper and Print	Auto: Pulp & Paper	#2
1A2d		Steam Generation: Pulp & Paper	#2
		Final Energy Consumption, Pulp & Paper	#6
		Non-Energy, Pulp & Paper	#9
	Food Processing, Beverages and	Final Energy Consumption, Food	#6
1A2e	Tobacco	Non-Energy, Non-Manufacturing Industry (Food)	#9
	Other		
	Mining	Final Energy Consumption, Mining	#6
		Non-Energy, Non-Manufacturing Industry (Mining)	#9
	Construction	Final Energy Consumption, Construction	#6
		Non-Energy, Non-Manufacturing Industry (Construction)	#9
		Auto: Oil products	#2
	Oil Products	Steam Generation: Oil products	#2
		Final Energy Consumption, Oil products	#6
		Non-Energy, Oil products	#9
	Class Wards	Auto: Glass Wares	#2
		Steam Generation: Glass Wares	#2
	Glass Wares	Final Energy Consumption, Glass Wares	#6
1 4 9 5		Non-Energy, Glass Wares	#9
1A2f	Cement&Ceramics	Auto: Cement & Ceramics	#2
		Steam Generation: Cement & Ceramics	#2
		Final Energy Consumption, Cement & Ceramics	#6
		Non-Energy, Cement & Ceramics	#9
	Machinery	Auto: Machinery & Others	#2
		Steam Generation: Machinery & Others	#2
		Final Energy Consumption, Machinery	#6
		Non-Energy, Machinery	#9
	Duplication Adjustment	Auto: Duplication Adjustment	#2
		Steam Generation: Duplication Adjustment	#2
		Final Energy Consumption, Duplication Adjustment	#6
		Non-Energy, Duplication Adjustment	#9
	Other Industries & SMEs	Auto: Others	#2:
		Final Energy Consumption, Other Industries & SMEs	#69
		Non-Energy, Other Industries & SMEs	#97

Table 3-12 Correspondence between sector	of Japan's Energy Balance Table and of t	he CRF (1.A.2)
--	--	----------------

c) Uncertainties and Time-series Consistency

See Section 3.2.1 c).

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)*. The QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. Details of the QA/QC activities are provided in Annex 6.

e) Source-specific Recalculations

See Section 3.2.1 e).

f) Source-specific Planned Improvements

See Section 3.2.1 f)

3.2.3. Mobile Combustion (1.A.3.:CO₂)

a) Source/Sink Category Description

This category provides the methods used to estimate CO_2 emissions from Civil Aviation (1.A.3.a), Road Transportation (1.A.3.b), Railways (1.A.3.c), and Navigation (1.A.3.d).

b) Methodological Issues

Estimation Method

See Section 3.2.1 b).

Because CO_2 emissions from natural gas-powered vehicles and steam locomotives include Commercial /Institutional section in Other Sectors (1.A.4), CO_2 emissions from these source are reported as "IE."

Emission Factors

See Section 3.2.1 b).

The carbon emission factor for liquid fuels (diesel oil) in 1.A.3.b (Road Transportation) is the lowest in Annex I Parties for two reasons. One is because the quality standard for diesel oil in Japan is different from other countries. Crude oil with high sulphur content imported from Middle East must be decomposed and go through ultradeep desulfurization to be low-sulphur diesel oil (<10ppm) according to Japanese automobile exhaust gas regulations. The other reasons is because gas oil used for purposes other than road transport is called "Fuel oil A" to distinguish it from diesel oil. The carbon balance of Japanese petroleum refineries including diesel oil and Fuel oil A nearly matches according to statistics, so these carbon emission factors are not irregular.

• Activity Data

The data given in the General Energy Statistics were used for activity data.

Values subtracting final energy consumption reported under 'Non-energy' [#9850] from energy consumption reported under 'Civil Aviation' [#8140] [#8540], 'Road Transportation' [#8110] [#8510] [#8115] [#8190] [#8590], 'Railways' [#8120] [#8520] and 'Navigation' [#8130] [#8530]in Japan's Energy Balance Table (*General Energy Statistics*) are used for activity data. Because energy consumption reported under 'Non-energy' was used for the purposes other than combustion and was considered not emitting CO₂, these values were deducted. (see Table 3-13)

CRF		Japan's Energy Balance Table	
.3	Transport		
	Civil Aviation	Final Energy Consumption, Passenger Air	#814
1A3a		Final Energy Consumption, Freight Air	#854
		Non-Energy, Transportation (Air)	#98 5
	Road Transportation	Final Energy Consumption, Passenger Car	#81
		Final Energy Consumption, Freight Freight, Truck & Lorry	#85
		Final Energy Consumption, Passenger Bus	#81
1A3b		Final Energy Consumption, Passenger, Transportation fraction	#81
		estimation error	
		Final Energy Consumption, Freight, Transportation fraction estimation error.	#85
		Non-Energy, Transportation (Car, Truck & Lorry, Bus)	#98
1A3c	Railways	Final Energy Consumption, Passenger Rail	#81
		Final Energy Consumption, Freight Rail	#85
		Non-Energy, Transportation (Rail)	#98
	Navigation	Final Energy Consumption, Passenger Ship	#81
1A3d		Final Energy Consumption, Freight Ship	#85
		Non-Energy, Transportation	#98
1A3e	Other Transportation	-	-

Table 3-13 Correspondence between sectors of Japan's Energy Balance Table and of the CRF (1.A.3)

c) Uncertainties and Time-series Consistency

See Section 3.2.1 c).

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)*. The QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. Details of the QA/QC activities are provided in Annex 6.

e) Source-specific Recalculations

GHG emissions in FY 2007 were recalculated due to the revision of the fuel consumption in FY 2007 in *General Energy Statistics*.

CO₂ emissions from LPG since FY 2005 were recalculated due to the revision of the emission factor of LPG with the revision of the gross calorific value for each fuel type since FY 2005 reported in the *General Energy Statistics*.

f) Source-specific Planned Improvements

There are no major planned improvements in this source category.

3.2.4. Mobile Combustion (1.A.3.:CH₄, N₂O)

This section provides the estimation methods for CH_4 and N_2O emissions from Mobile Combustion from Civil Aviation (1.A.3.a), Road Transportation (1.A.3.b), Railways (1.A.3.c), and Navigation (1.A.3.d).

3.2.4.1. Civil Aviation (1.A.3.a.)

a) Source/Sink Category Description

This section provides the estimation methods for CH_4 and N_2O emissions from energy consumption in civil aviation. Greenhouse gases associated with the domestic operation of Japanese airliners are mainly emitted from jet fuels. In addition, a small amount of aviation gasoline used by light aircraft and helicopters is also a source of CH_4 and N_2O emission.

b) Methodological Issues

• Estimation Method

Emissions have been calculated using the Tier 2a method for jet fuel and the Tier 1 for aviation gasoline, in accordance with Decision Tree of the *Good Practice Guidance (2000)* (Page 2.58, Fig. 2.7).

<u>Methane and nitrous oxide emissions associated with landing and take-off (LTO) of domestic airliners using jet</u> <u>fuel</u>

= Emission factor per LTO 1 cycle per domestic airliner × Number of LTO cycles of aircraft in domestic routes

<u>Methane and nitrous oxide emissions from domestic airliner during cruising using jet fuel</u> = Emission factor associated with jet fuel consumption × Jet fuel consumption by aircraft during cruising in domestic routes

<u>Methane and nitrous oxide emission associated with flight of gasoline-powered domestic aircraft</u> = Emission factor associated with consumption of aviation gasoline \times Consumption of aviation gasoline by aircraft in domestic routes

• Emission Factors

➤ Jet fuel

The default values given in the *Revised 1996 IPCC Guidelines* are used for emission factors for CH_4 and N_2O for LTO. The values used for emission factors for CH_4 and N_2O for cruising were calculated by converting the default values given in the *Revised 1996 IPCC Guidelines* into kg-CH₄/l using the specific gravity of jet fuel (0.78 t/kl). The following table provides the emission factors for CH_4 and N_2O at LTO and cruising.

Aviation gasoline

The default values given in the *Revised 1996 IPCC Guidelines* are used for emission factors for CH_4 and N_2O .

		CH_4	N ₂ O
jet aircraft	During takeoff and landing*	0.3 [kg-CH ₄ /LTO]	0.1 [kg-N ₂ O/LTO]
(Jet fuel)	During flight	0 [kg-CH ₄ /kl]	0.078 [kg-N ₂ O/kl]
Other than jet aircraft (Aviation gasoline)	-	0.06 [g-CH ₄ /MJ]	0.0009 [g-N ₂ O/MJ]

Table 3-14 CH₄ and N₂O emission factors for aircraft

* LTO=Landing/takeoff cycle

Source: Ministry of the Environment, Results of Review of Greenhouse Gases Emissions Estimations Part 3 (August 2002). Revised 1996 IPCC Guidelines, Volume 3, Table I-47

Activity Data

➤ Jet fuel

The number of takeoffs and landings given in the Statistical Yearbook of Air Transport of the Ministry

of Land, Infrastructure, Transport and Tourism is used as activity data at takeoff and landing. Fuel Consumption for takeoff and landing was calculated by multiplying fuel consumption for one takeoff or landing given in the IPCC/OECD guidelines, by the number of takeoffs and landings given above.

Fuel consumption for cruising was estimated by subtracting the amount of jet fuel consumed at takeoff and landing, from total jet fuel consumption calculated from the *Statistical Yearbook of Air Transport* of Ministry of Land, Infrastructure, Transport and Tourism.

Aviation gasoline

Consumption (converted into net calorific value) of gasoline in airplane sector taken from the *General Energy Statistics* of the Agency for Natural Resources and Energy was used for activity data.

	······································										
Item	Unit	1990	1995	2000	2005	2006	2007	2008			
number of LTO cycle	LTO	430,654	532,279	667,559	715,767	742,123	741,430	726,415			
Jet fuel comsumption of Cruise	kl	2,330,514	3,223,547	3,537,205	3,543,856	3,675,250	3,560,400	3,334,851			
Gasoline comsumption	kl	5,345	6,029	4,287	7,662	8,157	4,184	2,589			

Table 3-15 Activity Data used for estimation of emissions from aircraft

c) Uncertainties and Time-series Consistency

• Uncertainties

As the uncertainty of emission factors, default values given in the *Good Practice Guidance (2000)* (200% for CH_4 and 10,000% for N_2O) were applied. The uncertainty of activity data was 10%; determined as a standard value by the Committee for the Greenhouse Gas Emission Estimation Methods. As a result, the uncertainties for the emissions were determined to be 200% for CH_4 and 10,000% for N_2O . The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Emission factors were used same values since FY 1990. Activity data for jet fuel from the *Statistical Yearbook of Air Transport* and aviation gasoline from the *General Energy Statistics* have been used consistently since FY 1990.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)* methods. Tier 1 QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. QA/QC activities are summarized in Annex 6.

e) Source-specific Recalculations

No recalculations were performed.

f) Source-specific Planned Improvements

No improvements are planned.

3.2.4.2. Road Transportation (1.A.3.b.)

Emissions from automobiles in Japan are calculated for the following vehicle categories:

Vehicle Type	Definition	Fuel type	e for emiss	sion repo	orting
venicie Type	Definition	Gasoline	Diesel	LPG	LNG
Light passenger vehicle	Light vehicle used for transportation of people.	0	-	_	—
Light cargo truck	Light vehicle used for transportation of cargo	0	_	-	—
Passenger vehicle	Regular passenger vehicle or small vehicle used for transportation of people, with a capacity of 10 persons or less.	0	0	0	_
Bus	Regular passenger vehicle or small vehicle used for transportation of people, with a capacity of 11 persons or more.	0	0	_	_
Small cargo truck	Small vehicle used for transportation of cargo.	0	0	_	—
Regular cargo truck	Regular vehicle used for transportation of cargo.	0	0	—	—
Special-purpose vehicle Regular, small or light vehicle used for special purposes, including flushers, advertising vans, hearses, and others.		0	0	_	_
NPG vehicle	Any of the above vehicles that use natural gas as fuel.	_	_	_	0
Motorcycle	Two-wheeled vehicle	0	_	_	—

Table 3-16 Reporting categories and definitions of emissions from automobiles

Different estimation methods are used for the categories of Light Passenger Vehicles, Light Cargo Trucks, Passenger Vehicles, Buses, Small Cargo Trucks, Regular Cargo Trucks, and Special-purpose Vehicles (3.2.4.2.a), Natural gas-powered Vehicles (3.2.4.2.b), and Motorcycles (3.2.4.2.c). Thus, they are described in the following sections.

3.2.4.2.a. Light Passenger Vehicles, Light Cargo Trucks, Passenger Vehicles, Buses, Small Cargo Trucks, Regular Cargo Trucks, and Special-purpose Vehicles

a) Source/Sink Category Description

This section provides the estimation methods for CH_4 and N_2O emissions from light passenger vehicles, light cargo trucks, passenger vehicles, buses, small cargo trucks, regular cargo trucks, and special-purpose vehicles.

b) Methodological Issues

• Estimation Method

Emissions have been calculated distance travel per type of vehicle by emission factors using the Tier 3 method, in accordance with Decision Tree of the *Good Practice Guidance (2000)* (Page 2.45, Fig. 2.5). The country-specific emission factors were used for some category of vehicle, and the default emission factors were used for the other category of vehicle. The activity data was estimated by using running mileage and fuel efficiency which were provided from the Ministry of Land, Infrastructure, Transport and Tourism's *Statistical Yearbook of Motor Vehicle Transport*.

• Emission Factors

Emission factors for CH_4 and N_2O have been established for each type of fuel in each category of vehicle, using the data shown in Table 3-17. "JAMA data" means that the raw emission factors of Japan Automobile Manufacturers Association are arranged as combine mode emission factors² and all that per car regulation year. The emission factors are estimated by multiplying arranged emission

² JAMA data were provided by test mode. The emission factors were calculated using "combined driving mode" mainly. "Combined driving mode" = "10.15 driving mode" $\times 0.88 +$ "11 driving mode" $\times 0.12$. "10.15 driving mode" is a hot start driving mode and "11 driving mode" is a cold start driving mode.

factors of JAMA by vehicles per car regulation year of each car classification (see.Table 3-18, Table 3-19). "Measured data" means that the emission factor is based on actual Japanese data. The emission factors was a weighted average of actual Japanese data estimated per each class of running speed, by proportion of mileage per each class of running speed given in the Ministry of Land, Infrastructure, Transport and Tourism's *Road Transport Census*. The emission factors reflect the actual motor vehicle operation in Japan because the proportion of mileage by each class of running speed during congestion was applied. "1996GL" and "GPG(2000)" mean the emission factors were established using the default values in IPCC guidelines.

Detailed method for the determination of the emission factors are described in the *Greenhouse Gases Estimation Methods Committee Report – Transportation* (Ministry of Environment; February, 2006).

	Table 5-17 Data se	burce of the emission	in factors of vehicle	
Vahiala Tuna	Gasolin	e engine	Diesel	engine
Vehicle Type	CH ₄ N ₂ O		CH ₄	N ₂ O
Light passenger vehicle	JAMA data			
Light cargo truck	JAMA data	JAMA data		
Passenger vehicle	JAMA data	JAMA data	JAMA data	JAMA data
Bus	1996GL	GPG(2000) +	Measured data	1996GL
Small cargo truck	JAMA data	JAMA data	JAMA data	JAMA data
Regular cargo truck	Regular cargo truck 1996GL (JAMA data	JAMA data
Special-purpose vehicle	1996GL	GPG(2000) +	Measured data	1996GL

Table 3-17 Data source of the emission factors of vehicle

JAMA data: Calculated by using driving mode test data provided by Japan Automobile Manufacturers Association Measured data: Using actual Japanese data

1996GL: Using the default values in 1996 revised IPCC guidelines.

GPG(2000)+ : Calculated by using default data indicated in GPG (2000) in consideration of the fuel consumption by car type indicated in the *Statistical Yearbook of Motor Vehicle Transport* and calorific value indicated in the *General Energy Statistics*.

Fuel	Vehicle Type	Unit	1990	1995	2000	2005	2006	2007	2008
Gasoline	Light Vehicle	gCH4/km	0.008	0.008	0.008	0.007	0.006	0.006	0.006
	Passenger Vehicle	gCH ₄ /km	0.015	0.015	0.014	0.011	0.011	0.010	0.009
	Light Cargo Truck	gCH ₄ /km	0.020	0.020	0.019	0.013	0.011	0.010	0.009
	Small Cargo Truck	gCH ₄ /km	0.022	0.021	0.021	0.015	0.013	0.012	0.011
	Regular Cargo Truck	gCH4/km	0.035	0.035	0.035	0.035	0.035	0.035	0.035
	Bus	gCH4/km	0.035	0.035	0.035	0.035	0.035	0.035	0.035
	Special Vehicle	gCH ₄ /km	0.035	0.035	0.035	0.035	0.035	0.035	0.035
Diesel	Passenger Vehicle	gCH4/km	0.011	0.012	0.012	0.013	0.013	0.013	0.013
	Small Cargo Truck	gCH4/km	0.010	0.011	0.010	0.009	0.009	0.009	0.008
	Regular Cargo Truck	gCH4/km	0.017	0.016	0.015	0.014	0.013	0.013	0.013
	Bus	gCH ₄ /km	0.019	0.018	0.017	0.017	0.017	0.017	0.017
	Special Vehicle	gCH ₄ /km	0.017	0.015	0.013	0.013	0.013	0.013	0.013

Table 3-18 CH₄ emission factors for road transportation

Fuel	Vehicle Type	Unit	1990	1995	2000	2005	2006	2007	2008
Gasoline	Light Vehicle	gN2O/km	0.015	0.015	0.014	0.009	0.008	0.008	0.007
	Passenger Vehicle (including LPG)	gN ₂ O/km	0.024	0.024	0.020	0.012	0.011	0.010	0.008
	Light Cargo Truck	gN ₂ O/km	0.024	0.024	0.022	0.013	0.011	0.010	0.009
	Small Cargo Truck	gN ₂ O/km	0.020	0.021	0.021	0.013	0.011	0.010	0.009
	Regular Cargo Truck	gN₂O/km	0.039	0.041	0.038	0.037	0.035	0.035	0.035
	Bus	gN₂O/km	0.045	0.046	0.044	0.041	0.044	0.040	0.042
	Special Vehicle	gN₂O/km	0.039	0.042	0.037	0.031	0.031	0.030	0.030
Diesel	Passenger Vehicle	gN ₂ O/km	0.006	0.005	0.004	0.004	0.004	0.004	0.004
	Small Cargo Truck	gN₂O/km	0.009	0.010	0.011	0.012	0.012	0.012	0.012
	Regular Cargo Truck	gN₂O/km	0.015	0.015	0.015	0.017	0.019	0.022	0.026
	Bus	gN₂O/km	0.025	0.025	0.025	0.025	0.025	0.025	0.025
	Special Vehicle	gN ₂ O/km	0.025	0.025	0.025	0.025	0.025	0.025	0.025

Table 3-19 N₂O emission factors for road transportation

Activity Data

Estimates of annual running mileage by each category of vehicle and by each type of fuel have been used as activity data. The method of estimating activity data was to multiply the proportion of running mileage for each fuel, which was calculated from fuel consumption and fuel efficiency, by the running distance for each category of vehicle given in the Ministry of Land, Infrastructure, Transport and Tourism's *Statistical Yearbook of Motor Vehicle Transport*.

vehicle type	fuel type	Unit	1990	1995	2000	2005	2006	2007	2008
Light vehicle	Gasolin	10 ⁶ vehicles km	15,281	39,386	70,055	102,601	108,721	116,442	121,327
Passenger vehicle	Gasolin	10 ⁶ vehicles km	289,697	323,022	363,991	372,663	366,782	363,707	351,943
	Diesel Oil	10 ⁶ vehicles km	42,252	66,787	58,832	30,902	24,799	21,445	17,692
	LPG	10 ⁶ vehicles km	18,368	17,192	15,382	13,971	13,807	13,427	12,864
Bus	Gasolin	10 ⁶ vehicles km	95	32	21	46	54	69	73
	Diesel Oil	10 ⁶ vehicles km	7,016	6,736	6,598	6,605	6,601	6,658	6,503
Light cargo truck	Gasolin	10 ⁶ vehicles km	85,336	84,534	74,914	73,789	73,409	73,382	73,312
Small cargo truck + Cargo	Gasolin	10 ⁶ vehicles km	36,981	25,892	24,988	26,597	27,096	27,051	26,345
passenger truck	Diesel Oil	10 ⁶ vehicles km	55,428	62,032	57,221	41,674	39,100	38,064	36,295
Regular cargo truck	Gasolin	10 ⁶ vehicles km	447	361	331	741	880	993	1,059
	Diesel Oil	10 ⁶ vehicles km	66,434	78,086	82,693	78,866	79,873	80,516	77,887
Special vehicle	Gasolin	10 ⁶ vehicles km	827	851	1,584	1,556	1,603	1,690	1,726
	Diesel Oil	10 ⁶ vehicles km	10,420	15,373	19,115	18,869	19,887	20,185	19,851

Table 3-20 Distance traveled per type of vehicle

• N_2O emissions from gasoline vehicle in Japan

"Japan 1978 Emission Regulation" was stipulated in 1978, and 3 way catalyst have stated to install to gasoline automobiles in Japan. Then, N₂O emissions per mileage (km) were increased. Until around 1986 when automobile installed 3 way catalyst became widely used, N₂O emissions per mileage (km) kept to increase. Until 1997, new emission regulation on automobile has not stipulated, then, N₂O emissions per mileage (km) were stable from 1986 to 1997.From 1997, Low Emission Vehicle were started to sell. From 2000, "Japan 2000 Emission Regulation" was stipulated, and N₂O emissions per mileage (km) were stated to decrease with installation of Close coupled Catalytic Converter. After 1997, trend of N₂O emissions per mileage (km) was decreasing.

• Completeness

➤ Biomass fuels

Currently, since very little ethanol fuel exists in Japan, there are very few ethanol-powered vehicles.

For that reason, the emissions of CH_4 and N_2O associated with the use of vehicles using biomass as fuel has been reported as "NO".

➢ Other (Methanol)

The number of methanol vehicles owned in Japan was only 19 at the end of March 2007 (data surveyed by the Ministry of Land, Infrastructure, Transport and Tourism). Therefore activity data is negligible, and has not been reported, as it is assumed that the emissions are also negligible.

c) Uncertainties and Time-series Consistency

• Uncertainties

As the uncertainty of emission factors for the CH₄ and N₂O emissions from all types of vehicles, default values given in the *Good Practice Guidance* (2000) (40% for CH₄ and 50% for N₂O) were applied. For the uncertainty for activity data, 50% for standard values determined by the Committee for the Greenhouse Gas Emission Estimation Methods was applied. As a result, the uncertainties of the emission from all road transportation including natural gas-powered vehicles and motorcycles were determined to be 64% for CH₄ and 71% for N₂O. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Emission factors were developed by using same method since FY 1990. Activity data have been estimated using the data in the *Statistical Yearbook of Motor Vehicle Transport*, in a consistent estimation method from FY 1990 onward.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance* (2000) methods. Tier 1 QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. QA/QC activities are summarized in Annex 6.

e) Source-specific Recalculations

For gasoline passenger vehicle, gasoline light vehicle, gasoline light cargo truck, diesel regular cargo truck and diesel small cargo, new emission factors for CH_4 and N_2O for enforcement of the New Long-term Regulation for exhaust gas (from FY 2005) were provided by JAMA, and emission factors for CH_4 and N_2O were revised. As a result, emissions for CH_4 and N_2O from FY 2005 to FY 2007 were revised.

f) Source-specific Planned Improvements

For some types of vehicle, it is needed to discuss whether more suitable emission factors (i.e., those that are more representative of Japan's circumstances) should be established on the basis of actual measurements, because the default values presented in the *Revised 1996 IPCC Guidelines* and *Good Practice Guidance (2000)* are currently used.

3.2.4.2.b. Natural gas-powered vehicles

a) Source/Sink Category Description

This section provides the estimation methods for CH_4 and N_2O emissions from natural gas-powered vehicles.

b) Methodological Issues

• Estimation Method

Emissions were calculated by multiplying the distance traveled per type of natural gas-powered vehicle by the emission factor for the type of vehicle.

• Emission Factors

 CH_4 emission factors for natural gas-powered small cargo trucks, passenger vehicle, light vehicle, light cargo trucks, regular cargo trucks and bus were determined using JAMA data and the same method used for the same type of gasoline or diesel powered vehicles.

 N_2O emission factors for small cargo trucks and regular cargo trucks were determined using the average of the emission factors established for each travel speed category based on the actual measurements taken in Japan, weighted by the percentage of distance traveled for each travel speed category reported in the *Road Transport Census* (Ministry of Land, Infrastructure, Transport and Tourism).

In the absence of actual measurement data in Japan, N_2O emission factors for light vehicle, light cargo trucks, Special-purpose vehicles and bus and CH_4 emission factor for Special-purpose vehicles were determined by the method indicated in the following Table 3-21.

	(Calculation Method for Emission Factor	Average Em	ission Factor
Туре	CH_4	N ₂ O	CH ₄ [g-CH ₄ /km]	N ₂ O [g-N ₂ O/km]
Small cargo truck	JAMA data	Determined based on actual measurements	0.020	0.0002
Passenger vehicle	JAMA data	Used the emission factors for small cargo truck,	0.019	
light passenger vehicle, light cargo truck	JAMA data	0.013	0.0002	
Regular cargo truck	JAMA data	Determined based on actual measurements	0.082	0.0128
Special-purpose vehicle	speed category speed catego	from the percentage of distance traveled per travel which was adjusted by the emission factor per travel ry for regular cargo trucks, taking travel patterns of owered special-purpose vehicles into consideration.	0.093	0.0145
Bus	JAMA data	Determined from the emission factor for regular cargo truck which was adjusted by the ratio of equivalent inertia weight, taking vehicle weight into consideration.	0.050	0.0384

Table 3-21 CH₄ and N_2O emission factors for natural gas-powered vehicles

• Activity Data

Annual distance traveled per type of vehicle was determined by multiplying the number of natural gas-powered vehicles by the annual distance traveled per vehicle. The number of these vehicles was taken from the number of registered natural gas-powered vehicles per type in data compiled by the Japan Gas Association. For the annual distance traveled per type of vehicle, the value specific to the natural gas-powered vehicles could not be determined. As a result, the calculation of activity data used the annual distance traveled per vehicle for all fuel types which had been determined from the distance traveled per type of vehicle and the number of registered vehicles per type reported in the *Statistical Yearbook of Motor Vehicle Transport*.

vehicle type	Unit	1990	1995	2000	2005	2006	2007	2008
Passenger vehicle	1,000 vehicle-km	54	104	6,516	13,528	13,891	14,110	14,016
Bus	1,000 vehicle-km	0	1,860	18,743	53,936	58,650	61,444	64,005
Truck	1,000 vehicle-km	91	2,459	77,394	384,460	459,274	512,957	565,364
Small cargo truck	1,000 vehicle-km	184	8,088	32,426	57,045	62,118	67,137	72,550
Light vehicle	1,000 vehicle-km	0	498	19,217	68,750	77,266	85,284	93,230
Garbage vehicle	1,000 vehicle-km	0	300	6,955	38,816	43,664	47,039	50,304

Table 3-22 Annual distance traveled by natural gas-powered vehicles per type of vehicle

c) Uncertainties and Time-series Consistency

• Uncertainties

The uncertainty of emission factors for both CH_4 and N_2O were determined as 1000% by expert judgment. The uncertainty of activity data was 50%; determined as a standard value by the 2002 Committee for the Greenhouse Gas Emission Estimation Methods. As a result, the uncertainties of the emissions were determined to be 1001% for CH_4 and N_2O in common. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Emission factors were used same values since FY 1990. Activity data were estimated by using the data in the *Statistical Yearbook of Motor Vehicle Transport* and the *Natural Gas Mining Association Data*, in the same estimation method consistently since FY 1990.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)* methods. Tier 1 QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. QA/QC activities are summarized in Annex 6.

e) Source-specific Recalculations

Since new CH_4 emission factors data were obtained, CH_4 emission factors were revised. Because of the use of constant values for CH_4 emission factors in all time-series, emissions from FY 1990 to FY 2007 were revised.

f) Source-specific Planned Improvements

To set more precise emission factors that better reflect actual conditions, it is needed to stock much more data on the annual distance traveled per type of vehicle and improve the estimation methods used.

3.2.4.2.c. Motorcycles

a) Source/Sink Category Description

This section provides the estimation methods for CH₄ and N₂O emissions from motorcycles.

b) Methodological Issues

• Estimation Method

Emissions from motorcycles were estimated based on the method developed in Japan by the Ministry of Environment for the estimation of emissions from vehicles not subject to the PRTR (Pollutant

Release and Transfer Register) Program. The emissions were calculated for two emission sources of "Hot start" and "Increment for cold start", using the equations below. For details of the calculation method, see the *Greenhouse Gases Estimation Methods Committee Report – Transportation* (February, 2006).

<u>Methane and nitrous oxide emissions from hot-starting of motorcycles</u> = Emission factor for vehicle-km per type of motorcycle × Total annual distance traveled by motorcycles per type

<u>Methane emissions from increment at cold starting of motorcycles</u> = Emission factor per start per type × Number of engine start-ups per year by each type of motorcycle

• Emission Factors

➤ Hot start

The THC (Total Hydro Carbon) emission factor for hot starts, derived from the actual measurement data in Japan, was multiplied by the ratio of the CH_4 emission factor to the THC emission factor, obtained from actual measurements. The THC emission factors for motorcycles were established for each category of vehicle type, stroke, and unregulated/regulated status. Accordingly, the emission factor per travel speed was determined for each type of motorcycle by apportioning the number of motorcycles in operation to these categories based on the estimated component ratio. For N₂O, the default emission factor for *US Motorcycles/European Motorcycles* given in the *Revised 1996 IPCC Guidelines* [0.002(gN₂O/km)]is used.

Increment for cold start

The emission factor was determined for each type of motorcycle by multiplying the THC emission factor for cold-start increment, derived from the actual measurement data in Japan, by the CH_4 and THC emission factors for hot start, and apportioning the results based the ownership component ratio. No emission factor is set for N₂O because the increment for cold start for N₂O is assumed to be included in the default emission factor for hot start

Fuel	Vehicle Type	Unit	1990	1995	2000	2005	2006	2007	2008		
	Small motor vehicle: first kind	gCH4/km	0.124	0.118	0.101	0.064	0.056	0.048	0.042		
two-wheel vehicle	Small motor vehicle: second kind	gCH4/km	0.088	0.090	0.082	0.050	0.043	0.038	0.030		
(hot start)	Light two-wheel vehicle	gCH₄/km	0.155	0.159	0.137	0.071	0.059	0.050	0.043		
(not start) Small t	Small two-wheel vehicle	gCH4/km	0.117	0.119	0.112	0.069	0.060	0.054	0.046		
	Small motor vehicle: first kind	gCH ₄ /number of time	0.039	0.039	0.033	0.022	0.020	0.019	0.018		
two-wheel vehicle	Small motor vehicle: second kind	gCH ₄ /number of time	0.012	0.012	0.013	0.015	0.017	0.017	0.018		
(cold start)	Light two-wheel vehicle	gCH ₄ /number of time	0.016	0.016	0.018	0.024	0.025	0.026	0.026		
	Small two-wheel vehicle	gCH ₄ /number of time	0.043	0.043	0.042	0.035	0.034	0.033	0.032		

Table 3-23 CH₄ emission factors for motorcycles

• Activity Data

➤ Hot start

Based on the motorcycle operation data in the *Road Transport Census*, annual distance traveled was determined for each type of motorcycle and travel speed category using the ratio of total distance traveled per type, obtained from sources including the *Survey of Motorcycle Market Trends* and the ratio of distance traveled per travel speed category, estimated from the *Road Transport Census*. In the determination of the activity data for this source, the rate of reduction of motorcycle operation due to rain or snow as well as increases in the ownership and the distance traveled during the years outside the survey were taken into consideration.

Increment for cold start:

The annual number of engine startups (times/year) per type of motorcycle was determined by the following formula:

<u>Number of engine startups</u> = (Expected operation of new motorcycle in number of days in year)_{type} × (Operation factor)_{elapsed years} × (Reduction rate of operation due to rain and snow)_{prefecture} × (Average number of startups per day)_{type} × (Number of motorcycles owned)_{type}, prefecture, elapsed years

c) Uncertainties and Time-series Consistency

• Uncertainties

As the uncertainty of emission factors, default values given in the *Good Practice Guidance (2000)* (40% for CH_4 and 50% for N_2O) were applied. The uncertainty of activity data was 50%; this was determined as a standard value by the 2002 Committee for the Greenhouse Gas Emission Estimation Methods. As a result, the uncertainties of the emissions were determined to be 64% for CH4 and 71% for N2O. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Same Estimation Methods were used since FY 1990. Activity data were estimated using the data in the *Statistical Yearbook of Motor Vehicle Transport* in a consistent estimation method since FY 1990.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)* methods. Tier 1 QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. QA/QC activities are summarized in Annex 6.

e) Source-specific Recalculations

Because the ratio of the CH_4 emission factor to the THC emission factor on hot starts is revised, CH_4 emission factors were improved. As a result, the emissions for CH_4 from FY 1999 to FY 2007 were revised.

f) Source-specific Planned Improvements

- There is a need to stock much more the data of annual distance traveled per type of vehicle in order to set more precise emission factors than the actual condition.
- To set much more accurate activity data, the data from four-wheeled vehicles is needed to be replaced with the data from two-wheeled vehicles.

3.2.4.3. Railways (1.A.3.c.)

a) Source/Sink Category Description

This section provides the estimation methods for CH_4 and N_2O emissions from railways. Emissions from railways come mainly from diesel-engine locomotives that use light oil. In addition, there are small amounts of emissions from coal-fired steam locomotives.

b) Methodological Issues

• Estimation Method

This source of emissions is not a key source category, and emissions were calculated by multiplying

the default emission factor given in the Revised 1996 IPCC Guidelines by fuel consumption on a calorific basis.

The Good Practice Guidance (2000) does not provide a decision tree for a calculation method for this source.

Methane and nitrous oxide emissions from diesel locomotives = Emission factor for diesel engines in railways × Annual consumption of light oil by diesel locomotives

Methane and nitrous oxide emissions from steam locomotives = Emission factor for coal in rail transportation × Annual consumption of coal by steam locomotives

• Emission Factors

For emission factors for diesel-powered locomotives, the default value shown in the Revised 1996 IPCC Guidelines under Diesel engines - Railways was used after the conversion to a per-liter value using the calorific value of light oil.

For emission factors for steam locomotives, the default value shown in the Revised 1996 IPCC Guidelines under Coal – Railways was used after the conversion to a per-weight value using the calorific value of imported steam coal.

The following table gives the default values from the *Revised 1996 IPCC Guidelines*.

	Diesel Locomotives	Steam Locomotives
CH ₄ emission factor	0.004 [g-CH ₄ /MJ]	10 [kg-CH ₄ /TJ]
N ₂ O emission factor	0.03 [g-N ₂ O/MJ]	1.4 [kg-N ₂ O/TJ]

Table 3-24 Default values for railway emission factors

Source: Revised 1996 IPCC Guidelines, Vol. 3, p. 1.91, Table 1-49; p. 1.35, Table 1-7; and p. 1.36, Table 1-8

Activity Data

For the consumption of light oil by diesel locomotives, light oil consumption in the railway sector shown in the General Energy Statistics compiled by the Agency for National Resources and Energy was used as the activity data.

Coal consumption by steam locomotives was considered to be the value shown in the Statistical Yearbook of Railway Transport (Ministry of Land, Infrastructure, Transport and Tourism) in the table "Cost of Consumption of Operating Electricity, Fuel and Oil" under Cost under the Other fuel – Cost. The cost-based value was divided by the coal price for each year (for imported steam coal) shown in the Directory of Energy and Economic Statistics to estimate the coal consumption.

The default emission factor given in the Revised 1996 IPCC Guidelines, etc., is expressed in net calorific value. Therefore, in order to apply this emission factor, the calorific value, which is generally expressed as gross calorific value in Japan's energy statistics, is converted into the net calorific value.

		-					-	
Fuel type	Unit	1990	1995	2000	2005	2006	2007	2008
sel oil	kl	356,224	313,235	269,711	248,211	248,211	239,334	239,334
ıl	kt	17	19	28	13	11	9	9

Table 3-25 Activity	Data used for	or estimation of	emissions	from railways

Dies Coal

c) Uncertainties and Time-series Consistency

• Uncertainties

The uncertainties for emission factors were determined to be 5.0% for CH₄ and 5.0% for N₂O in accordance with the Committee for the Greenhouse Gas Emission Estimation Methods. For the uncertainty of activity data from diesel-engine locomotive, 10% given in the *Statistical Yearbook of Railway Transport*, was applied. For the uncertainty of activity data from coal-fired steam locomotives, 105% aggregated by the values given in the *Statistical Yearbook of Railway Transport* and the *Directory of Energy and Economics Statistics*, was applied. As a result, the uncertainties of the emissions were determined to be 11% for CH₄ and N₂O from diesel-engine locomotives and 101% for CH₄ and N₂O from coal-fired steam locomotives. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Emission factors were used same values since FY 1990. The data given in the *General Energy Statistics* for diesel-engine locomotives were used as activity data consistently since FY 1990. Activity data for coal-fired steam locomotives were calculated using the data in the *Statistical Yearbook of Railway Transport* and the *Directory of Energy and Economics Statistics*, in a consistent estimation method in all time-series.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)* methods. Tier 1 QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. QA/QC activities are summarized in Annex 6.

e) Source-specific Recalculations

For emissions of CH_4 and N_2O from coal-fired steam locomotives, activity data (coal consumption) of FY 2007 are revised responding to the publication of the *Statistical Yearbook of Railway Transport of FY 2007*. As a result, emissions for CH_4 and N_2O of FY 2007 are revised.

f) Source-specific Planned Improvements

For the emission factor for diesel engine-railways, it is needed to discuss whether more suitable emission factors (i.e., those that better reflect Japan's circumstances) should be established on the basis of actual measurements, because the default values presented in the *Revised 1996 IPCC Guidelines* and *Good Practice Guidance (2000)* are currently used.

3.2.4.4. Navigation (1.A.3.d.)

a) Source/Sink Category Description

This section provides the estimation methods for CH_4 and N_2O emissions from navigation. Ships emit CH_4 and N_2O through the use of light oil and fuel oils A, B and C during their navigation.

b) Methodological Issues

• Estimation Method

Emissions were calculated using the default values for CH_4 and N_2O given in the *Revised 1996 IPCC Guidelines*, in accordance with Decision Tree of the *Good Practice Guidance (2000)* (Page 2.52, Fig.

2.6).

Methane and nitrous oxide emissions associated with navigation of domestic vessels	
= Emission factors for light oil and fuel oils A, B and C relating to domestic vessels	× Consumption of each
type of fuel by domestic vessels	_

Emission Factors

The default values for Ocean-Going Ships (diesel engines) given in the *Revised 1996 IPCC Guidelines* were converted to emission factor per liter using the calorific value for each type of fuel (gas oil, fuel oil A, B and C). The following gives the default values from the *Revised 1996 IPCC Guidelines*.

Table 3-26 Default	emission	factors	for	navigation
--------------------	----------	---------	-----	------------

	Value
CH ₄ Emission Factor	0.007 [g-CH ₄ /MJ]
N ₂ O Emission Factor	0.002 [g-N ₂ O/MJ]

Source: Revised 1996 IPCC Guidelines Vol. 3, page 1.90, Table 1-48

• Activity Data

Consumption of each fuel type in internal navigation sector taken from the *General Energy Statistics* of the Agency for Natural Resources and Energy was used for activity data.

The default emission factor given in the *Revised 1996 IPCC Guidelines*, etc., is expressed in net calorific value. Therefore, in order to apply this emission factor, gross calorific value, which is generally adopted in Japan's energy statistics, is first converted into net calorific value, and then it is used for the conversion to the liter-based emissions factor.

Fuel type	Unit	1990	1995	2000	2005	2006	2007	2008
Diesel oil	1000kl	133	208	204	195	172	189	189
Fuel oil (A)	1000kl	1,602	1,625	1,728	1,324	1,224	1,126	1,061
Fuel oil (B)	1000kl	526	215	152	63	41	42	25
Fuel oil (C)	1000kl	2,446	3,002	3,055	2,873	2,889	2,792	2,703

 Table 3-27 Activity Data used for estimation of emissions from ships

c) Uncertainties and Time-series Consistency

• Uncertainties

As the uncertainty of emission factors, default values given in the *Good Practice Guidance (2000)* (200% for CH_4 and 1,000% for N_2O) were applied. The uncertainty of activity data was 13%. This was a precision value (95% confidence interval) provided in the *Statistical Yearbook of Coastwise Vessel Transport* that was an original statistic of the *General Energy Statistics*. As a result, the uncertainties of the emissions were determined to be 64% for CH_4 and 71% for N_2O . The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Emission factors were used same values since FY 1990. The activity data given in the *General Energy Statistics* were used as the activity data for navigation consistently since FY 1990.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance* (2000) methods. Tier 1 QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. QA/QC activities are summarized in Annex 6.

e) Source-specific Recalculations

No recalculations were performed.

f) Source-specific Planned Improvements

For the emission factor for navigation, it is needed to discuss to set more suitable factors (i.e., those that better reflect Japan's circumstances) that are based on actual measurements, because the default values presented in the *Revised 1996 IPCC Guidelines* are currently used.

3.2.5. Other Sources (1.A.4)

a) Source/Sink Category Description

This category provides the estimation methods for CO₂ emissions from Commercial /Institutional (1.A.4.a), Residential (1.A.4.b) and Agriculture / Forestry / Fisheries (1.A.4.c).

b) Methodological Issues

• Estimation Method

See Section 3.2.1 b).

• Emission Factors

See Section 3.2.1 b).

• Activity Data

The data given in the *General Energy Statistics* compiled by the Agency for Natural Resources and Energy were used for activity data as well energy industry (1.A.1).

Activity data for each sub-category are the values for final energy consumption in Commercial/Institutional (#7500), Residential (#7100), and Agriculture/Forestry/Fisheries (#6110) sector in *General Energy Statistics*. Because the energy consumption above includes the amount of Non-energy use which was used for purposes other than combustion, these values were deducted from the energy consumption in each category.

Table 3-28 Correspondence between sectors of Japan's Energy Balance Table and of the CRF (1.A.4)

		CRF	Japan's Energy Balance Table		
1A4	4	Other Sectors			
	1A4a	Commercial/Institutional	Final Energy Consumption, Commercial & Others	#7500	
	TA4a Commercial/Institutional		Non-Energy, ResCom & others (Commercial & Others)	#9800	
	1A4b	Residential	Final Energy Consumption, Residential	#7100	
	1A40	Residential	Non-Energy, ResCom & others (Residential)	#9800	
			Final Energy Consumption, Agruculture, Forestry & Fishery	#6110	
	1A4c	Agriculture/Forestry/Fisheries	Non-Energy, Non-Manufacturing Industry	#9610	
	ů v		(Agruculture, Forestry & Fishery)	#9010	

c) Uncertainties and Time-series Consistency

See Section 3.2.1 c).

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)*. The QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. Details of the QA/QC activities are provided in Annex 6

e) Source-specific Recalculations

GHG emissions in FY 2007 were recalculated due to the revision of the fuel consumption in FY 2007 in *General Energy Statistics*.

 CO_2 emissions from LPG since FY 2005 were recalculated due to the revision of the emission factor of LPG with the revision of the gross calorific value for each fuel type since FY 2005 reported in the *General Energy Statistics*. CO_2 emissions from small scale town gas since FY 2005 were recalculated because of the revision of the emission factor to which the emission factor of LPG is applied.. CO_2 emissions from town gas since FY 2005, its emission factor was established with annually calculated value in order to keep carbon balance, were recalculated because of the revision of the emission factor of the emission factor of the emission factor of LPG which is used as raw material for town gas.

f) Source-specific Planned Improvements

There are no major planned improvements in this source category.

3.2.6. Comparison of Sectoral and Reference Approaches

This comparison is documented and described in Annex 4.

3.2.7. International Bunker Fuels

a) Source/Sink Category Description

This sector provides the estimation methods for determining CO_2 , CH_4 , and N_2O emissions from the fuel consumed for international marine and air transportation.

Exclusion of emissions from bunker fuels used for international marine and air transport from the national totals has been reported in a memo item.

b) Methodological Issues

• Estimation Method

Emissions of CO_2 , CH_4 and N_2O from this source are derived by multiplying the consumption of each type of fuel handled by bonds by the emission factor.

• Emission Factors

$[CO_2]$

The emission factors used for CO_2 are the same as those for the energy sectors, fuel combustion (CO_2) in energy sectors (Refer to Section 3.2.1).

$[CH_4, N_2O]$

Default values given in the Revised 1996 IPCC Guidelines are used for CH4 and N2O emission

Transport mode	Type of fuel	CH ₄ emission factor	N ₂ O emission factor								
Aircraft	Jet fuel	$0.002 [g CH_4/MJ]^{a}$	0.1 [kg N ₂ O/t] ^b								
Shipping	Fuel oil A	0.007 [g CH ₄ /MJ] ^c	0.002 [g N ₂ O/MJ] ^c								
	Fuel oil B	0.007 [g CH ₄ /MJ] ^c	$0.002 [g N_2O/MJ]^{c}$								
	Fuel oil C	0.007 [g CH ₄ /MJ] ^c	0.002 [g N ₂ O/MJ] ^c								
	Diesel oil	0.007 [g CH ₄ /MJ] ^c	0.002 [g N ₂ O/MJ] ^c								
	Kerosene	0.007 [g CH ₄ /MJ] ^c	0.002 [g N ₂ O/MJ] ^c								

factors.

Table 3-29 Emission factors for CH₄ and N₂O from international bunkers

a. Revised 1996 IPCC Guidelines Vol. 3, Table 1-47

b. // Table 1-52

c. // Table 1-48

• Activity Data

Totals for bonded imports and bonded exports given in the Ministry of Economy, Trade and Industry's *Yearbook of Mineral Resources and Petroleum Products Statistics* (former *Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke)* are used for emissions of CO₂, CH₄, and N₂O from the relevant source.

A and B in the diagram below correspond to the items under bonded exports and bonded imports, respectively, in the *Yearbook of Mineral Resources and Petroleum Products Statistics* (former *Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke*). C equals to the sum of A and B and it is used as the activity data for this source of emissions. This is considered to be approximately equivalent to the amount of the fuels sold in Japan for the international aviation and the marine transport.

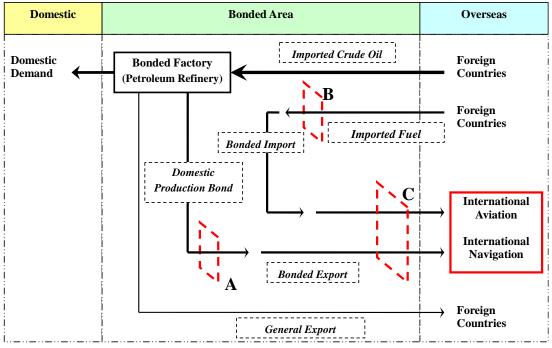


Figure 3-3 Activity data for international bunkers

It is assumed that jet fuel is used by aircraft, while fuel oil A, B, C, diesel oil and kerosene are used by vessels. Fuel oil A, B, and C are used for propulsion of international water-borne vessels. Diesel oil and kerosene are used only for fuels of private power generator (eg. Air heating).

$[CO_2]$

The kiloliter-based consumption data given in the Ministry of Economy, Trade and Industry's Yearbook of Mineral Resources and Petroleum Products Statistics (former Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke) is converted to a Joule-based data using the standard calorific values given in the Agency for Natural Resources and Energy's General Energy Statistics.

$[CH_4, N_2O]$

The *Revised 1996 IPCC Guidelines* provide a default emission factor that is based on net calorific values. Therefore, activity data in gross calorific values are converted to net calorific values by multiplying them by 0.95.

In addition, regarding activity data of N_2O from an international aviation, the *Revised 1996 IPCC Guidelines* provide a default emission factor in weight units. In order to adapt the activity data to this unit, the kiloliter-based consumption data is multiplied by the density identified by the Petroleum Association of Japan for N_2O from aircraft (0.78 [g/cm³]).

c) Other issues

The desk review report in 2004 indicated that there was a significant difference between bunker AD reported in the CRF (table 1.C) and bunker consumption data reported to the International Energy Agency (IEA). The followings explain the causes for the difference.

➤ Data Update

The ERT in 2004 used the following IEA energy balances for analysis.

- Data for 2000-2001: "ENERGY BALANCES OF OECD COUNTRIES 2000-2001 II 94-95"
- Data for 2002-2003: "ENERGY BALANCES OF OECD COUNTRIES 2002-2003 II 94-95"

After the publication of the data, it was found out that there were some errors in data of 2000 and 2001 submitted to IEA, including omission of full counting of imported bunker fuel and errors in the values of exported diesel oil. In March 2006, Japan reported the revision of these errors and the errors have been corrected since then.

Difference of fuel types reported as "bunker"

Up to Japan's national greenhouse gas inventories submitted in May 2004, Japan reported the bonded imports and exports of fuel oil A, B, and C as marine bunker. In IEA energy balance, marine bunker reported includes bonded diesel oil, kerosene and lubricant, other than bonded fuel oil A, B and C. This difference causes the variation between inventory data and IEA data.

Japan revised the estimation method in the inventory submitted in August 2004 and has reported bonded diesel oil and kerosene consumption as marine bunker since then³.

³ Lubricant is not included because lubricant is not combusted by use.

Errors of density and conversion factor

Data for the IEA energy balance need to be reported in the metric-ton unit. Japan calculates and reports to IEA values in metric-ton by multiplying the volume of fuel combustion given in the *Yearbook of Mineral Resources and Petroleum Products Statistics* by the density of each fuel type given in the *information of petroleum*, Sekiyu –Tsushin. IEA converts the values in metric ton into tons of oil equivalent (TOE) by using conversion factors. Given that the values are expressed in net calorific-based value equivalent, one can judge that the conversion factors used in IEA are net calorific value.

Conversion of a unit to TOE by using information given in the inventory can be conducted by multiplying the volume of fuel consumption by gross calorific-based values.

This difference in the conversion process causes the variation between IEA energy balance and Japans energy statistics for inventory preparation.

Glossary

Bonded Jet Fuel

Under the Tariff Law, aircrafts (Japanese and non-Japanese) flying international routes are deemed to be "overseas return aircraft", and the fuel they consume is tariff-free, subject to the completion of the required procedures. The application of this legislation means that if fuel is refined from crude oil imported to Japanese refinery, both the crude oil import tariff and the petroleum tax are waived. Similarly, if fuel has been imported as a product, the product import tariff is waived. The foregoing is termed as "bonded jet fuel".

Bonded Fuel Oil

Vessels that ply voyages between Japan and other countries are deemed to be "foreign trade vessels", under the Tariff Law. The majority of their fuel is consumed outside Japanese territorial waters, and, therefore both tariffs and the petroleum tax are waived. The foregoing is termed as "bonded fuel oil".

Bonded Export

The demand for fuel supplied to aircrafts (Japanese and non-Japanese) flying international routes and ships (Japanese and non-Japanese) that ply foreign ocean routes is termed as "bonded demand". Jet fuel is supplied to aircrafts while fuel oil is supplied to ships. Of these bonded demand, the fuel supplied from products that was produced from crude oil is counted as bonded exports by the Ministry of Economy, Trade and Industry.

Bonded imports (Bond to Bond)

Fuel products that are imported from foreign countries, landed in a bonded area and supplied from the bonded area to bonded demand without going through domestic customs, is counted as bonded imports by the Ministry of Economy, Trade and Industry.

3.2.8. Feedstocks and Non-Energy Use of Fuels

In the method used to estimate GHG emissions from fuel combustion (1.A.), the energy consumption in the category of Non-energy use (#9500) in *General Energy Statistics* was deducted from the total

energy consumption, because these amounts of fuel was used as feedstocks without combustion and oxidation process.

The Non-energy category is used provided that the use corresponds to either of the following two requirements: (1) Consumption which can be confirmed as clearly being employed for non-energy uses by official statistics, such as surveys of feedstocks inputs according to *Current Survey of Energy Consumption* which is the data source of *General Energy Statistics*; and (2) Products which are from the outset produced for the purpose of non-energy use.

(However, that portion which is confirmed from official statistics such as *Current Survey of Energy Consumption* as having been employed for energy uses is treated as energy consumption and excluded from non-energy use.)

 CO_2 emissions from combustion and oxidation in the process of production, use and abandonment of the amount of feedstocks and non-energy use which were deducted from 1.A are separately reported in the following sectors.

- Ammonia Production (2.B.1)
- Silicon Carbide Production (2.B.4)
- Calcium Carbide Production (2.B.4)
- Ethylene Production (2.B.5)
- Use of Electric Arc Furnaces in Steel Production (2.C.1)
- Wastes Incineration (Simple Incineration) (waste oil and waste plastics) (6.C)
- Emissions from the Decomposition of Petroleum-Derived Surfactants (6.D)

3.2.9. CO₂ capture from flue gases and subsequent CO₂ storage

The amount of CO₂ capture from flue gases and subsequent CO₂ storage was not estimated in Japan.

3.2.10. Emission from waste incineration with energy recovery

Below three cases that utilize waste as crude material meets definition of the emission from waste incineration with energy recovery.

- Waste incineration with energy recovery
- Direct use of waste as fuel
- Use of waste processed as fuel

Estimation method for emission from these sources is applied waste incineration (6.C.) method in accordance with the *1996 Revised IPCC Guidelines*. The value of emission is included in fuel combustion (1.A.1. and 1.A.2.) in accordance with the *1996 Revised IPCC Guidelines* and the *Good Practice Guidance (2000)*. Please refer to Chapter 8 for the details of the estimation methods.

The reporting category of the emissions for each type of waste is, according to its use as fuel or raw material, classified to either "Energy Industry (Category 1.A.1.)" or "Manufacturing and Construction (1.A.2)". The fuel type is classified as "Other fuels".

Greenhouse gas emissions during the direct use of waste as a raw material, such as plastics used as reducing agents in blast furnaces or as a chemical material in coking furnaces, or use of intermediate

products manufactured using the waste as a raw material, are estimated in this category.

Refuse-derived solid fuels (RDF: Refuse Derived Fuel, RPF: Refuse Paper and Plastic Fuel) are used for the estimation of emissions from fuels produced from waste. The reporting categories of the above emissions are included in "Energy Industry (Category 1.A.1.)" or "Manufacturing/Construction (1.A.2)" according to the use of waste as fuels. The fuel type is classified as "Other fuels".

Incineration	Waste category	Estimation classification	Category of estimation	CO ₂	CH_4	N ₂ O
	Municipal	Plastic	1.A.1	0	0	0
Waste Municipal	solid waste	Synthetic textile	1.A.1	0	Estimated in	Estimated
incineration	sonu waste	Other (biogenic) ^{a)}	1.A.1		bulk	in bulk
sol	Industrial	Waste oil	1.A.1	o ^{a)}	° _{p)}	0 ^{b)}
	solid waste	Waste plastic	1.A.1	0	0	0
	sonu waste	Other (biogenic) ^{a)}	1.A.1		0	0
	Municipal solid waste	Plastic	1.A.1/2	0	0	0
Diment user of	T. 1 . (.1.1	Waste oil	1.A.2	0 ^{a)}	°p)	0 ^{b)}
Direct use of waste as fuel	Industrial solid waste	Waste plastic	1.A.2	0	0	0
waste as fuel	sond waste	Waste wood	1.A.2		0	0
	Waste tire	Fossil origin	1.A.1/2	0		
	waste the	Biogenic origin	1.A.1/2		0	0
Use of waste processed as	Refuse derived fuel	Fossil origin	1.A.1/2	0	0	0
fuel as	(RDF·RPF)	Biogenic origin	1.A.1/2		0	0

Table 3-30 Categories for the calculation of emissions from waste incineration with energy recovery

a) Emission estimates were conducted solely for waste mineral oil

b) Emission estimates were conducted for waste mineral oil and waste animal and vegetable oil. Waste animal and vegetable oil to be allocated to the waste sector is reported on "Biogenic", "Table 6.A,C" of CRF table.

For your reference, the greenhouse gas emissions from waste incineration for energy purpose and with energy recovery are shown in Table 3-31.

~			GHG Emission from waste m	_		-	-	-			
Gas		D 11	Item	Unit	1990	1995	2000	2005	2006		2008
			Electricity and Heat Production	GgCO ₂	6,493	7,080	9,075	7,965	6,874		6,109
	1.A.1 Energy Industries		eum Refining	GgCO ₂	NO	NO	1	6			4
			acture of Solid Fuels and Other Energy	GgCO ₂	NO	NO	15	239	213	IE	193
		a. Iron an		GgCO ₂	NO	NO	308	634	473		377
			errous Metals	GgCO ₂	118	63	51	17			3
		c. Chemic		GgCO ₂	0	58	83	62			47
			Paper and Print	GgCO ₂	NO	55	106	987	,	,	1,603
		e. Food P	rocessing, Beverages and Tobacco	GgCO ₂	IE	IE	IE	IE	IE		
CO ₂	1.A.2. Manufacturing		Mining	GgCO ₂	IE	IE	IE	IE	IE		
	Industries and Construction		Construction	GgCO ₂	IE	IE	IE	IE	IE		
			Oil Products	GgCO ₂	IE	IE	IE	IE	IE		
		f. Other	Glass Wares	GgCO ₂	IE	IE	IE	IE	IE		
			Cement & Ceramics	GgCO ₂	597	1,122	1,876	2,317	-		2,467
			Machinery	GgCO ₂	41	26	13	10			0
			Duplication Adjustment	GgCO ₂	NO	NO	NO	NO	NO		
			Other Industries & SMEs	GgCO ₂	1,854	2,092	1,595	2,877			3,009
			Total	GgCO ₂	9,102	10,497	13,122	15,113	14,151		13,812
			Electricity and Heat Production	GgCH ₄	0.54	0.54	0.60	0.15			0.14
	1.A.1 Energy Industries		eum Refining	GgCH ₄	NO	NO	0.00	0.00			0.00
			cture of Solid Fuels and Other Energy	GgCH ₄	IE	IE	IE	IE	IE		
		a. Iron an		GgCH ₄	NO	NO	NO	0.00			0.00
			errous Metals	GgCH ₄	0.00	0.00	0.00	0.00			0.00
	H4 1.A.2. Manufacturing	c. Chemic		GgCH ₄	0.00	0.00	0.00	0.00			0.00
		1.	aper and Print	GgCH4	NO	0.00	0.00	0.00		I I 13 194 13 194 73 507 13 13 56 44 38 1,599 IE I IE I IE 1 IE 1 IE 1 IE 1 10 0 NO N 39 3,021 51 14,408 00 0.00 00 0.00 00 0.00 00 0.00 00 0.00 00 0.00 1E I 1E I 1E I 1E I 12 1.07 00 0.00 12 1.07 00 0.00 00 0.00 00 0.00 00 0.00	0.00
		e. Food P	rocessing, Beverages and Tobacco	GgCH ₄	IE	IE	IE	IE			
CH4	1 A 2 Manufacturing		Mining	GgCH4	IE	IE	IE	IE			
-	Industries and Construction		Construction	GgCH ₄	IE	IE	IE	IE			
			Oil Products	GgCH ₄	IE	IE	IE	IE			
		f. Other	Glass Wares	GgCH ₄	IE	IE	IE	IE			
			Cement & Ceramics	GgCH ₄	0.04	0.08	0.15	0.21			0.25
			Machinery	GgCH ₄	0.00	0.00	0.00	0.00			0.00
			Duplication Adjustment	GgCH ₄	NO	NO	NO	NO	NO		
			Other Industries & SMEs	GgCH ₄	1.77	1.77	2.22	2.90			3.69
			Total	GgCH ₄	2.34	2.39	2.98	3.26			4.08
				GgCO2eq	49.20		62.53	68.53			
			Electricity and Heat Production	GgN ₂ O	1.20	1.33	1.56	1.14	1.12		
	1.A.1 Energy Industries		eum Refining	GgN ₂ O	NO	NO	0.00	0.00			0.00
			cture of Solid Fuels and Other Energy	GgN2O	IE	IE	IE	IE	IE		
		a. Iron an		GgN ₂ O	NO	NO	NO	0.00			0.00
			errous Metals	GgN2O	0.00	0.00	0.00	0.00			0.00
		c. Chemic		GgN ₂ O	0.00	0.00	0.00	0.00	0.00	IEIOOIOIOIOIOIE <td>0.00</td>	0.00
		-	Paper and Print	GgN2O	NO	0.00	0.00	0.02			0.03
		e. Food P	rocessing, Beverages and Tobacco	GgN ₂ O	IE	IE	IE	IE	IE		
N2O	1.A.2. Manufacturing		Mining	GgN ₂ O	IE	IE	IE	IE	IE		
1120	I.A.2. Manufacturing Industries and Construction		Construction	GgN₂O	IE	IE	IE	IE	IE		IE
			Oil Products	GgN ₂ O	IE	IE	IE IE IE IE II IE IE IE IE II				
		f. Other	Glass Wares	GgN ₂ O	IE	IE				3.45 3.68 72.49 77.19 1.12 1.07 0.00 0.00 1.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1.00 0.02 0.03 0.02 0.03 1.12 1.12 1.12 1.12 0.10 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12<	IE
		i. Other	Cement & Ceramics	GgN ₂ O	0.01	0.02	0.04	0.05			0.05
			Machinery	GgN₂O	0.00	0.00	0.00	0.00		0.00	0.00
			Duplication Adjustment	GgN ₂ O	NO	NO	NO	NO	NO	NO	NO
			Other Industries & SMEs	GgN ₂ O	0.03	0.03	0.03	0.05	0.05	0.05	0.06
			Total	GgN ₂ O	1.24	1.38	1.63	1.26	1.25	1.21	1.16

Table 3-31 GHG Emission from waste incineration with energy recovery

3.3. Fugitive Emissions from Fuels (1.B.)

The Fugitive Emissions subsector consists of intentional and unintentional emissions of CO_2 , CH_4 , and N_2O from unburned fossil fuels during their mining, production, processing, refining, transportation, storage, and distribution.

There are two main source categories in this sector: Solid Fuels (1.B.1), emissions from coal mining and handling, and Oil and Natural Gas (1.B.2), emissions from the oil and natural gas industries. The main source of emissions from solid fuels is CH_4 contained in coal bed, whereas fugitive emissions, venting, flaring, volatilization, and accidents are the main emission sources in the oil and natural gas industries.

In 2008, GHG emissions from fugitive emission from fuels were 446 Gg-CO₂ and accounted for 0.03 % of the Japan's total GHG emissions (excluding LULUCF). The emissions have decreased by 85 % compared to 1990.

Gas	IPCC Category			Unit	1990	1995	2000	2005	2006	2007	2008
	1.B.1 Solid Fuels	a. Coal Mining	i. Underground Mines	Gg-CH ₄	132.630	63.450	36.114	3.075	2.736	1.896	1.551
			ii. Surface Mines	Gg-CH ₄	1.009	0.582	0.511	0.428	0.508	0.555	0.631
	1.B.2	a. Oil		Gg-CH ₄	1.349	1.755	1.419	1.408	1.317	1.344	1.318
CH₄		b. Natural Gas		Gg-CH ₄	8.949	9.874	10.984	13.296	14.310	15.439	15.342
		c. Venting	c. Venting	Gg-CH ₄	0.581	0.860	0.532	0.512	0.455	0.462	0.470
		Flaring	c. Flaring	Gg-CH ₄	0.108	0.140	0.113	0.126	0.127	0.136	0.136
		total			144.626	76.661	49.674	18.845	19.453	19.832	19.448
		totai		Gg-CO ₂ eq	3,037.142	1,609.871	1,043.147	395.740	408.505	416.470	408.416
	1.B.1 Solid Fuels	a. Coal Mining	i. Underground Mines	Gg-CO ₂	NE	NE	NE	NE	NE	NE	NE
			ii. Surface Mines	Gg-CO ₂	NE	NE	NE	NE	NE	NE	NE
	1.B.2 a. Oil b. Natural Gas			Gg-CO ₂	0.142	0.200	0.139	0.148	0.119	0.113	0.114
CO_2				Gg-CO ₂	0.253	0.273	0.305	0.384	0.416	0.455	0.453
		c. Venting	c. Venting	Gg-CO ₂	0.005	0.007	0.005	0.004	0.004	0.004	0.004
		Flaring	c. Flaring	Gg-CO ₂	36.224	50.442	35.579	37.064	35.350	36.953	37.272
		total		Gg-CO ₂	36.624	50.923	36.028	37.599	35.889	37.526	37.843
	1.B.1 Solid Fuels	a. Coal Mining	i. Underground Mines	Gg-N ₂ O							
			ii. Surface Mines	Gg-N ₂ O							
	1.B.2	a. Oil		Gg-N ₂ O	3.06E-07	3.40E-07	3.74E-07	5.10E-07	3.06E-07	2.04E-07	2.04E-07
NO		b. Natural Gas		Gg-N ₂ O							
N ₂ O		c. Venting	c. Venting	Gg-N ₂ O							
		Flaring	c. Flaring	Gg-N ₂ O	0.00036	0.00050	0.00036	0.00038	0.00037	0.00039	0.00039
		total			0.00036	0.00050	0.00036	0.00038	0.00037	0.00039	0.00039
					0.11296	0.15554	0.11225	0.11842	0.11401	0.11960	0.12048
		Total of all gas		Gg-CO _{3eq}	3,073.879	1,660.949	1,079.287	433.458	444.509	454.116	446.379

Table 3-32 Emission trends of the fugitive emissions subsector (1.B)

3.3.1. Solid Fuels (1.B.1.)

3.3.1.1. Coal Mining and Handling (1.B.1.a.)

3.3.1.1.a. Underground Mines (1.B.1.a.i.)

a) Source/Sink Category Description

Coal contains CH_4 that forms during the coalification process. Most will have been naturally released from the ground surface before mine development, but mining releases the CH_4 remaining in coal beds into the atmosphere.

The number of operational coal mines in Japan has decreased and coal production has decreased

greatly as well. As a result, the amount of the CH₄ emissions from coal mining has shown a yearly decrease.

Furthermore, the coal mining practices have changed recently, resulting in the decreasing trend of CH_4 IEF. Specifically, coal is now mined in more shallow areas, therefore emitting less CH_4 . This is because deep areas are costly to mine compared to coal in shallow areas. Additionally, areas which have been previously mined, therefore already releasing CH_4 , are re-mined for coal, using the latest technology. This contributes to low CH_4 emission per amount of coal mined.

b) Methodological Issues

• Estimation Method

Mining Activities

Emissions from mining activities were drawn from actual measurements obtained from individual coal mines, in accordance with Decision Tree of the *Good Practice Guidance (2000)* (Page 2.72, Fig. 2.10).

> Post-Mining Activities

Emissions from post-mining activities were estimated using the Tier 1 method, which uses default emission factors in accordance with Decision Tree of the *Good Practice Guidance (2000)* (Page 2.73, Fig. 2.11). It was estimated by multiplying the amount of coal mined from underground mining by the emission factor.

• Emission Factors

> Mining Activities

The emission factor for mining activities was established by dividing the emissions of CH_4 gas identified in a survey by Japan Coal Energy Center (J-COAL), by the production volume of coal from underground mines.

Item	Unit	1990	1995	2000	2005	2006	2007	2008	Reference
Coal Production of Underground Mines	kt	6,775	5,622	2,364	738	745	617	536	Surveyed by J-COAL
CH4 Total Emissions	1000m ³	181,358	80,928	48,110	2,781	2,258	1,319	1,001	Surveyed by J-COAL
CH4 Total Emissions	Gg-CH4	121.5	54.2	32.2	1.9	1.5	0.9	0.7	=CH4 [1000m ³] / 1000 X 0.67 [Gg/10 ⁶ m ³]
Emission Factor	kg-CH4/t	17.9	9.6	13.6	2.5	2.0	1.4	1.3	CH ₄ Total Emissions

Table 3-33 Emission factors for mining activities – Underground mines

> Post-Mining Activities

Due to the lack of data for emissions from post-mining activities in Japan, emission factors were calculated (1.64 [kg CH₄/t]) by converting the median value (2.45 m³/t) of the default values ($0.9 - 4.0 m^3$ /t) given in the *Revised 1996 IPCC Guidelines* by the density of CH₄, 0.67 (1,000 t/10⁶ m³) at 20°C and 1 atmosphere.

• Activity Data

➤ Mining Activities, Post-Mining Activities

The value used for activity data for underground mining and post-mining activities was derived by subtracting the open-cut mining production from the total coal production as given in the *Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke* prepared by the Ministry of Economy, Trade and Industry and the data provided by Japan Coal Energy Center (J-COAL).

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Total Coal Production	kt	7,980	6,317	2,974	1,249	1,351	1,280	1,290
Surface Mines	kt	1,205	695	610	511	607	663	754
Underground Mines	kt	6,775	5,622	2,364	738	745	617	536

c) Uncertainties and Time-series Consistency

• Uncertainties

Uncertainty for CH_4 emissions from mining activities was calculated to be 5% based on the values of measurement error and error of gas flow velocity fluctuation.

Uncertainty for CH_4 emissions from post-mining activities was 5%, which is the value of the default data in *Good Practice Guidance (2000)*. A summary of uncertainty assessment methods is provided in Annex 7.

• Time-series Consistency

The CH₄ emissions data for mining activities in underground mines have been derived from *Japan Coal Energy Center* (J-COAL) statistics consistently since FY 1990.

Total coal production and coal production on surface mines were provided by the *Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke* prepared by the Ministry of Economy, Trade and Industry from FY 1990 to FY 2000..Thereafter, they have been provided by the Japan Coal Energy Center (J-COAL), because categories of open-cut mining production and total coal production in the *Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke* is no longer conducted. The data from the *Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke* is no longer conducted. The data from the *Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke* prepared by the Ministry of Economy, Trade and Industry until 2000 are provided by Japan Coal Energy Center (J-COAL). Therefore, total coal production data from both of these sources are same and have been used in a consistent manner since FY 1990.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)*. The QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. Details of the QA/QC activities are provided in Annex 6.

In order to ensure safety of coal mine workers in Japan, monitoring the concentration of CH_4 and CO in coal mines is ordained by law. Under the law, mining companies must set rules on monitoring management. Companies monitor accurately under strict management and checks, and compile relevant reports. Furthermore, national authorities regularly check monitoring measurements and safety reports.

e) Source-specific Recalculations

There have been no recalculations to emissions from this source category.

f) Source-specific Planned Improvements

There are no major planned improvements in this source category.

3.3.1.1.b. Surface Mines (1.B.1.a.ii.)

a) Source/Sink Category Description

This category provides the estimation methods for fugitive emissions of CH_4 occur during the coal mining and post-mining activities on surface mines.

Although a reporting column is provided for CO_2 emissions associated with coal mining, in the absence of a default emission factor, emissions from this source were reported as "NE". Coal mining exists in Japan, and, depending on the CO_2 concentration in the coal being mined, the CO_2 may be released into the atmosphere during mining activity. Although it is believed that coal beds in Japan do not contain CO_2 at a concentration level that is higher than that in the atmosphere, emissions cannot be calculated because of the absence of actual measurements. Because of the absence as well of a default value for CO_2 emissions associated with coal mining, emissions from this source are not reported.

b) Methodological Issues

• Estimation Method

➤ Mining Activities

 CH_4 emissions were calculated using the Tier 1 method and the default emission factor in accordance with Decision Tree of the *Good Practice Guidance (2000)* (Page 2.71, Fig. 2.9).

> Post-Mining Activities

 CH_4 emissions were calculated using the Tier 1 method and the default emission factor in accordance with Decision Tree of the *Good Practice Guidance (2000)* (Page 2.73, Fig. 2.11). (Refer to *1B1-2008.xls* for the calculation process.)

Both were calculated by multiplying the amount of coal mined from open-cut mining by the relevant emission factors.

• Emission Factors

➤ Mining Activities

A value (0.77 [kg-CH₄/t-coal]) was used as the emission factor for mining activities. It was derived by converting the median (1.15 [m³/t]) of the default values given in the *Revised 1996 IPCC Guidelines* (0.3–2.0 [m³/t]), using the concentration of CH₄ at one atmospheric pressure and 20°C (0.67 [Gg/10⁶m³]).

> Post-Mining Activities

A value (0.067 [kg-CH₄/t-coal]) was used as emission factor for post-mining activities. It was derived by converting the median (0.1 [m³/t]) of the default values given in the Revised 1996 IPCC Guidelines (0–0.2 [m³/t]), using the concentration of CH₄ at one atmospheric pressure and 20°C (0.67 [Gg/10⁶m³]).

• Activity Data

The figure for the open-cut production given in the Yearbook of Production, Supply and Demand of

Petroleum, Coal and Coke and the *Yearbook of Mineral Resources and Petroleum Products Statistics* prepared by the Ministry of Economy, Trade and Industry and the data provided by the Japan Coal Energy Center (J-COAL) were used as the activity data for mining and post-mining activities (see Table 3-34).

c) Uncertainties and Time-series Consistency

• Uncertainties

The uncertainties for emission factors were applied 200% of default data indicated in the *Good Practice Guidance (2000)*. The uncertainty of activity data was 10%; this was determined as a standard value by the Committee for the Greenhouse Gas Emission Estimation Methods. As a result, the uncertainties for emissions were estimated to 200% for CH_4 from surface mines. Summary of uncertainty assessment methods are provided in Annex 7.

• Time-series Consistency

Total coal production and coal production on surface mines were provided by the *Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke* prepared by the Ministry of Economy, Trade and Industry from FY 1990 to FY 2000. Thereafter, they have been provided by the Japan Coal Energy Center (J-COAL), because categories of open-cut mining production and total coal production in the *Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke* is no longer conducted. The data from the *Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke* is no longer conducted. The data from the *Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke* prepared by the Ministry of Economy, Trade and Industry until 2000 are provided by Japan Coal Energy Center (J-COAL). Therefore, total coal production data from both of these sources are same and have been used in a consistent manner since FY 1990.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)*. The QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. Details of the QA/QC activities are provided in Annex 6.

e) Source-specific Recalculations

There have been no recalculations to emissions from this source category.

f) Source-specific Planned Improvements

There are no major planned improvements in this source category.

3.3.1.2. Solid Fuel Transformation (1.B.1.b.)

In Japan, the production of briquettes is believed to meet the description of the activity of conversion to solid fuel. The process of coal briquette production includes introducing water to coal, and squeeze-drying it. Therefore, the process is not thought to involve any chemical reactions, but the emission of CO_2 , CH_4 or N_2O cannot be denied. However, as no actual measurements have been taken, however, it is not presently possible to calculate emissions. CO_2 , CH_4 and N_2O emissions associated with the conversion to solid were reported as "NE" in the absence of default values.

3.3.2. Oil and Natural Gas (1.B.2.)

3.3.2.1. Oil (1.B.2.a.)

3.3.2.1.a. Exploration (1.B.2.a.i.)

a) Source/Sink Category Description

This category provides the estimation methods for fugitive emissions of CO_2 , CH_4 and N_2O occur during the exploratory drilling of oil and gas fields and pre-production tests.

b) Methodological Issues

Estimation Method

 CO_2 , CH_4 and N_2O emissions associated with oil exploration and pre-production testing was calculated using the Tier 1 Method in accordance with the Decision Tree of *Good Practice Guidance* (2000). Emissions were calculated by multiplying the number of exploratory wells, and the number of wells tested for oil and gas during pre-production testing, by their respective emission factors.

• Emission Factors

The emission factors from the *Good Practice Guidance (2000)* for drilling and testing wells were used.

Table 3-35 Emission factors for exploratory and testing wells [Gg/number of wells]

	CH_4	CO_2	N ₂ O
Drilling	4.3×10^{-7}	2.8×10^{-8}	0
Testing	2.7×10^{-4}	5.7×10^{-3}	6.8×10^{-8}

Source: Good Practice Guide (2000), p. 2.86, Table 2.16

• Activity Data

➤ Drilling

The data given in the *Natural Gas Data Year Book* compiled by the Natural Gas Mining Association were used for exploratory wells.

➤ Testing

It was not possible to readily ascertain statistically the number of wells in which oil and gas testing had been carried out, and even where such tests are conducted, not all wells are successful. For that reason, the number of wells tested for oil and gas used the median values of the number of exploratory wells and the number of successful wells shown in the *Natural Gas Data Year Book*.

For both oil and gas, the calendar year values were used as the data for the most recent year.

Table 3-36 Trends in the number of exploratory wells and those tested for oil and gas

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Number of Wells Drilled	wells	8	7	7	10	7	6	6
Number of Wells Succeeded	wells	1	3	4	5	2	0	0
Number of Wells Tested	wells	5	5	6	8	5	3	3

c) Uncertainties and Time-series Consistency

• Uncertainties

Because all emission factors for exploration of oil and natural gas were the default values in *Good Practice Guidance* (2000), the uncertainties for emission factors were assessed based on default values (25%) described in *Good Practice Guidance* (2000). The uncertainty of activity data was 10%; this was determined as a standard value by the Committee for the Greenhouse Gas Emission Estimation Methods. The uncertainties for emissions were estimated to be 27% each for the fugitive emissions of CO_2 , CH_4 , and N_2O that occur during the exploration of oil and natural gas. A summary of uncertainty assessment methods are provided in Annex 7.

• Time-series Consistency

Emission factors have used consistent values since FY 1990. Activity data have been calculated by using annual data from the *Natural Gas Data Year Book* and a consistent estimation method since FY 1990.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)*. The QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. Details of the QA/QC activities are provided in Annex 6.

e) Source-specific Recalculations

There have been no recalculations to emissions from this source category.

f) Source-specific Planned Improvements

There have been no major planned improvements in this source category.

3.3.2.1.b. Production (1.B.2.a.ii.)

a) Source/Sink Category Description

This category provides the estimation methods for fugitive emissions of CO_2 and CH_4 occur during production of crude oil, as well as when measuring instruments are lowered into oil wells during inspection of operating oil fields.

b) Methodological Issues

• Estimation Method

Emissions relating to fugitive emissions from petroleum production and servicing of oilfield production wells were calculated using the Tier 1 method in accordance with Decision Tree of the *Good Practice Guidance (2000)* (Page 2.81, Fig. 2.13). Emissions were calculated by multiplying the amount of crude oil production by the emission factor.

• Emission Factors

> Production

The default value for conventional crude oil given in the *Good Practice Guidance (2000)* was used for the emission factor of fugitive emissions from petroleum production. (The median of the default values was used for CH_4).

Table 3-37 EF for fugitive emissions from petroleum production $[Gg/10^3 kl]$

		$CH_{4}^{(1)}$	CO ₂	$N_2O^{(2)}$
Conventional Oil	Fugitive emissions	1.45×10^{-3}	2.7×10^{-4}	0

Source: GPG (2000) Table 2.16

1) The default value is $1.4 \times 10^{-3} - 1.5 \times 10^{-3}$

2) Excluded from calculations, as the default value is 0 (zero)

Servicing

The default value given in the *Good Practice Guidance* (2000) was used as the emission factor for fugitive emissions from servicing of petroleum production wells.

Table 3-38 Emission factors for fugitive emissions from servicing of petroleum production wells

[Gg/number of wells]	[Gg/nun	iber of	wells]	
----------------------	---------	---------	--------	--

	CH_4	CO ₂	$N_2O^{(1)}$
Production Well (Servicing)	6.4×10^{-5}	4.8×10^{-7}	0

Source: GPG (2000) Table 2.16

1) Excluded from calculations, as the default value is 0 (zero)

• Activity Data

> Production

The values for production of crude oil in Japan given in the Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke and the Yearbook of Mineral Resources and Petroleum Products Statistics prepared by the Ministry of Economy, Trade and Industry were used as the activity data for fugitive emissions from production. However, condensates were not included.

➤ Servicing

Because the number of oil wells and natural gas wells cannot be separated for the entire time series, the total fugitive emissions from servicing of oil and natural gas wells are reported in the subcategory *1.B.2.b.ii*. *Exploration* and is so, servicing of oil wells is included there. Crude oil is reported as "IE".

c) Uncertainties and Time-series Consistency

• Uncertainties

As the uncertainty of emission factors, default values given in the *Good Practice Guidance (2000)* (25% for CO_2 and 25% for CH_4) were applied. The uncertainty of activity data was 5%; this was determined as a standard value by the Committee for the Greenhouse Gas Emission Estimation Methods. As a result, the uncertainties for the emissions were determined to be 25% for CO_2 and for CH_4 . The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Emission factors have been used consistent values since FY 1990. Activity data have been calculated using annual data from the *Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke* and the *Yearbook of Mineral Resources and Petroleum Products Statistics* prepared by the Ministry of Economy, Trade and Industry, in a consistent manner since FY 1990.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)*. The QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. Details of the QA/QC activities are provided in Annex 6.

e) Source-specific Recalculations

There have been no recalculations to emissions from this source category.

Chapter 3. Energy

f) Source-specific Planned Improvements

There are no major planned improvements in this source category.

3.3.2.1.c. Transport (1.B.2.a.iii.)

a) Source/Sink Category Description

This category provides the estimation methods for fugitive emissions of CO_2 and CH_4 occur during the transportation of crude oil and condensate through pipelines, tank trucks, and tank cars to refineries.

b) Methodological Issues

• Estimation Method

Emissions relating to fugitive emissions associated with transport were calculated using the Tier 1 method in accordance with Decision Tree of the *Good Practice Guidance (2000)* (Page 2.81, Fig. 2.13). Emissions were calculated by multiplying the amount of crude oil or condensate production by the emission factors.

Fugitive emissions from transporting oil from domestic oilfield at sea to land and fugitive emissions from land transport were estimated. Crude oil for sea transport is carried out entirely by pipeline, and is not expected to generate any fugitive emissions. Land transport includes a number of methods, including pipeline, tank trucks, and tank cars, but it is difficult to differentiate them statistically. For that reason, it has been assumed that all of the produced oil is transported by tank trucks or tank cars in estimations.

• Emission Factors

The default values given in the Good Practice Guidance (2000) were used as the emission factors.

	CH ₄	CO_2	N ₂ O ¹⁾
Transportation of crude oil	2.5×10^{-5}	2.3×10^{-6}	0
Transportation of condensate	1.1×10^{-4}	7.2×10^{-6}	0

Table 3-39 Emission factors for transportation of crude oil and condensate [Gg/10³kl]

Source: GPG (2000) Table 2.16

1) Excluded from calculations, as the default value is 0 (zero)

• Activity Data

The values for production of oil in Japan given in the *Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke* and the *Yearbook of Mineral Resources and Petroleum Products Statistics* prepared by the Ministry of Economy, Trade and Industry, were used as the activity data for fugitive emissions from transport.

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Oil Production excluding condensate	kl	420,415	622,679	385,565	370,423	329,234	334,467	340,593
Condensate Production	kl	234,111	242,859	375,488	540,507	575,898	644,525	632,654
Oil Production	kl	654,526	865,538	761,053	910,930	905,132	978,992	973,247

Table 3-40 Production of crude oil and condensate in Japan

c) Uncertainties and Time-series Consistency

• Uncertainties

As the uncertainty of emission factors, default values given in the *Good Practice Guidance (2000)* (25% for CO_2 and 25% for CH_4) were applied. The uncertainty of activity data was 5%; this was determined as a standard value by the Committee for the Greenhouse Gas Emission Estimation Methods. As a result, the uncertainties for the emissions were determined to be 25% for CO_2 and for CH_4 . The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Emission factors have been used consistent values since FY 1990. Activity data have been calculated using annual data from the *Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke* and the *Yearbook of Mineral Resources and Petroleum Products Statistics* prepared by the Ministry of Economy, Trade and Industry, in a consistent estimation method since FY 1990.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)*. The QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. Details of the QA/QC activities are provided in Annex 6.

e) Source-specific Recalculations

There have been no recalculations to emissions from this source category.

f) Source-specific Planned Improvements

There are no major planned improvements in this source category.

3.3.2.1.d. Refining / Storage (1.B.2.a.iv.)

a) Source/Sink Category Description

This category provides the estimation methods for fugitive emissions of CH_4 occur when crude oil is refined or stored at oil refineries.

 CO_2 emissions from this source were reported as "NE". Refining / Storage activities exist in Japan and extremely small amount of CO_2 may be released into the atmosphere from the activities if CO_2 is included in crude oil. Because there is no examples of actual measurements of the CO_2 content of crude oil as well as a default value, CO_2 emissions from this source were not estimated.

b) Methodological Issues

• Estimation Method

> Oil Refining

Emissions relating to fugitive emissions from refining were calculated using the Tier 1 method in accordance with Decision Tree of the *Good Practice Guidance (2000)* (Page 2.82, Fig. 2.14).

➢ Oil Storage

Emissions relating to fugitive emissions from storage should be calculated using the Tier 1 method in accordance with Decision Tree of the *Good Practice Guidance (2000)* (Page 2.82, Fig.2.14), but as the country-specific emission factor is available for this emissions source, it was applied to the inventories instead.

• Emission Factors

> Oil Refining

With respect to the emissions factors for the fugitive emissions during the refining processes, the amount of CH_4 emitted during crude oil refining processes was considered to be negligible because fugitive emission of CH_4 was unlikely to occur in Japan during crude oil refining at normal operation. For that reason, the lower limit of the default values shown in the *Revised 1996 IPCC Guidelines* was adopted.

Table 3-41	Emission	factor	during	refining	of cru	ide oil
10010 5 11	Limbolon	ructor	uuring	renning	01 010	

Emission	Factor [kg-CH ₄ /PJ]
Oil Refining	90 ¹⁾

Source: Revised1996 IPCC Guidelines, Volume 3 Table1-58 1) The default value is 90–1,400

➢ Oil Storage

Oil is stored in either corn-roof tanks or floating-roof tanks. All oil storage in Japan adopts floating-roof tanks, which means that fugitive CH_4 emissions are considered to be very small. If fugitive CH_4 emissions were to occur, they could only occur by vaporization of oil left on the exposed wall wet with oil when the floating roof descends as the stored oil is removed; thus, the amount of fugitive CH_4 emissions would be small.

The Petroleum Association of Japan has conducted experiments relating to the evaporation of CH_4 from tank walls by modeling the floating-roof tank to calculate estimates of CH_4 emissions.

The emission factor associated with storage of crude oil is a value derived by converting the estimates of the Petroleum Association (0.007 Gg/year as at 1998) to a net calorific value and dividing it by the relevant activity data.

Table 3-42 Assumptions for calculation of emission factor during oil storag	ge
---	----

Methane Emissions	Input of Crude Oil to C	Emission Factor	
[kg-CH ₄ /year]	[PJ: Gross Calorific Value] ¹⁾	[PJ: Net Calorific Value] ²⁾	[kg-CH ₄ /PJ]
7,000	9,921	9,424.95	0.7427

1) Agency for Natural Resources and Energy, General Energy Statistics

2) Net Calorific Value = Gross Calorific Value $\times 0.95$

• Activity Data

The value used for activity data during refining and storing was the converted net calorific values of NGL and refined crude oil in petroleum refining industry taken from the *General Energy Statistics* compiled by the Agency for Natural Resources and Energy.

			1						
Item	Unit	1990	1995	2000	2005	2006	2007	2008	
Oil and LGL Refined	PJ:NCV	7,732	8,907	8,898	8,820	8,452	8,582	8,214	

Table 3-43 Amount of crude and NGL refined in Japan

c) Uncertainties and Time-series Consistency

• Uncertainties

For the uncertainty of emission factors for fugitive emissions of CH₄ occurring when crude oil is refined or stored at oil refineries, values shown in the *Revised 1996 IPCC Guidelines* are applied. The uncertainties for emission factors were applied 25% of default data indicated in the *Good Practice Guidance (2000)* in accordance with Decision Tree of uncertainty assessment of emission factor. The uncertainty for activity data was evaluated to be 0.9% by combing the uncertainty of crude oil and NGL indicated in the *General Energy Statistics*. As a result, the uncertainty assessment methods are provided in Annex 7.

• Time-series Consistency

Emission factors have been used consistent values since FY 1990. Activity data have been calculated using annual data from the *General Energy Statistics*, in a consistent estimation method since FY 1990.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)*. The QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. Details of the QA/QC activities are provided in Annex 6.

e) Source-specific Recalculations

GHG emissions from FY 2004 to FY 2007 were recalculated because of the revision of the fuel consumption from FY 2004 to FY 2007 in *General Energy Statistics*.

f) Source-specific Planned Improvements

There are no major planned improvements in this source category.

3.3.2.1.e. Distribution of Oil Products (1.B.2.a.v.)

Petroleum products are distributed in Japan, and where CO_2 and CH_4 are dissolved, it is conceivable that either or both will be emitted as a result of the relevant activity. The level of CO_2 or CH_4 emitted by the activity is probably negligible, in light of the composition of the petroleum products, but because there are no examples of measurement of the CO_2 or CH_4 content of petroleum products, it is not currently possible to calculate emissions. Emissions were reported as "NE" in the absence of the default emission factors.

3.3.2.2. Natural Gas (1.B.2.b.)

3.3.2.2.a. Exploration (1.B.2.b.i.)

There are test drillings of oil and gas fields in Japan, and it is conceivable that the activity could give rise to emissions of CO_2 , CH_4 , or N_2O . It is difficult, however, to distinguish between oilfields and gas

fields prior to test drilling, Emissions were reported as "IE" because the calculation was combined with the subcategory of *1.B.2.a.i. Fugitive Emissions Associated with Oil Exploration*.

3.3.2.2.b. Production / Processing (1.B.2.b.ii.)

a) Source/Sink Category Description

This category provides the estimation methods for CO_2 and CH_4 emissions from fugitive emissions of the production of natural gas and processing of natural gas, such as adjusting its constituent elements, and servicing natural gas production wells.

b) Methodological Issues

• Estimation Method

Fugitive emissions of the production of natural gas and processing of natural gas, such as adjusting its constituent elements, and servicing natural gas production wells was calculated using the Tier 1 method, and in accordance with Decision Tree of the *Good Practice Guidance (2000)* (Page 2.80, Fig. 2.12).

Fugitive emissions during natural gas production and conditioning processes were estimated by multiplying the amount of natural gas production by their respective emission factors. Fugitive emissions during gas field inspections were calculated by multiplying the number of production wells by the emission factor.

• Emission Factors

> Production

The default values given in the *Good Practice Guidance (2000)* were used for the emission factors of fugitive emissions during the production of natural gas. (The median of the default values was used for CH_4).

				()
Table 3-44 Emission		• • 1 •	1	1 [C /100 3]
I ADIA $3-44$ Hmission	Tactors of flightive	emissions during	nroduction of nati	$r_{2} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{2$
$1000 J^{-}TT Linisolon$	i actors or rughtive	chilliosions during	production of mate	$\operatorname{IIII}_{\operatorname{IIII}}$

			$CH_4^{(1)}$	CO ₂	$N_2O^{(2)}$
	Natural Gas Production	Fugitive Emissions	2.75×10^{-3}	9.5×10^{-5}	0
. '	CDC (2000) TE 11 2 1(

Source: GPG (2000) Table 2.16

1) The default values are $2.6 \times 10^{-3} - 2.9 \times 10^{-3}$

2) Excluded from calculations, as the default value is 0 (zero)

\triangleright Processing

The default values given in the *Good Practice Guidance (2000)* for the emission factors of fugitive emissions during processing of natural gas were used. (The median of the default values was used for CH_4).

Table 3-45 Emission	factors during	processing of	f natural gas	$[Gg/10^{\circ} m^{3}]$
---------------------	----------------	---------------	---------------	-------------------------

		$CH_4^{(1)}$	CO_2	$N_2O^{(2)}$
Processing of Natural Gas	Processing in general (General treatment plant, Sweet Gas Plants)	8.8×10 ⁻⁴	2.7×10^{-5}	0

Source: GPG (2000) Table 2.16

1) The default values are $6.9 \times 10^{-4} - 10.7 \times 10^{-4}$

2) Excluded from calculations, as the default value is 0 (zero)

> Servicing

The default values for fugitive emissions during servicing of natural gas production wells given in the *Good Practice Guidance (2000)* were used.

Table 3-46 Emission factors during servicing of natural gas production wells [Gg/number of wells]

	CH_4	CO_2	$N_2O^{(1)}$
Production Well (Servicing)	6.4×10^{-5}	4.8×10^{-7}	0

Source: GPG (2000) Table 2.16

1) Excluded from calculations, as the default value is 0 (zero)

• Activity Data

➢ Production and Processing

The production volume of natural gas in Japan given in the Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke and the Yearbook of Mineral Resources and Petroleum Products Statistics prepared by the Ministry of Economy, Trade and Industry, was used as the activity data during its production and processing.

Servicing

Because the number of oil wells and natural gas wells cannot be separated for the entire time series, the total fugitive emissions from servicing of oil and natural gas wells are reported here. The number of oil/natural gas wells shown in the *Natural Gas Data Year Book* published by the Japan Natural Gas Association was used.

Table 3-47 Natural gas production and the number of producing and capable wells

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Natural Gas Production	$10^{6} m^{3}$	2,066	2,237	2,499	3,140	3,408	3,729	3,706
Number of Producing and Capable Wells	wells	1,230	1,205	1,137	1,115	1,126	1,099	1,099

c) Uncertainties and Time-series Consistency

• Uncertainties

As the uncertainty of emission factors for the CO_2 and CH_4 emissions from fugitive emissions of the production of natural gas, default values given in the *Good Practice Guidance (2000)* (25% for CO_2 and 25% for CH_4) were applied. The uncertainty of activity data was 5%; this was determined as a standard value by the Committee for the Greenhouse Gas Emission Estimation Methods. As a result, the uncertainties for the emissions were determined to be 25% for CO_2 and for CH_4 .

As the uncertainty of emission factors for the CO_2 and CH_4 emissions from fugitive emissions of the processing of natural gas, default values given in the *Good Practice Guidance (2000)* (25% for CO_2 and 25% for CH_4) were applied. The uncertainty of activity data was 5%; this was determined as a standard value by the Committee for the Greenhouse Gas Emission Estimation Methods. As a result, the uncertainties for the emissions were determined to be 27% for CO_2 and for CH_4 .

The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Emission factors have used consistent values since FY 1990. Activity data have been calculated by using annual data on the production volume of natural gas from the *Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke* and the *Yearbook of Mineral Resources and Petroleum Products Statistics* prepared by the Ministry of Economy, Trade and Industry, and on the number of oil/natural gas wells from the *Natural Gas Data Year Book*. A consistent estimation method has been used since FY 1990.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)*. The QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. Details of the QA/QC activities are provided in Annex 6.

e) Source-specific Recalculations

There have been no recalculations to emissions from this source category.

f) Source-specific Planned Improvements

There are no major planned improvements in this source category.

3.3.2.2.c. Transmission (1.B.2.b.iii.)

a) Source/Sink Category Description

This category provides the estimation methods for CH_4 emissions in conjunction with transmission of domestically produced natural gas, such as the release of gas when relocating and building pipelines, and the release of gas used to operate pressure regulators.

Emissions from CO_2 in this source are reported as "NA". Approximately 90% of town gas is based on LNG and is free of CO_2 . However, domestically produced natural gas from some of Japan's natural gas formations contains CO_2 . Because nearly all of this CO_2 is removed at natural gas production plants before the gas is sent to pipelines, the natural gas provided by town gas suppliers likely contains hardly any CO_2 . Emission of CO_2 removed at natural gas production plants is assigned to natural gas production and processing (1.B.2.b.ii).

b) Methodological Issues

• Estimation Method

Total natural gas pipeline length is multiplied by a Japan-specific emission factor to calculate CH_4 emissions occurring in conjunction with releases by pipeline construction and relocation, and releases of gas used to operate pressure regulators.

• Emission Factors

The amount of CH_4 emitted from a 1-km length of domestic natural gas pipeline over a 1-y period is defined as the emission factor, and is set by dividing the CH_4 emission amount by pipeline length. Due to the insufficiency of past data, it was decided to use a uniform emission factor that was set using FY2004 data for 1990 and subsequent years. Data were provided by the Japan Natural Gas Association.

i) Gas Releases Due To Pipeline Relocation

The equation below was used as the basis for calculating the CH_4 amount released when in-pipe pressure is reduced for relocating gas pipelines. Further, after relocation work is complete it is necessary to flush the pipeline with natural gas, which is released before introduction into the pipeline. The amount of CH_4 is determined by measuring with a gas meter or calculating it using means such as pipeline pressure when introducing the gas. These were calculated for each pipeline relocation and the annual cumulative total determined.

 CH_4 emission amount = volume of pipe section with reduced pressure × pressure before reduction (absolute pressure) / atmospheric pressure (absolute pressure) × CH_4 content (CH_4 per Nm³)

ii) Gas Releases Due To Pipeline Installation

After installation work is complete, it is necessary to flush the pipeline with natural gas, which is released before introduction into the pipeline. The amount of CH_4 is determined by measuring with a gas meter or calculating it using means such as pipeline pressure when gas is introduced, and their annual cumulative total determined.

iii) Release of Gas for Operating Pressure Regulators

Calculated as follows the amount of natural gas used in accordance with specifications of pressure regulators for reducing gas supply pressure.

 CH_4 emission amount = amount used according to pressure regulator specifications × number of regulators installed × CH_4 content (CH_4 per Nm^3)

	Amount of gas used	Number of work	Number of establishment	Amount of gas releases	CH ₄ conversion factor	CH ₄ releases
	(Nm ³ /day)			$(k-Nm^3)$	$(t-CH_4/kNm^3)$	$(t-CH_4)$
Pipeline Relocation & Installation		77		843	0.645	544
Gas for Operating Pressure Regulators	19		48	333	0.643	215
Total						759

Table 3-48 FY2004 CH₄ emissions as a concomitant of natural gas transmission

➤ Total Pipeline Length

We used 2,090 km as the total length of natural gas pipeline of the main association members covered by an FY2004 study by the Japan Natural Gas Association, which is the pipeline whose emissions are of concern here.

Emission factor = CH_4 release amount / total pipeline length
$=759 \text{ t-CH}_4 / 2090 \text{ km}$
$=0.363 \text{ t-CH}_{4}/\text{km}$

• Activity Data

The length of natural gas pipeline laid in Japan given by the Japan Natural Gas Association in its *Natural Gas Data Year Book* was used as the activity data of the length of natural gas pipeline laid.

	Tuoto e 19 Zengai or natura gas p.penne instantation							
Item	Unit	1990	1995	2000	2005	2006	2007	2008
Natural Gas Pipeline length	km	1,984	2,195	2,434	2,721	2,903	2,987	2,987

Table 3-49 Length of natural gas pipeline installation

c) Uncertainties and Time-series Consistency

• Uncertainties

A country-specific emission factor is used for CH_4 in conjunction with transmission. As the uncertainty of emission factors, default values given in the *Good Practice Guidance (2000)* (25% for CH_4) were applied because default value of expert opinion or *Good Practice Guidance (2000)* is adopted in accordance with Decision Tree of uncertainty assessment of emission factor. The uncertainty of activity data was 10%; this was determined as a standard value by the Committee for the Greenhouse Gas Emission Estimation Methods. As a result, the uncertainties for the emissions were determined to be 27% for CH₄. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Emission factors have been used consistent values since FY 1990. Activity data have been calculated using annual data from the *Natural Gas Data Year Book*, in a consistent estimation method since FY 1990.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)*. The QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. Details of the QA/QC activities are provided in Annex 6.

e) Source-specific Recalculations

There have been no recalculations to emissions from this source category.

f) Source-specific Planned Improvements

The CH_4 emissions in conjunction with transmission of domestically produced natural gas are estimated as premise the full transmission of natural gas is sent to pipelines(1.B.2.b.iii.), however, there are some cases of the transmission of LNG is sent by tank trucks or tank cars recently. LNG transported by tank trucks and tank cars is basically sealed. There is no research on the actual situation for whole in Japan, and no default value, so this current estimation method is adopted. If sufficient data on CH_4 emissions from transmission of natural gas by the tank trucks or tank cars is obtained in the future, the possibilities of estimation methods for this category should be considered.

3.3.2.2.d. Distribution (1.B.2.b.iv.-)

a) Source/Sink Category Description

This category provides the estimation methods for CH_4 emitted from the normal operation of LNG receiving terminals, town gas production facilities, and satellite terminals, as well as during regular maintenance or construction, and for CH_4 emitted from town gas supply networks.

In Japan, liquefied petroleum gas, coal, coke, naphtha, crude oil, and natural gas are refined and blended at gas plants into gas, which, after being conditioned to produce a certain calorific value, is

supplied to urban areas through gas lines. Such gas fuel is called "town gas", of which more than 90% is LNG-based.

Japan reports the emissions associated with the production of town gas (Natural Gas Supplies) in the category of 1.B.2.b. Natural Gas Distribution. The town gas production is accounted for in this category, even though it may not meet the definition in the Revised 1996 IPCC Guidelines exactly, because of the lack of a category more appropriate for reporting of emissions from town gas production.

Emissions from CO_2 in this source are reported as "NA". More than 90% of town gas is based on LNG and is free of CO₂. However, domestically produced natural gas from some of Japan's natural gas formations contains CO₂. Because nearly all of this CO₂ is removed at natural gas production plants before the gas is sent to pipelines, the natural gas provided by town gas suppliers likely contains hardly any CO₂. Emission of CO₂ removed at natural gas production plants is assigned to natural gas production and processing (1.B.2.b.ii).

b) Methodological Issues

Estimation Method

> LNG Receiving Terminals, Town Gas Production Facilities, and Satellite Terminals (Natural Gas Supplies)

Some of the main emission sources are gas samples taken for analysis and residual gas emitted at times such as regular maintenance of manufacturing facilities. The Tier 1 method is employed in accordance with the Good Practice Guidance (2000) decision tree (page 2.82, Fig. 2.14). However, because it is possible to use a Japan-specific emission factor, the amounts of liquefied natural gas and natural gas used as town gas feedstock were multiplied by a Japan-specific emission factor to obtain emissions.

Town Gas Supply Networks

CH₄ emissions from high-pressure pipelines and from medium- and low-pressure pipelines and holders are calculated by multiplying the total length of city gas pipeline by the emission factor. CH_4 emissions from service pipes are calculated by multiplying the number of users by the emission coefficient.

• Emission Factors

> LNG Receiving Terminals, Town Gas Production Facilities, and Satellite Terminals (Natural Gas Supplies)

The emission factor was calculated by dividing emission of CH₄ during the normal operation of LNG receiving terminals, town gas production facilities, and satellite terminals in Japan, as well as during regular maintenance or construction, by the calorific value of the raw material input (LNG, natural gas). The emission factor calculated using FY1998 data was 905.41 (kgCH₄/PJ), while that calculated using FY2007 data was 264.07 (kgCH₄/PJ). The main reason for the emission factor change was the reduction in CH₄ emissions, which was due to progress in reduction measures such as the installation of new sampling and recovery lines used for gas analyses (changes to lines that recover gas from atmospheric dispersion) in LNG receiving terminals and town gas production facilities. Because measures to reduce CH_4 emissions have been gradually implemented, emission factors for the period from FY1999 to FY2006 were set by linear interpolation. At this time, measures to reduce CH_4 emissions have been generally implemented, thereby affording little expectation of major change in the emission factor for the time being. Therefore, the FY2007 emission factor value will be kept the same for FY2008 and subsequent years.

> Town Gas Supply Networks

Emission sources in the supply of domestically produced town gas are (i) high-pressure pipelines, (ii) medium- and low-pressure pipelines and holders, and (iii) service pipes. FY2004 data were used to calculate CH_4 emissions for each of the minor categories of each of the emission sources shown in Table 3-50 The emission factor for high-pressure pipelines and for medium- and low-pressure pipelines and holders was set using the CH_4 amount emitted from 1 km of the town gas pipeline length during 1 y, while that for service pipes was set using the CH_4 amount emitted from 1000 users' homes during 1 y.

H	Emission Sources	CH ₄ emissions (t/y) ¹⁾	Source sizes	Emission factors
High-pressu re pipelines			11	0.100 t-CH ₄ /km
Medium- and low-pressur e pipelines and holders	Construction and demolition Fugitive emissions Burner and other inspections Holder construction and overhauling	93	Total medium- and low-pressure pipeline 226,016 km	0.411 kg-CH ₄ /km
Service pipes	Installing service pipes Post-installation purging Removal Changing meters Fugitive emissions, etc. Rounds for opening valves and regular maintenance Equipment repairs (Especially high emissions when doing work at user sites (homes))	19	User homes 27,298,000	0.696 kg-CH4/1000 homes

	•••	• 1•	1	(Established by FY2004	1 / \
	emiccione from four	n aga minelinea gn/	d emission factors	(Hetabliched by HY 7001/	datal
$1000 J^{-}J0 CIIA$	CHIISSIONS HOM LOWI	i gas pipennes and	a chilosion raciors	L_{2}	uala

• Activity Data

> LNG Receiving Terminals, Town Gas Production Facilities, and Satellite Terminals (Natural Gas Supplies)

The amounts of LNG and natural gas shown in *General Energy Statistics* (Agency for Natural Resources and Energy) as used as raw material for town gas.

Item	Unit	1990	1995	2000	2005	2006	2007	2008
LNG Consumption with Town Gas Production	PJ	464	676	864	1,230	1,380	1,468	1,439
Natural Gas Consumption with Town Gas Production	PJ	40	48	61	86	110	126	131

Table 3-51 Liquefied natural gas used as material for town gas

Town gas supply networks

Estimates use the high-pressure pipeline length, total medium- and low-pressure pipeline length, and number of users given in the *Gas Industry Yearbook* of the Agency for Natural Resources and Energy Gas Market Division.

Table 3-52 High-pressure pipeline length, total medium- and low-pressure pipeline length,

Item	Unit	1990	1995	2000	2005	2006	2007	2008
High-pressure pipeline length	km	1,067	1,281	1,443	1,898	1,973	2,098	2,029
Total Medium- and Low-pressure pipeline	km	180,239	197,474	214,312	230,430	233,741	236,729	239,336
number of users	10^3 houses	21,334	23,580	25,858	27,762	28,082	28,377	28,599

and number of users

c) Uncertainties and Time-series Consistency

• Uncertainties

Although CH_4 emission factor of natural gas supplies is country-specific, the uncertainty of emission factor is the default value (25%) given in the *Good Practice Guidance (2000)* because the application of statistical treatment was considered to be unsuitable. The uncertainty of activity data was determined to be 8.7% by combing of the uncertainty of LNG and natural gas presented in *General Energy Statistics*. The uncertainties for emissions were estimated to be 26% for CH_4 emissions from natural gas supplies.

A country-specific emission factor is used for CH_4 emissions from town gas supply networks. The uncertainties for emission factors of town gas supply network were the default values presented in *Good Practice Guidance (2000)* (25% for CH_4) were applied because default value of expert opinion or *Good Practice Guidance (2000)* is adopted in accordance with Decision Tree of uncertainty assessment of emission factor. For the uncertainty for activity data, the value preset by the Committee for Greenhouse Gas Emission Estimation Methods (10%) was applied. The uncertainties for emissions were estimated to be 27% for CH_4 emissions from town gas supply network. A summary of uncertainty assessment methods are provided in Annex 7.

• Time-series Consistency

Emission factors have used consistent values since FY 1990. Activity data have been calculated using annual data on LNG and natural gas consumption and town gas production from *General Energy Statistics* and data on the town gas supply network from the *Gas Industry Yearbook*. A consistent estimation method has been used since FY 1990.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)*. The QC activities focus on the verification of the parameters for activity data and emission factors and the

archive of reference materials. Details of the QA/QC activities are provided in Annex 6.

e) Source-specific Recalculations

GHG emissions in FY 2007 were recalculated because of the revision of the fuel consumption in FY 2007 in *General Energy Statistics*.

The emissions since FY 2005 have been recalculated because the activity data was changed to fiscal year data from calendar years data since FY 2005 reported in the *Natural Gas Data Year Book* which is used as the basis for activity data in the category.

f) Source-specific Planned Improvements

There are no major planned improvements in this source category.

3.3.2.2.e. At industrial plants and power station / in residential and commercial sectors (1.B.2.b. v.)

Conceivable sources of these CH_4 emissions include gas pipe work in buildings, but because these emissions are included in those of "Natural Gas Distribution" (distribution through the town gas network) (1.B.2.b.iv), CH_4 emissions from this source are reported as "IE." Additionally, because CO_2 is basically not included among town gas constituents, CO_2 emissions from this source are reported as "NA."

3.3.2.3. Venting and Flaring (1.B.2.c.)

Fugitive emissions of CO_2 and CH_4 occur from venting during oil field development, crude oil transportation, refining processes, and product transportation in the petroleum industry and as well as during gas field development, natural gas production, transportation, and processing in natural gas industry.

Flaring during the above processes also emits CO₂, CH₄, and N₂O.

3.3.2.3.a. Venting (Oil) (1.B.2.c.-venting i.)

a) Source/Sink Category Description

This category provides the estimation methods for CO_2 and CH_4 from venting in the petroleum industry.

b) Methodological Issues

• Estimation Method

Emissions from venting in the petroleum industry were calculated using the Tier 1 Method in accordance with the Decision Tree of *Good Practice Guidance (2000)* (Page 2.81, Fig. 2.13) by multiplying the amount of crude oil production by the default emission factors.

• Emission Factors

The default values for conventional oil given in the *Good Practice Guidance (2000)* were used for the emission factors of oilfield venting. (The median of the default values was used for CH_4).

			8	
		$CH_4^{(1)}$	CO_2	$N_2O^{(2)}$
Conventional Oil	Venting valves [Gg/1000 m ³]	1.38×10^{-3}	1.2×10^{-5}	0

Table 3-53 Emission factors of oilfield venting

Source: GPG (2000) Table 2.16

1) The default values are $6.2 \times 10^{-5} - 270 \times 10^{-5}$

2) Excluded from calculations, as the default value is 0 (zero)

• Activity Data

The production volume of oil in Japan given by the Ministry of Economy, Trade and Industry in its *Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke* and the *Yearbook of Mineral Resources and Petroleum Products Statistics* was used as the activity data of fugitive emissions from oilfield venting (see Table 3-40).

c) Uncertainties and Time-series Consistency

Uncertainties

As the uncertainty of emission factors, default values given in the *Good Practice Guidance (2000)* (25% for CO_2 and CH_4) were applied. The uncertainty of activity data was 5%; this was determined as a standard value by the Committee for the Greenhouse Gas Emission Estimation Methods. As a result, the uncertainties for the emissions were determined to be 25% for CO_2 and N_2O . The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Emission factors have been used consistent values since FY 1990. Activity data have been calculated using annual data from the *Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke* and the *Yearbook of Mineral Resources and Petroleum Products Statistics,* in a consistent estimation method since FY 1990.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)*. The QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. Details of the QA/QC activities are provided in Annex 6.

e) Source-specific Recalculations

There have been no recalculations to emissions from this source category.

f) Source-specific Planned Improvements

There have been no major planned improvements in this source category.

3.3.2.3.b. Venting (Gas) (1.B.2.c.-venting ii.)

 CO_2 and CH_4 emissions from venting in the natural gas industry were considered only for the amount during transportation because *Good Practice Guidance* (2000) provides emissions factors only for transportation. Intentional CO_2 emissions from natural gas pipelines are reported as "NA" because CO_2 emissions during Transmission of natural gas are considered as "NA" (1.B.2.b.iii.) Intentional CH_4 emissions from natural gas pipelines are reported as "IE" because they are included in emissions during natural gas transmission (1.B.2.b.iii).

3.3.2.3.c. Venting (Oil and Gas) (1.B.2.c.-venting iii.)

Statistical data are reported for two categories of petroleum and natural gas in Japan. As a result, fugitive emissions from venting in the combined petroleum and natural gas industries were reported as "IE" since they were accounted for respectively in the emissions from venting in the petroleum industry (1.B.2.c.i) and the natural gas industry (1.B.2.c.ii.)

3.3.2.3.d. Flaring (Oil) (1.B.2.c.-flaring i.)

a) Source/Sink Category Description

This category provides the estimation methods for CO_2 , CH_4 , and N_2O from flaring in the petroleum industry.

b) Methodological Issues

• Estimation Method

 CO_2 , CH_4 , and N_2O emissions from flaring in the petroleum industry were calculated using the Tier 1 Method in accordance with the Decision Tree of *Good Practice Guidance (2000)*, by multiplying the amount of crude oil production in Japan by the default emissions factors.

Emission Factors

In the absence of actual measurement data or country-specific emission factors in Japan, the default values shown in *Good Practice Guidance* (2000) were used. It should be noted that the median values were used for CH_4 emissions.

Table 3-54 Emission	factors	for	flaring	in th	e oil industry

		CH_4 ¹⁾	CO_2	N ₂ O
Flaring (Conventional Oil)	$Gg/10^{3} m^{3}$	1.38×10^{-4}	6.7×10^{-2}	6.4×10 ⁻⁷

Source: Good Practice Guidance (2000), Table 2.16

1) Default value: 0.05×10^{-4} to 2.7×10^{-4}

• Activity Data

For the calculation of activity data for this emission source, the amounts of crude oil production shown in the *Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke* and the *Yearbook of Natural Resources and Petroleum Products*, both published by Ministry of Economy, Trade and Industry, were used. The production of condensate was excluded from the calculation (see Table 3-40).

c) Uncertainties and Time-series Consistency

• Uncertainties

As the uncertainty of emission factors, default values given in the *Good Practice Guidance (2000)* (25% for CO₂, CH₄, and N₂O) were applied. The uncertainty of activity data was 5%; this was determined as a standard value by the Committee for the Greenhouse Gas Emission Estimation Methods. As a result, the uncertainties for the emissions were determined to be 25% for CO₂, CH₄, and N₂O. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Emission factors have been used consistent values since FY 1990. Activity data have been calculated using annual data from the Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke and the Yearbook of Mineral Resources and Petroleum Products Statistics, in a consistent estimation

method since FY 1990.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)*. The QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. Details of the QA/QC activities are provided in Annex 6.

e) Source-specific Recalculations

There have been no recalculations to emissions from this source category.

f) Source-specific Planned Improvements

There have been no major planned improvements in this source category.

3.3.2.3.e. Flaring (Natural Gas) (1.B.2.c.-flaring ii.)

a) Source/Sink Category Description

This category provides the estimation methods for CO_2 , CH_4 , and N_2O from flaring in the natural gas industry.

b) Methodological Issues

• Estimation Method

 CO_2 , CH_4 , and N_2O emissions associated with flaring in the natural gas industry were calculated using the Tier 1 Method in accordance with the Decision Tree of *Good Practice Guidance (2000)*. Emissions were calculated by multiplying the amount of production of natural gas by the emission factors. The total emissions associated with flaring both during gas production and processing were reported as the emissions from flaring in the natural gas industry.

• Emission Factors

The default values for fugitive emissions from flaring (Natural Gas) given in the *Good Practice Guidance (2000)* were used.

		Unita	00	CU	NO
		Units	CO_2	CH ₄	N ₂ O
Flaring in the	Gas production	$Gg/10^6m^3$	1.8×10^{-3}	1.1×10 ⁻⁵	2.1×10^{-8}
natural gas industry	Gas processing	$Gg/10^6m^3$	2.1×10^{-3}	1.3×10^{-5}	2.5×10^{-8}

 Table 3-55 Emission factors for flaring in the natural gas industry

Source: Good Practice Guidance (2000), Table 2.16

Activity Data

For the calculation of activity data for this emission source, the amounts of domestic production of natural gas shown in the *Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke* and the *Yearbook of Natural Resources and Petroleum Products*, both published by Ministry of Economy, Trade and Industry, were used (see Table 3-47).

c) Uncertainties and Time-series Consistency

• Uncertainties

As the uncertainty of emission factors, default values given in the *Good Practice Guidance* (2000) (25% for CO_2 , CH_4 , and N_2O) were applied. The uncertainty of activity data was 5%; this was

determined as a standard value by the Committee for the Greenhouse Gas Emission Estimation Methods. As a result, the uncertainties for the emissions were determined to be 25% for CO₂, CH₄, and N₂O. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Emission factors have been used consistent values since FY 1990. Activity data have been calculated using annual data from the *Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke* and the *Yearbook of Mineral Resources and Petroleum Products Statistics,* in a consistent estimation method since FY 1990.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)*. The QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. Details of the QA/QC activities are provided in Annex 6.

e) Source-specific Recalculations

There have been no recalculations to emissions from this source category.

f) Source-specific Planned Improvements

There have been no major planned improvements in this source category.

3.3.2.3.f. Flaring (Oil and Gas) (1.B.2.c.-flaring iii.)

Statistical data are reported for two categories of petroleum and natural gas in Japan. As a result, fugitive emissions from flaring in the combined petroleum and natural gas industries were reported as "IE" since they were accounted for respectively in the emissions from flaring in the petroleum industry (1.B.2.c.i) and the natural gas industry (1.B.2.c.ii.)

References

- 1. IPCC, Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, 1997
- 2. IPCC, Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, 2000
- 3. UNFCCC "UNFCCC Reporting Guidelines on Annual Inventories" (FCCC/SBSTA/2004/8)
- 4. UNFCCC "Report of the individual review of the greenhouse gas inventory submitted in 2003" (FCCC/WEB/IRI(2)/2003/JPN)
- 5. Research Institute of Economy, Trade & Industry, Kazunari Kaino, *Interpretation of General Energy Statistics*, June 2009
- 6. Environmental Agency Committee for the Greenhouse Gases Emissions Estimation Methods, *GHGs Estimation Methods Committee Report Part 1*, September 2000
- 7. Environmental Agency Committee for the Greenhouse Gases Emissions Estimation Methods, *GHGs Estimation Methods Committee Report Part 2*, September 2000
- 8. Environmental Agency Committee for the Greenhouse Gases Emissions Estimation Methods, *GHGs Estimation Methods Committee Report Part 3*, September 2000
- 9. Environmental Agency, The Report on Estimation of CO2 Emissions in Japan, 1992
- 10. Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2002
- 11. Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 2, August 2002
- 12. Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 3, August 2002
- 13. Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2006
- 14. Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 2, August 2006
- 15. Ministry of the Environment, General Survey of the Emissions of Air Pollutants
- 16. Ministry of Economy, Trade and Industry, *Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke*
- 17. Ministry of Economy, Trade and Industry, Yearbook of Mineral Resources and Petroleum Products Statistics
- 18. Ministry of Economy, Trade and Industry, Structural Survey of Energy Consumption in Commerce and Manufacturing
- 19. Ministry of Land, Infrastructure, Transport and Tourism, Statistical Yearbook of Air Transport
- 20. Ministry of Land, Infrastructure, Transport and Tourism, Statistical Yearbook of Motor Vehicle Transport
- 21. Ministry of Land, Infrastructure, Transport and Tourism, Road Transport Census
- 22. Agency for Natural Resources and Energy, Gas Industry Yearbook
- 23. Agency for Natural Resources and Energy, General Energy Statistics
- 24. Automobile Inspection and Registration Association (http://www.aira.or.jp/data/data.html)
- 25. Japan Sociality Atmospheric Environment, Reports on Greenhouse gas emissions estimation methodology, 1996
- 26. Natural Gas Mining Association, Natural Gas Data Year Book
- 27. Japan Gas Association website (http://www.gas.or.jp/default.html)

Chapter 4. Industrial Processes (CRF sector 2)

4.1. Overview of Sector

Chemical reactions in industrial processes produce atmospheric GHG emissions. This chapter describes the methodologies of estimating industrial process emissions shown in Table 4-1.

In 2008, total GHG emissions from the industrial processes sector amounted to approximately 75,310Gg-CO₂ equivalent, accounting for 5.9% of national total emissions (excluding LULUCF) in Japan. The emissions (excluding F-gases) from this sector has decreased by 27.0% compared to 1990. The emissions of halocarbons and SF₆ from this sector has decreased by 54.1% compared to 1995.

		Emission	source categories	CO ₂	CH_4	N ₂ O	HFCs	PFCs	SF ₆
	2.A.1	Cement Production	on and a second s	0					
	2.A.2	Lime Production		0					
2.A	2.A.3	Limestone and D	olomite Use	0					
Aineral Products	2.A.4	Soda Ash Produc	tion and Use	0					
Ameral I foundes	2.A.5	Asphalt Roofing		NE					
	2.A Products $2.A.2$ Lime Production2.A.3Limestone and Dolomite Use $2.A.4$ Soda Ash Production and Use $2.A.5$ Asphalt Roofing $2.A.6$ Road Paving with Asphalt $2.A.7$ Other $2.B.1$ Anmonia Production $2.B.2$ Nitric Acid Production $2.B.3$ Adipic Acid Production $2.B.4$ Carbide Production $2.B.4$ Carbide Production $2.B.5$ Other $2.B.5$ Other $2.B.5$ Other $2.B.5$ Other $2.B.5$ Other $2.C.1$ Iron and Steel Production $Production$ Steel $Production$ Aluminium $Production$ Aluminium $Production$ Steel Pro	NE							
	2.A.7	Other		IE, NO	NA, NO	NA, NO			
2.B.1 Ammonia Production				0	NE	NA			
	2.B.2	Nitric Acid Production				0			
	2.B.3	Adipic Acid Proc	luction	NA		0			
	2	Carbide	Silicon Carbide	0	0				
2.B Chemical Industry	Production	CalciumCarbide	0	NA					
			Carbon Black		0				
		Other	Ethylene	0	0	NA			
	2 8 5		1,2-Dichloroethane		0				
	2. D .3		Styrene		0				
			Methanol		NO				
			Coke	IE	0	NA			
			Steel	IE	NA				
	Iron on	Januar J. Staal	Pig Iron	IE	NA				
	2.C.1		Sinter	IE	IE				
		Floduction	Coke	IE	IE				
			Use of Electric Arc Furnaces in Steel Production	0	0				
2.C	2.C.2	Ferroalloys Prod	uction	IE	0				
Metal	2.C.3	AluminiumProdu	action	IE	NE			0	
Production	204		Aluminium						NO
	2.0.4	-	Magnesium						0
	2.C.5	Other		NO	NO	NO			
2.D	2.D.1	Pulp and Paper							
Other Production	Other 2 D 2 Food and Drink		IE						
2.E Production of	2.E.1	By-product emiss	ions: Production of HCFC-22				0		
Halocarbons and SF_6	2.E.2	Fugitive emission	18				0	0	0

Table 4-1 Emission source categories in the industrial processes sector

(continued on next page)

		Emission	source categories			CO ₂	CH ₄	N ₂ O	HFCs	PFCs	SF ₆
					manufacturing				0	NO	NO
			Domestic Refriger	ration	stocks				IE	NO	NO
					disposal				IE	NO	NO
				Commercial	manufacturing				0	NO	NO
					stocks				IE	NO	NO
			Commercial	Refrigeration	disposal				IE	NO	NO
			Refrigeration	Automatic	manufacturing				0	NO	NO
				Vending	stocks				IE	NO	NO
				Machine	disposal				IE	NO	NO
		Refrigeration and			manufacturing				IE	NO	NO
	2.F.1	Air	Transport Refriger	ration	stocks				IE	NO	NO
		Conditioning	i i i i i i i i i i i i i i i i i i i		disposal				IE	NO	NO
		Equipment			manufacturing				IE	NO	NO
			Industrial Refriger	ration	stocks				IE	NO	NO
			industrial Kerriger	auon					IE	NO	NO
					disposal						
					manufacturing				0	NO	NO
			Stationary Air-Conditioning (Household)		stocks				IE	NO	NO
					disposal				IE	NO	NO
					manufacturing				0	NO	NO
			Mobile Air-Condi	-	stocks				IE	NO	NO
			(Car Air Condition	ners)	disposal				IE	NO	NO
					manufacturing				0	NO	NO
				Urethane Foam	stocks				0	NO	NO
					disposal				IE	NO	NO
			Hard Foam	High Expanded	manufacturing				0	NO	NO
2.F				Polyethylene	stocks				NO	NO	NO
	2.F.2	Foam Blowing		Foam	disposal				NO	NO	NO
Consumption of				Extruded	manufacturing				0	NO	NO
Halocarbons and				Polystyrene	stocks				0	NO	NO
SF_6				Foam	disposal				IE	NO	NO
				Phenol Foam					NO	NO	NO
			Soft Foam						NO	NO	NO
			bontiouni		manufacturing				NO	NO	NO
	2.F.3	Fire			stocks				0	NO	NO
		Extinguishers			disposal				NO	NO	NO
			1		manufacturing					NO	NO
			Aerosols		ő				0	NO	NO
		Aerosols/Metered	Aerosols		stocks				<u>О</u>		
	2.F.4	Dose Inhalers			disposal				IE	NO	NO
		Dose milaters	N	1	manufacturing				0	NO	NO
			Metered Dose Inh	aiers	stocks				0	NO	NO
					disposal				IE	NO	NO
	2.5.5				manufacturing				IE	IE	NO
	2.F.5	Solvents			stocks				IE	0	NO
					disposal				IE	IE	NO
	2.F.6	Other Applications	s Using ODS Substi	tutes					IE	NA	NA
					manufacturing				IE	IE	IE
			Semiconductors		stocks				0	0	0
	2.F.7	Semiconductors			disposal				NA	NA	NA
	2.1/	Semiconductors			manufacturing				IE	IE	IE
			Liquid Crystals		stocks				0	0	0
					disposal				NA	NA	NA
			1		manufacturing						0
2	2.F.8	Electrical			stocks						0
											\sim
	2.1.10	Equipment			disposal						IE

4.2. Mineral Products (2.A.)

This category covers CO_2 emissions from the calcination of mineral raw material such as $CaCO_3$, $MgCO_3$, Na_2CO_3 , etc. This section includes GHG emissions from Cement Production (2.A.1), Lime Production (2.A.2.), Limestone and Dolomite Use (2.A.3.) and Soda Ash Production and Use (2.A.4.). In 2008, emissions from Mineral Products were 47,384Gg-CO₂, and represented 3.7% of total GHG emissions (excluding LULUCF). The emissions decreased by 17.4% compared to 1990.

Gas	Emission sub-category			Units	1990	1995	2000	2005	2006	2007	2008
		2.A.1	Cement Production	Gg-CO ₂	37,966	41,342	34,434	31,654	31,376	30,076	27,996
		2.A.2	Lime	Gg-CO ₂	7,322	6,310	6,419	7,175	7,428	7,798	6,931
	2.A Mineral	2.A.3	Limestone and Dolomite	Gg-CO ₂							
CO_2	Products		Use		11,527	11,156	11,124	11,245	11,330	12,004	12,148
		2.A.4	Soda Ash Production	Gg-CO ₂							
			and Use		581	531	433	356	329	339	308
	Total			Gg-CO ₂	57,397	59,339	52,411	50,430	50,463	50,217	47,384

Table 4-2 CO₂ Emissions from 2.A Mineral Products

4.2.1. Cement Production (2.A.1.)

a) Source/Sink Category Description

 CO_2 is emitted by the calcination of limestone, the main component of which is calcium carbonate, during the production of clinker, an intermediate product of cement.

 $\frac{\text{CO}_2 \text{ emission mechanism of the cement production process}}{\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2}$

b) Methodological Issues

• Estimation Method

Following the *GPG* (2000) decision tree, the CO_2 emissions from this source was estimated by multiplying the amount of clinker produced by an emission factor.

<u>CO₂ emissions (t-CO₂) from cement production</u> = emission factor (t-CO₂/t-clinker) × clinker production (t) × cement kiln dust correction coefficient

• Emission Factors

Multiplying the CaO content of clinker by the molecular weight ratio of CaO and CO₂ (0.785) yields the emission factor. Because Japan's cement industry takes in large amounts of waste and byproducts from other industries and recycles them as substitute raw materials for cement production, clinker contains CaO from sources other than carbonates. This CaO does not go through the limestone calcination stage and therefore does not emit CO₂ during the clinker production process. For that reason, emission factors were determined by estimating the CaO content of clinker from carbonates, by subtracting CaO originating from waste and other sources from the total CaO content of clinker. Japan applies 1.00 for the cement kiln dust (CKD) correction coefficient, because normally almost all CKD is recovered and used again in the production process, as confirmed by the Cement Association. The emission factors for CO₂ emitted from cement production were calculated using the following procedure.

- 1 Estimate dry weight of waste and other materials input in raw material processing.
- 2 Estimate the amount and content of CaO from waste and other materials in clinker.
- 3 Estimate the CaO content of clinker, excluding the CaO from waste and other materials.
- 4 Determine the clinker emission factor.

<u>Emission factors of CO₂ emissions from cement production</u> = [(CaO content of clinker) – (CaO content of clinker from waste and other materials)] × 0.785 CaO content of clinker from waste and other materials = dry weight of inputs of waste and other materials × CaO content of waste and other materials ÷ clinker production volume

> Estimating dry weight of waste and other materials input in raw material processing

The following seven types of waste and other materials were chosen for this calculation: coal ash (incineration residue), blast furnace slag (water granulated), blast furnace slag (slow-cooled), steelmaking slag, nonferrous slag, coal ash (from dust collectors), and particulates/dust (these waste account for over 90% of the CaO from waste and other materials). Waste amounts (emission-based) and the water content of each waste and other material were determined from studies by the Cement Association of Japan (only for 2000 and thereafter).

Estimating the amount and content of CaO from waste and other materials in clinker

The dry weights of each type of waste and other materials found above are multiplied by the CaO content for each type as found by the Cement Association, thereby calculating the total CaO amount in clinker derived from waste and other materials. This is divided by clinker production volume to find the CaO content from waste and other materials in clinker. Because data for 1990 to 1999 are unavailable, averages for 2000 through 2003 were used.

> Estimating the CaO content of clinker, excluding the CaO from waste and other materials

CaO content in waste and other materials is subtracted from the average CaO content of clinker as determined by the Cement Association, which yields the proportion of CaO in clinker that is used to set emission factors.

10010	. e composition of	music ongin mu	
Group	Types of waste	Water content	CaO content
Incineration residue	Coal ash	7.2~14.5%	5.0~5.8%
	Blast furnace slag (water granulated)	5.0~8.7%	40.0~42.4%
Slag	Blast furnace slag (slow-cooled)	5.7~6.4%	40.8~41.5%
	Steelmaking slag	7.7~11.4%	37.1~40.5%
	Nonferrous slag	5.6~7.6%	6.4~10.0%
Particulates (dust	Particulates/dust	8.9~14.3%	9.0~13.4%
collector dust)	Coal ash	1.4~3.9%	4.6~5.0%

 Table 4-3
 Composition of Waste Origin Material

Table 4-4Emission factors of CO2 from cement production

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Average CaO content in clinker	%	65.9	65.9	66.0	65.9	65.9	65.9	65.9
Waste Origin CaO content in clinker	%	2.5	2.5	2.9	1.8	1.8	1.9	1.7
CaO content in clinker excluding waste origin CaO	%	63.4	63.4	63.1	64.0	64.1	64.0	64.1
CO ₂ /CaO		0.785	0.785	0.785	0.785	0.785	0.785	0.785
EF	t-CO2/t	0.498	0.498	0.495	0.502	0.503	0.502	0.503

Activity Data

Cement Association provides the data on the amount of clinker produced. Because there is no statistics on clinker production from 1990 to 1999, an estimation is made for past (1990–1999) clinker production using the average values of the 2000–2003 ratios of clinker production (Cement Association data) to limestone consumption (Ministry of Economy, Trade and Industry, Yearbook of Ceramics and Building Materials Statistics).

Limestone consumption data for FY1993 to 2003 given in the Yearbook of Ceramics and Building Materials Statistics include limestone consumption for cement hardening agents which entails CO_2 emissions in the manufacturing process. However, this is not included in the data for 1992 and previous years, which will lead to an omission in CO_2 emissions estimation from cement hardening agents. Limestone consumption data for FY 1990-1992 is therefore corrected, in order to ensure time-series consistency and full estimation of clinker production, to include for cement hardening agents.

A connection coefficient (0.99) specified in the Yearbook of Ceramics and Building Materials Statistics is used to convert values across the change in definition in this statistical category. The FY1990–1992 cement production was calculated to include hardening agent raw material (cement production \div 0.99), and the result was multiplied by the ratio of limestone consumption to cement production (limestone consumption \div cement production) to calculate limestone consumption.

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Consumption of Limestone (actual)	kt (dry)	89,366	97,311	81,376	-	-	-	-
Clinker Production (actual)	kt			69,528	63,003	62,404	59,885	55,647
Clinker Production (actual) / Consumption of Limestone (actual)*		0.853	0.853					
Estimated Clinker Production after correction**	kt	76,253	83,032	69,528	63,003	62,404	59,885	55,647

Table 4-5 Clinker production

* Clinker Production (actual) / Consumption of Limestone (actual) for 1990-1999 is the average value of 2000-2003.

** Values for FY 1990-1999 are corrected using estimation, and values for FY2000 and on are actual.

c) Uncertainties and Time-series Consistency

• Uncertainty

For the uncertainty of the CO_2 emission factor from cement production, the standard value given in the *GPG (2000)* was applied. For the uncertainty of activity data, the value of 10% given by the Committee for the Greenhouse Gas Emission Estimation Methods was used. As a result, the uncertainty of emissions was estimated to be 10%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

 CO_2 emissions from cement production from 1990 to 1999 is estimated using estimated activity data and emission factors based on values provided by the Cement Association. For years from 2000 and onward, the methodology described in the sections above is consistently applied using the data provided by Cement Association.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *GPG* (2000). Tier 1 QC activities focus on the verification of the parameters for activity data and emission factors and the archive of

reference materials. QA/QC activities are summarized in Annex 6.

e) Source-specific Recalculations

There have been no source-specific recalculations.

f) Source-specific Planned Improvements

No improvements are planned.

4.2.2. Lime Production (2.A.2.)

a) Source/Sink Category Description

 CO_2 is emitted during the calcination of limestone and other materials (CaCO₃, MgCO₃) used as raw material to produce quicklime.

```
\frac{\text{CO}_2 \text{ generation mechanism of quicklime production process}}{\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2}\text{MgCO}_3 \rightarrow \text{MgO} + \text{CO}_2
```

b) Methodological Issues

• Estimation Method

 CO_2 emissions are calculated according to the Tier 1 method in *GPG* (2000) in which amounts of high calcium quicklime and dolomitic quicklime produced are multiplied by the country-specific emission factors.

```
\frac{CO_2 \text{ emissions } (t-CO_2) \text{ generated by use of raw materials in quicklime production}}{\text{araw material-specific emission factor } (t-CO_2/t-product) \times \text{ amount of quicklime and dolomitic quicklime produced})}
```

• Emission Factors

Emission factors (EF) specific to Japan were determined on the basis of emission factors per unit raw material (EF_{raw}) (limestone and dolomite) provided by the Japan Lime Association (Table 4-6).

Emission factors per unit raw material (EF_{raw}) were calculated by finding the CO₂ emissions per unit raw material estimated from the amounts of carbon and other substances in raw material constituents and quicklime products, and then finding the weighted averages using production amounts of each district. The raw material for high-calcium lime is limestone, while that for calcined dolomite is dolomite.

		1	
	unit	high-calcium lime	dolomitic lime
Emission factors per unit raw material (EF _{raw})*	t-CO ₂ /t-raw material	0.428	0.449
Lime products per unit raw material	t-product/t-raw material	0.572	0.551
Emission factors (EF) utilized for estimation	t-CO2/t-product	0.748	0.815

Table 4-6 Emission factors for lime production

* data provided by the Japan Lime Association

Emission Factors (EF) were set by the following equation.

```
<u>Emission Factors</u> EF [t-CO<sub>2</sub>/t-product]
= EF<sub>raw</sub> [t-CO<sub>2</sub>/t-raw material] / lime product per unit raw material [t-production/t-raw material]
= EF<sub>raw</sub> [t-CO<sub>2</sub>/t-raw material] / (1 - EF<sub>raw</sub> [t-CO<sub>2</sub>/t-raw material])
```

The emission factor of lime production is the same for all years because annual change is thought to be small.

• Activity Data

The volume of quicklime produced according to the Ministry of Economy, Trade and Industry's Yearbook of Chemical Industries Statistics was used as activity data for CO_2 emissions associated with the manufacturing of quicklime (high calcium lime). The volume of dolomitic quicklime produced according to the Japan Lime Association's Demand Outlook by Application was used as activity data for dolomitic quicklime.

Table 4-7 Production values of quicklime and dolomitic quicklime

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Quicklime Production	kt	9,030	7,813	8,038	8,868	9,146	9,482	8,486
Dolomitic lime Production	kt	696	572	499	665	720	866	716

c) Uncertainties and Time-series Consistency

• Uncertainty

The uncertainty for CO_2 emissions from quicklime and dolomitic lime production was estimated. The uncertainty of 15% as given in the *GPG* (2000) was used for emission factors for both types of lime. For the uncertainty of activity data, the standard value given by the Committee for the Greenhouse Gas Emission Estimation Methods was used (5% for quicklime, 10% for dolomitic lime). As a result, the uncertainty of emissions from quicklime was estimated to be 16% and dolomitic lime was estimated to be 18%. The uncertainty assessment methods are summarized in Annex 7.

Time-series consistency

Quicklime and dolomitic lime production statistics have been provided by Yearbook of Chemical Industries Statistics (Ministry of Economy, Trade and Industry) and Japan Lime Association's Demand Outlook by Application, respectively, for all years. The emission factors are constant for all years. Therefore, CO_2 emission from lime production has been estimated in a consistent manner throughout the time-series.

d) Source-specific QA/QC and Verification

See section 4.2.1. d) .

e) Source-specific Recalculations

There have been no source-specific recalculations.

f) Source-specific Planned Improvements

A study began in 2009 conducting interviews with relevant organizations (Japan Lime Association, Limestone Association of Japan, The Japan Iron and Steel Federation, Japan Cement Association,

Ministry of Economy, Trade, and Industry, The Ceramic Society of Japan, etc.) to identify possible miscounting or double-counting of limestone use in the inventory. As a result, some possible miscounting and double-counting of emissions were identified.

However, because there is a possibility that other sources are also unaccounted for in the inventory, activity data for this category will be recalculated, if necessary, after the study of the uses of limestone is concluded.

4.2.3. Limestone and Dolomite Use (2.A.3.)

a) Source/Sink Category Description

Limestone contains CaCO₃ and minute amounts of MgCO₃, and dolomite contains CaCO₃ and MgCO₃. The use of limestone and dolomite releases CO₂ derived from CaCO₃ and MgCO₃.

 $\frac{\text{CO}_2 \text{ generating mechanism of limestone and dolomite use}}{\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2}$ $\text{MgCO}_3 \rightarrow \text{MgO} + \text{CO}_2$

b) Methodological Issues

• Estimation Method

The volumes of limestone and dolomite used in iron and steel production and as raw materials in soda-lime glass are multiplied by the emission factors to calculate emissions.

• Emission Factors

Limestone

The emission factors of limestone used in manufacturing steel and soda-lime glass are calculated by adding the value obtained when multiplying the molecular weight ratio of CO_2 and $CaCO_3$ by the percentage of CaO that can be extracted from limestone (55.4%, the median value of the "54.8% to 56.0%" given in The Story of Lime [Japan Lime Association]) and the value obtained when multiplying the molecular weight ratio of CO_2 and $MgCO_3$ by the percentage of MgO that can be extracted from limestone (0.5%, the median value of the "0.0% to 1.0%" given in The Story of Lime [Japan Lime Association]).

$CaCO_3 \rightarrow CaO + CO_2$	
$MgCO_3 \rightarrow MgO + CO_2$	
 Proportion of CaO extractable from limestone: 55.4 % 	
(Median of 54.8% to 56.0%: Japan Lime Association, The Story of Lime)	
• Proportion of MgO extractable from limestone: 0.5 % ^b	
(Median of 0.0% to 1.0%: Japan Lime Association, The Story of Lime)	
• Molecular weight of CaCO ₃ (primary constituent of limestone) : 100.0869 ^a	
• Molecular weight of MgCO ₃ : 84.3139 ^a	
• Molecular weight of CaO: 56.0774 ^a	
Molecular weight of MgO: 40.3044 ^a	
• Molecular weight of CO ₂ : 44.0095 ^a	
• CaCO ₃ content = proportion of CaO extractable from limestone \times molecular weight of C	CaCO ₃ / molecular weight of CaO
= (55.4% × 100.0869) / 56.0774 × 100 = 98.88%	
• MgCO ₃ content = proportion of MgO extractable from limestone \times molecular weight of M	IgCO ₃ / molecular weight of MgO
$= 0.5\% \times 84.3139 / 40.3044 = 1.05\%$	

 Emission factor 	= (molecular weight of CO_2 / molecular weight of $CaCO_3 \times CaCO_3$ content)
	+ (molecular weight of CO_2 / molecular weight of MgCO ₃ × MgCO ₃ content)
	=44.0095 / 100.0869*0.9888+44.0095/84.3139*0.0105
	=0.4348 + 0.0055 = 0.4402 [t-CO ₂ /t]
	$=440 \ [kg-CO_2/t]$
Sources)	
a. IUPAC "Ator	nic Weights of the Elements 1999"
(http://v	vww.chem.qmul.ac.uk/iupac/AtWt/AtWt99.html)
b. Japan Lime A	ssociation "The Story of Lime"

Dolomite

The emission factor of dolomite is calculated by adding the value obtained when multiplying the molecular weight ratio of CO_2 and $CaCO_3$ by the percentage of CaO that can be extracted from dolomite (34.5%, the median value of the 33.1% to 35.85% range given in The Story of Lime [Japan Lime Association]) and the value obtained when multiplying the molecular weight ratio of CO_2 and MgCO₃ by the percentage of MgO that can be extracted from dolomite (18.3%, the median value of the 17.2% to 19.5% range given in The Story of Lime [Japan Lime Association]).

```
CaCO_3 \rightarrow CaO + CO_2
MgCO_3 \rightarrow MgO + CO_2
 • Proportion of CaO extractable from dolomite: 34.5%
      (Median value of the 33.1% to 35.85% range given in The Story of Lime [Japan Lime Association])

    Proportion of MgO extractable from dolomite: 18.3%

      (Median value of the 17.2% to 19.5% range given in The Story of Lime [Japan Lime Association])
 • Molecular weight of CaCO<sub>3</sub> (major constituent of dolomite): 100.0869
 • Molecular weight of MgCO<sub>3</sub> (major constituent of dolomite): 84.3142
 · Molecular weight of CaO: 56.0774
 · Molecular weight of MgO: 40.3044
 • Molecular weight of CO<sub>2</sub>: 44.0098
 • CaCO<sub>3</sub> content = proportion of CaO extractable from dolomite \times molecular weight of CaCO<sub>3</sub> / molecular
                   weight of CaO
                          = 34.5% × 100.0869 / 56.0774
                          = 61.53%
 • MgCO<sub>3</sub> content = proportion of MgO extractable from dolomite \times molecular weight of MgCO<sub>3</sub> / molecular
                     weight of MgO
                          = 18.3% × 84.3142 / 40.3044
                          = 38.39%
\circEmission factor = molecular weight of CO<sub>2</sub> / molecular weight of CaCO<sub>3</sub> × CaCO<sub>3</sub> content
                                 + molecular weight of CO_2 / molecular weight of MgCO_3 \times MgCO_3 content
        = 44.0098 / 100.0869 \times 0.6153 + 44.0098 / 84.3142 \times 0.3839
        = 0.2706 \pm 0.2004
        = 0.4709 [t-CO_2/t]
        = 471[kg-CO_2/t]
```

• Activity Data

The amounts of limestone and dolomite sold for use in steel refining and soda glass given in the Ministry of Economy, Trade and Industry's Yearbook of Minerals and Nonferrous Metals Statistics and Yearbook of Mineral Resources and Petroleum Products Statistics are used as activity data for CO_2 emissions from limestone and dolomite use.

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Limestone (steel / smelting)	kt	22,375	22,371	22,902	23,971	24,057	25,166	25,517
Limestone (soda glass)	kt	1,846	1,946	1,722	997	1,067	1,291	1,392
Dolomite (steel / smelting)	kt	1,619	771	438	396	442	624	517
Dolomite (soda glass)	kt	228	197	177	154	143	146	138

Table 4-8 Amounts of limestone and dolomite sold for use in steel refining and soda glass

c) Uncertainties and Time-series Consistency

• Uncertainty

The uncertainty of emission factors for limestone and dolomite were estimated using expert judgment. The uncertainty of emission factors for limestone and dolomite were determined to be 16.4%, 3.5% respectively. The standard value given by the Committee for the Greenhouse Gas Emission Estimation Methods was used to estimate uncertainty of activity data. The uncertainty for activity data were estimated as 4.8% and 3.9% for limestone and dolomite, respectively, and the uncertainty for emissions were estimated as 17% and 5%, respectively. The uncertainty assessment methods are summarized in Annex 7.

• Time-series consistency

For activity data, the same sources are used throughout the time series based on the Ministry of Economy, Trade and Industry's Yearbook of Minerals and Nonferrous Metals Statistics and Yearbook of Mineral Resources and Petroleum Products Statistics. The emission factor is constant throughout the time series. Therefore, CO_2 emission from limestone and dolomite production has been estimated in a consistent manner throughout the time-series.

d) Source-specific QA/QC and Verification

See section 4.2.1. d) .

e) Source-specific Recalculations

There have been no source-specific recalculations.

f) Source-specific Planned Improvements

A study began in 2009 conducting interviews with relevant organizations (Japan Lime Association, Limestone Association of Japan, The Japan Iron and Steel Federation, Japan Cement Association, Ministry of Economy, Trade, and Industry, The Ceramic Society of Japan, etc.) to identify possible miscounting or double-counting of limestone use in the inventory. As a result, some possible miscounting and double-counting of emissions were identified.

However, because there is a possibility that other sources are also unaccounted for in the inventory, activity data for this category will be recalculated, if necessary, after the study of the uses of limestone is concluded.

4.2.4. Soda Ash Production and Use (2.A.4.)

4.2.4.1. Soda Ash Production (2.A.4.-)

In Japan, the ammonium chloride soda process is used to produce soda ash (Na_2CO_3) . The soda ash production process involves calcinating limestone and coke in a lime kiln, which emits CO_2 . Almost all lime-derived CO_2 is stored in the product.

In the soda ash production process, purchased CO_2 is sometimes input through a pipeline, but because these CO_2 emissions are from the ammonia industry, they are already included in "Ammonia Production (2.B.1)". Also, the coke consumed is listed as that for heating in the Yearbook of the Current Survey of Energy Consumption, and thus CO_2 emissions from coke are already counted under "Fuel Combustion (1.A)". Therefore all emissions from this source are already included in other categories, and are reported as "IE". Coke is input as a heat-source and CO_2 source.

The *Revised 1996 IPCC Guidelines* offer a method to calculate CO_2 emissions from calcinating trona (Na₂CO₃-NaHCO₃-2H₂O), but these emissions are not estimated because in Japan soda ash has never been manufactured by trona calcination.

4.2.4.2. Soda Ash Use (2.A.4.-)

a) Source/Sink Category Description

CO₂ is released during the use of soda ash (Na₂CO₃).

b) Methodological Issues

• Estimation Method

 CO_2 emissions from soda ash use are calculated according to the *Revised 1996 IPCC Guidelines* by multiplying the amount of soda ash consumed by the below emission factors.

• Emission Factors

For domestic soda ash, the emission factor is set as follows using data on the purity of soda ash. The annual fluctuation in purity of soda ash is small, therefore the emission factor will be set constant over the time-series.

Emission factor for domestic soda ash = purity of soda ash (arithmetic mean between 2 domestic companies) x molecular weight of CO_2 / molecular weight of Na_2CO_3 = 0.995 × 44.01 / 105.99 = 0.413

For soda ash imported, and other disodium carbonate imported, there is not enough information to set representative emission factors, therefore the default value (0.415 t-CO₂/t-Na₂CO₃) specified in the *Revised 1996 IPCC Guidelines* (vol. 3 p. 2.13) is used continuously.

• Activity Data

Activity data are the total of (1) shipping totals from Japan Soda Industry Association data, (2) imports and exports of soda ash from trade statistics, and (3) imports and exports of other sodium sesquicarbonate from trade statistics.

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Soda Ash Shipping	kt	1,098	977	634	427	440	430	411
Soda Ash Imported	kt	0.00	8.25	53.12	131.13	103.66	120.30	116.04
Other Disodium Carbonate Imported	kt	308	299	360	303	251	269	217

Table 4-9 Soda ash use

c) Uncertainties and Time-series Consistency

• Uncertainty

For the uncertainty of the emission factor from soda ash use, the lime production value was applied since it is a similar source category to soda ash. For the uncertainty of activity data, 6.3% uncertainty was estimated as a result of combining the uncertainties in soda ash shipping, soda ash imported, and other disodium carbonate imported. The uncertainty of CO₂ emissions from soda ash use was estimated as 16%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series consistency

For activity data, the same sources are used throughout the time series-for soda ash shipping totals from Japan Soda Industry Association, and imports and exports of soda ash and other sodium sosquicarbonate from trade statistics. The emission factor is constant throughout the time series. Therefore, CO_2 emission from soda ash use has been estimated in a consistent manner throughout the time-series.

d) Source-specific QA/QC and Verification

See section 4.2.1. d) .

e) Source-specific Recalculations

The time-series has been recalculated using the country-specific emission factor for domestically produced soda ash.

f) Source-specific Planned Improvements

No improvements are planned.

4.2.5. Asphalt Roofing (2.A.5.)

Asphalt roofing is manufactured in Japan, but information on the manufacturing process and activity data is inadequate, and it is not possible to definitively conclude that carbon dioxide is not emitted from the manufacturing of asphalt roofing. Emissions have also never been actually measured, and as no default emission value is available, it is not currently possible to calculate emissions. Therefore, it has been reported as "NE".

4.2.6. Road Paving with Asphalt (2.A.6.)

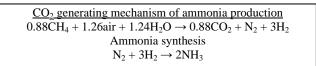
Roads in Japan are paved with asphalt, but almost no CO_2 are thought to be emitted in the process. It is not possible, however, to be completely definitive about the absence of emissions. Emissions have also never been actually measured, and as no default emission value is available, it is not currently possible to calculate emissions. Therefore, it has been reported as "NE".

4.3. Chemical Industry (2.B.)

This category covers CO_2 , CH_4 , and N_2O emissions from the processes of chemical productions. This section includes GHG emissions from five sources: Ammonia Production (2.B.2), Nitric Acid Production (2.B.2.), Adipic Acid Production (2.B.3.), Carbide Production (2.B.4.), Other (2.B.5.). In 2008, emissions from Chemical Industry were 4,113Gg-CO₂, and represented 0.3% of GHG of the Japan's total GHG emissions (excluding LULUCF). The emissions had decreased by 68.4% compared to 1990.

Page 4-12

						<u> </u>						
Gas		Emiss	sion sub-catego	ry	Units	1990	1995	2000	2005	2006	2007	2008
		2.B.1	Ammonia Production		Gg-CO ₂	3,385	3,436	3,188	2,155	2,184	2,241	1,990
CO_2	2.B Chemical	2.B.4	Carbide	Silicon Carbide	Gg-CO ₂	С	С	С	С	С	С	С
202	Industry		Production	Calcium Carbide	Gg-CO ₂	С	С	С	С	С	С	С
		2.B.5	Other	Ethylene	Gg-CO ₂	C	C	C	C	C	C	С
	Total			Gg-CO ₂	4,430	4,428	4,072	3,079	3,114	3,193	2,744	
		2.B.4	Carbide Production	Silicon Carbide	Gg-CH ₄	0.02	0.05	0.03	0.03	0.03	0.03	0.03
				Carbon Black	Gg-CH ₄	0.28	0.27	0.27	0.28	0.29	0.29	0.25
	2.B			Ethylene	Gg-CH ₄	0.09	0.10	0.11	0.11	0.11	0.11	0.10
CH_4	Chemical Industry	2.B.5	Other	1,2- Dichloroethane	Gg-CH ₄	0.01	0.02	0.02	0.02	0.02	0.02	0.02
				Styrene	Gg-CH ₄	0.07	0.09	0.09	0.10	0.10	0.11	0.08
				Methanol	$Gg-CH_4$	0.17	0.15	NO	NO	NO	NO	NO
				Coke	Gg-CH ₄	15.47	13.82	8.00	5.02	4.96	5.00	4.59
	Total				Gg-CH ₄	16.11	14.50	8.52	5.57	5.52	5.56	5.07
	Total				Gg-CO ₂	338	304	179	117	116	117	106
	2.B Chemical	2.B.2	Nitric Acid Production		Gg-N ₂ O	2.47	2.46	2.57	2.52	2.28	1.90	1.62
N_2O	Industry	2.B.3	Adipic Acid Production		Gg-N ₂ O	24.20	24.03	12.56	1.68	2.96	0.87	2.45
	Total				Gg-N ₂ O	26.67	26.49	15.13	4.19	5.24	2.77	4.07
	Total				Gg-CO ₂	8,267	8,213	4,690	1,300	1,625	860	1,262
Total of All C	Jases				Gg-CO ₂	13,036	12,945	8,941	4,496	4,854	4,170	4,113


Table 4-10Emissions from 2.B Chemical Industry

4.3.1. Ammonia Production (2.B.1.)

a) Source/Sink Category Description

1) CO₂

 CO_2 is emitted when hydrocarbon feedstock in ammonia production is broken down to make H_2 feedstock.

2) CH₄

Emission of CH_4 from the ammonia production has been confirmed by actual measurements. As there are not enough sufficient examples to enable the establishment of an emission factor, it is not currently possible to calculate emissions. The *Revised 1996 IPCC Guidelines* also do not give a default emission factor. Therefore, CH_4 was reported as "NE".

$3) N_2O$

Emission of N_2O from ammonia production is theoretically impossible, and given that even in actual measurements the emission factor for N_2O is below the limits of measurement, N_2O was reported as "NA".

b) Methodological Issues

• Estimation Method

 CO_2 emissions are calculated by multiplying the amount of fuels consumed as ammonia feedstock by emission factors.

• Emission Factors

The same emission factors that are used to calculate CO_2 emissions from the fuel combustion sector (Chapter 3) are used for each feedstock listed in Table 4-11. It should be noted that the implied emission factor changes every year, since the composition of the feedstocks consumed for ammonia production varies annually.

	Emission		Calorifi		
Feedstock	Factors (Gg-C/TJ)			2005	(Units)
Naphtha	18.2	1992 carbon emission factor	33.5	33.6	MJ/l
Liquefied petroleum gas (LPG)	16.13	Kainou (2008)	50.2	50.8	MJ/kg
Petroleum-derived hydrocarbon gases (petrochemical offgases)	14.2	1992 carbon emission factor	39.3	44.9	MJ/m ³
Natural gas	13.9	Kainou (2003)	41.0	43.5	MJ/m ³
Coal (thermal coal, imports)	24.7	1992 carbon emission factor	26.0	25.7	MJ/kg
Petroleum coke	25.4	1992 carbon emission factor	35.6	29.9	MJ/kg
Liquefied natural gas (LNG)	13.5	1992 carbon emission factor	54.4	54.6	MJ/kg
Coke oven gas (COG)	11.0	Kainou (2003)	20.1	21.1	MJ/m ³

Table 4-11 Emission factors and calorific values of feedstocks used when producing ammonia

Activity Data

The fixed units (including weight and volume) for the fuel types in Table 4-12 below, which are from the Ministry of Economy, Trade and Industry's Yearbook of the Current Survey of Energy Consumption, were converted using the calorific values in the Agency for Natural Resources and Energy's General Energy Statistics, and results were used as activity data. Consumption data on some fuel types are confidential. The most recent year data is calendar year data.

						-		
Item	Unit	1990	1995	2000	2005	2006	2007	2008
Naphtha	kl	189,714	477,539	406,958	92,453	80,755	77,214	67,062
LPG	t	226,593	45,932	5,991	0	0	0	0
Off gas	$10^{3}m^{3}$	С	230,972	240,200	147,502	149,927	144,196	151,553
Natural Gas	$10^{3}m^{3}$	C	100,468	86,873	77,299	67,225	50,986	50,260
Coal	t	С	209,839	726	1,239	1,066	763	802
Oil Coke	t	С	273,125	420,862	353,983	365,068	407,213	336,633
LNG	t	С	46,501	23,395	165,606	180,923	180,161	162,342
COG	$10^{3}m^{3}$	С	35,860	55,333	0	0	0	0

Table 4-12Amount of feedstocks used for ammonia production

Point to Note

Fuel consumption in this category has been deducted from energy sector activity data (see Chapter 3).

c) Uncertainties and Time-series Consistency

• Uncertainty

The uncertainty of each fuel was estimated. For the uncertainty of emission factors, the values given in Chapter 3 were applied. The standard value, 5%, given by the Committee for the Greenhouse Gas Emission Estimation Methods was used. As a result, the uncertainty of emissions from the fuels are of the following: naphtha 7%; LPG 6%; hydrocarbon gas 22%; natural gas 7%; coal (steam coal,

imported coal) 7%; petroleum coke 23%; LNG 10%; and COG 25%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

For activity data, the same sources are used throughout the time series, from the Current Survey of Energy Consumption. The emission factor is constantly based on the General Energy Statistics throughout the time series. Therefore, CO_2 emission from ammonia production has been estimated in a consistent manner throughout the time-series.

d) Source-specific QA/QC and Verification

See section 4.2.1. d) .

e) Source-specific Recalculations

There have been no source-specific recalculations.

f) Source-specific Planned Improvements

No improvements are planned.

4.3.2. Nitric Acid Production (2.B.2.)

a) Source/Sink Category Description

N₂O is emitted by nitric acid (HNO₃) production.

```
 \begin{array}{c} \underline{N_2O} \text{ generating mechanism in nitric acid production} \\ 4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O \\ 2NO+H_2O \rightarrow 2NO_2 \\ 3NO_2 + H_2O \rightarrow 2HNO_3 + NO \quad (\rightarrow N_2O) \end{array}
```

In Japan, the main processes used in nitric acid production are the New Fauser Process (medium pressure) and Chemico Process (high pressure), both based on the Ostwald chemical process. With regard to N_2O decomposition, there are catalytic decomposition units in operation.

b) Methodological Issues

• Estimation Method

 N_2O emissions were estimated by multiplying the nitric acid production volume by an emission factor, based on the method given in *GPG (2000)* (page 3.31, Equation 3.9). Because emissions data for individual factories is confidential information, nitric acid production volume and emission factors were set for Japan's total production. Due to the current lack of data on the amount of N_2O destroyed, the equation has no term for destruction.

 $\frac{N_2O \text{ emissions } (kg-N_2O) \text{ from nitric acid production}}{\text{emission factor } [kg-N_2O/t] \times \text{nitric acid production volume } [t]}$

• Emission Factors

Because data for individual factories are confidential, the emission factors was set by using each factory's nitric acid production volume to find the weighted average of each factory's emission factor, based on measurements made at the 10 nitric acid producing factories in Japan. These emission factors take N_2O recovery and destruction into account.

Item	Unit	1990	1995	2000	2005	2006	2007	2008	
EF for Nitric Acid Production	kg-N ₂ O/t	3.50	3.51	3.92	4.18	3.34	3.22	3.35	

Table 4-13 N₂O emission factors for nitric acid production

Activity Data

Production volumes of nitric acid are directly provided by the Ministry of Economy, Trade and Industry.

Table 4-14Amount of Nitric acid production

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Nitric Acid Production	t	705,600	701,460	655,645	602,348	682,680	590,332	484,070

c) Uncertainties and Time-series Consistency

• Uncertainty

The uncertainty of the emission factor was estimated using a 95% confidence interval for emission factors. For the uncertainty of activity data, the standard value of 5% given by the Committee for the Greenhouse Gas Emission Estimation Methods was used. As a result, the uncertainty of emissions was estimated as 46%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Emissions throughout the time series are consistently estimated using the activity data and emission factors provided by the Ministry of Economy, Trade and Industry.

d) Source-specific QA/QC and Verification

See section 4.2.1. d) .

e) Source-specific Recalculations

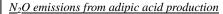
There have been no source-specific recalculations.

f) Source-specific Planned Improvements

There may be some production by manufacturing plants of nitric acid, which is not included in the activity data.

4.3.3. Adipic Acid Production (2.B.3.)

a) Source/Sink Category Description


 N_2O is emitted in the adipic acid ($C_6H_{10}O_4$) production process through the reaction of cyclohexanone, cyclohexanol, and nitric acid.

b) Methodological Issues

• Estimation Method

Emissions were estimated using the N_2O generation rates, N_2O decomposition volume, and adipic acid production volume of the relevant operating sites, in accordance with the *GPG (2000)* decision tree (Page 3.32, Fig. 3.4).

Chapter 4. Industrial Processes

= [N₂O generation rate \times (1 - N₂O generation rate \times decomposition unit operation rate)] \times adipic acid production rate

• Emission Factors

Values calculated using the above equation has been used as the emission factors. Parameters were established by the following methods. Relevant data used in estimation is confidential.

Rate of generation of nitrous oxide

Actual measurement data provided from the sole producer of adipic acid as an end product in Japan.

Rate of decomposition of nitrous oxide

The figure used is the result of measurement of the rate of decomposition of nitrous oxide in the operating site.

> Operating rate of decomposition unit

A full-scale survey on the number of operation hours is conducted annually for N_2O decomposition units and adipic acid production plants. The operating rate is based on this survey.

> <u>Calculation of operating ratio of decomposition unit</u> Operating ratio of decomposition unit (%) = Number of hours of decomposition unit in operation / Number of hours of adipic acid production plants in operation × 100 (%)

Number of hours of decomposition unit in operation:

Hours starting from the beginning of feeding the entire volume of N_2O gases until the end of feeding Number of hours of adipic acid production plants in operation:

Hours starting from the beginning of feeding materials until the end of feeding

• Activity Data

The activity data for nitrous oxide emissions associated with the manufacturing of adipic acid is the amount of adipic acid produced provided to the Ministry of Economy, Trade and Industry by the manufacturer. Relevant data used in estimation is confidential.

• Point to Note

From 1990 to 1997, N_2O emissions from adipic acid production increased gradually. However, N_2O decomposition units were installed in adipic acid production plants in March 1999, and emissions since then have decreased dramatically. There was a temporary growth in the emissions in 2000 due to the low operating ratio of N_2O decomposition units caused by a breakdown of the decomposition units.

c) Uncertainties and Time-series Consistency

• Uncertainty

The uncertainty of the emission factor for adipic acid was estimated by combining the uncertainty of the N_2O generation rate, N_2O decomposition rate, and the operating rate of the decomposition unit. As a result, the uncertainty of the emission factor was estimated as 9%. A 2% uncertainty given by

the *GPG* (2000) was applied for activity data. As a result, the uncertainty for adipic acid was estimated as 9%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Activity data and emission factors consistently provided by the producer of adipic acid are used to estimate emissions throughout the time series.

d) Source-specific QA/QC and Verification

See section 4.2.1. d) .

e) Source-specific Recalculations

There have been no source-specific recalculations.

f) Source-specific Planned Improvements

No improvements are planned.

4.3.4. Carbide Production (2.B.4.)

4.3.4.1. Silicon Carbide (2.B.4.-)

a) Source/Sink Category Description

1) CO₂

 CO_2 is emitted by the use of petroleum coke as a raw material in the production of silicon carbide.

```
<u>CO<sub>2</sub> generating mechanism in the silicon carbide production process</u>

SiO_2 + 3C \rightarrow SiC + 2CO \rightarrow 2CO_2
```

2) CH₄

In Japan, silicon carbide is produced in electric arc furnaces, and it is believed that CH_4 is generated from the oxidation of coke, which is used as a reducing agent in silicon carbide production.

b) Methodological Issues

1) CO₂

• Estimation Method

Emissions are calculated by multiplying the amount of petroleum coke used as silicon carbide feedstock by an emission factor.

Emission Factors

Because Japan does not have measurement data or emission factor data, the default value 2.3 [t- CO_2/t] for silicon carbide production in the *Revised 1996 IPCC Guidelines* (vol. 3 p. 2.21) is used.

Activity Data

The activity data for CO₂ emissions from silicon carbide production is the amount of petroleum coke

consumed, which is provided by Japan's only silicon carbide production facility. The data is confidential.

2) CH₄

• Estimation Method

Emissions were calculated by multiplying an emission factor based on actual figures obtained in Japan by the energy consumption of electric arc furnaces. This is the same method used for calculating CH_4 emissions in the Fuel Combustion Sector (1.A. Solid Fuels).

• Emission Factors

The emission factor of energy consumption in electric arc furnaces (12.8 kg-CH₄/TJ) was determined by using the formula for calculating fuel combustion and actual data from Japanese measurement surveys of CH₄ concentrations in gas ducts, concentrations of O₂ and theoretical flue gas amounts (dry), theoretical air demand, and high calorific values. See Chapter 3 3.2.1 Stationary Combustion (1.A.1., 1.A.2., 1.A.4.: CH₄ and N₂O)

• Activity Data

Energy consumption amounts included in the "electric furnace" category for the iron and steel industries of the General Survey of the Emissions of Air Pollutants were used. (From 2000 and onward, 1999 values are used.)

 Table 4-15
 Energy consumption from electric arc furnaces (for carbide)

			-					
Item	Unit	1990	1995	2000	2005	2006	2007	2008
Furnaces (for Carbide)	TJ	1,576	4,277	2,454	2,454	2,454	2,454	2,454

c) Uncertainties and Time-series Consistency

• Uncertainty

1) CO₂

For the uncertainty of the CO_2 emission factor, 100% was applied as provided by the *GPG* (2000) for a similar category. For the uncertainty of activity data, the standard value of 10% given by the Committee for the Greenhouse Gas Emission Estimation Methods was used. The uncertainty assessment methods are summarized in Annex 7.

2) CH₄

The uncertainty of the CH_4 emission factor and activity data were estimated as 163% and 5%, respectively, as estimated in Chapter 3. The uncertainty for emissions is estimated as 163%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

For CO_2 and CH_4 activity data, the same sources are consistently used throughout the time series-the former from the manufacturing facility, and the latter from the General Survey of the Emissions of Air Pollutants. The emission factors for both gases are constant throughout the time series. Therefore, CO_2 and CH_4 emissions from silicon carbide have been estimated in a consistent manner throughout

the time-series.

d) Source-specific QA/QC and Verification

See section 4.2.1. d) .

e) Source-specific Recalculations

There have been no source-specific recalculations.

f) Source-specific Planned Improvements

The use of fuel consumption data in the General Survey of the Emissions of Air Pollutants for FY 2002 onward was prohibited for any purposes other than the original one specified for the General Survey of the Emissions of Air Pollutants, while that is not the case with the data in the General Survey of the Emissions of Air Pollutants for FY 1999 and earlier years. The use of General Survey of the Emissions of Air Pollutants in the GHG inventory was added to the purpose of the General Survey of the Emissions of Air Pollutants by the current examination toward the reuse of the General Survey of the Emissions of Air Pollutants and was recently officially accepted. Japan will continue to consider applying the latest the General Survey of the Emissions of Air Pollutants and was recently officially accepted.

4.3.4.2. Calcium Carbide (2.B.4.-)

a) Source/Sink Category Description

1) CO₂

 CO_2 is generated in the process of making the quicklime used in calcium carbide production. CO_2 is also emitted by CO combustion when making calcium carbide. Further, calcium carbide is made to react with water, producing calcium hydroxide (slaked lime) and acetylene, and CO_2 is generated when the acetylene is used.

CO ₂ generator mechanism in the calcium carbide production process	
(Production)	
$CaCO_3 \rightarrow CaO + CO_2$	
$CaO + 3C \rightarrow CaC_2 + CO (\rightarrow CO_2)$	
(Use)	
$CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2 \rightarrow 2CO_2$	

2) CH₄

Byproduct gases (mainly CO) generated in carbide reactions include a small amount of CH₄, all of which is recovered and burned as fuel, with none being emitted outside the system. Therefore emissions from this source are reported as "NA".

b) Methodological Issues

• Estimation Method

CO₂ emissions are calculated by multiplying calcium carbide production by the following emission factor, based on the *Revised 1996 IPCC Guidelines*.

• Emission Factors

For years FY1990 to 2007, because Japan does not have measurement data or emission factor data,

the default value in the Revised 1996 IPCC Guidelines is used.

Units	From limestone in production	From reducing agent in production	From use							
t-CO ₂ /t	0.76	1.09	1.1							

Source: Revised 1996 IPCC Guidelines, vo	ol. 3, p. 2.22.
--	-----------------

For years after FY2008, country-specific emission factors from limestone during production, and from reducing agents during production are used, which are based on measurement data from the two calcium carbide producing companies in Japan. These emission factors are confidential. The default emission factor for calcium carbide use is used for all years.

• Activity Data

Calcium carbide production data provided by the Carbide Industry Association are used as the calcium carbide production volume. The data are confidential.

c) Uncertainties and Time-series Consistency

• Uncertainty

For the uncertainty of the CO_2 emission factor, 100% was applied as provided by the *GPG* (2000) for a similar category. For the uncertainty of activity data, the standard value of 10% given by the Committee for the Greenhouse Gas Emission Estimation Methods was used. As a result, the uncertainty for CO_2 emissions from calcium carbide was estimated as 100%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

For activity data, the same sources are used throughout the time series. The emission factor is constant from 1990 to 2007 and for years after 2008, the country-specific emission factor will be used. This is because there is no data available on emission factors for previous years, and because emission factors may fluctuate over time due to changes in scale of production or improvements in manufacturing technology, therefore the default emission factors will be used for FY1990 to FY2007.

d) Source-specific QA/QC and Verification

See section 4.2.1. d) .

e) Source-specific Recalculations

There have been no source-specific recalculations.

f) Source-specific Planned Improvements

No improvements are planned.

4.3.5. Other (2.B.5.)

4.3.5.1. Carbon Black (2.B.5.-)

a) Source/Sink Category Description

Carbon black is made by breaking down acetylene, natural gas, oil mist, and other feedstocks by

incomplete combustion at 1,300 °C or higher. The CH₄ in the tail gas (offgas) emitted from the carbon black production process is released into the atmosphere.

b) Methodological Issues

Estimation Method

CH₄ emissions from carbon black production are calculated by multiplying the carbon black production volume by Japan's country-specific emission factor, in accordance with the *Revised 1996 IPCC Guidelines*.

• Emission Factors

Five major companies, providing 96% of domestic production, recover methane generated in the carbon black production processes and use it in recovery furnaces and flare stacks. Therefore, there are no emissions during normal operation. The emission factor was established by estimating emissions of methane during routine inspections and the boiler inspection carried out by the five major domestic producers, and taking a weighted average by using production volumes of carbon black. The emission factor is 0.35 [kg-CH₄/t].

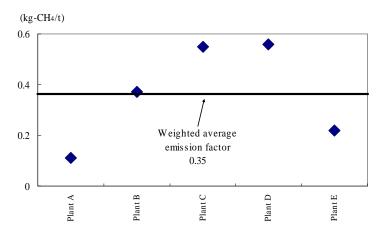


Figure 4-1 CH₄ Emission factor for carbon black production Source: Data provided by the Carbon Black Association

 Table 4-17
 Methane emissions and carbon black production by five main domestic producers

	Carbon black	Methane emissions	Emission factor
	production [t/year]	[kg-CH ₄ /year]	[kg-CH ₄ /t]
Total from five main companies	701,079	246,067	0.35

Source: Data provided by the Carbon Black Association (1998 actual results)

• Activity Data

Carbon black production volumes given in the Yearbook of Chemical Industries Statistics compiled by the Ministry of Economy, Trade and Industry were used for activity data for methane emissions associated with the manufacturing of carbon black.

Table 4-18 Carbon black production volume

Item	Unit	1990	1995	2000	2005	2006	2007	2008			
Carbon Black Production	t	792,722	758,536	771,875	805,461	832,470	840,634	725,113			

c) Uncertainties and Time-series Consistency

• Uncertainty

The uncertainty for the emission factor for carbon black was calculated by finding the 95% confidence interval of emission factors. The estimated uncertainty was 54.8%. For the uncertainty of activity data, the standard value of 5% given by the Committee for the Greenhouse Gas Emission Estimation Methods was used. As a result, the uncertainty of carbon black production emissions was estimated at 55%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

For activity data, the same source-the Yearbook of Chemical Industries Statistics are used throughout the time series. The emission factor is constant throughout the time series. Therefore, CH_4 emissions from carbon black production have been estimated in a consistent manner throughout the time-series.

d) Source-specific QA/QC and Verification

See section 4.2.1. d) .

e) Source-specific Recalculations

There have been no source-specific recalculations.

f) Source-specific Planned Improvements

The possibility of double counting of CH₄ from furnaces in the Energy sector should be investigated.

4.3.5.2. Ethylene (2.B.5.-)

a) Source/Sink Category Description

1) CO₂, CH₄

 CO_2 is emitted when it is separated in the ethylene production process. CH_4 is emitted by naphtha cracking through steam cracking in the ethylene production process.

2) N_2O

There is almost no nitrogen contained in naphtha, the raw material of ethylene, and the ethylene production process takes place under conditions that are almost completely devoid of oxygen. Emissions are reported as "NA" in accordance with the judgment of experts that theoretically there are no N_2O emissions.

b) Methodological Issues

• Estimation Method

CH₄ and CO₂ emissions from ethylene production were calculated by multiplying ethylene production by Japan's country-specific emission factor, in accordance with the *Revised 1996 IPCC Guidelines*.

• Emission Factors

$\blacktriangleright CO_2$

The emission factor was set, based on a survey conducted by the Japan Petrochemical Industry

Association in 2009 on the CO_2 emission factor from ethylene production. This emission factor is confidential.

▶ CH₄

Estimates of volume of exhaust gas from flare stacks at a normal operation and an unsteady operation at operating sites in Japan (assuming that 98% of the volume that enters is combusted), and measured volume of exhaust gas from naphtha cracking furnaces and furnaces heated by re-cycled gas, were divided by the production volume to calculate emission factors for each company. The weighted average based on production from each company was then applied to establish the emission factor of 0.015 [kg-CH₄/t].

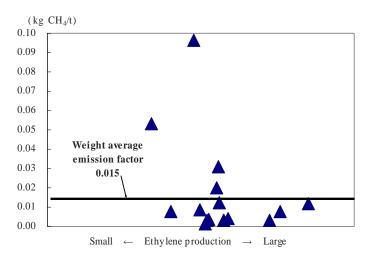


Figure 4-2 Emission factor for methane from manufacturing ethylene Source: Data provided by the Japan Petrochemical Industry Association

Activity Data

Ethylene production volumes from the Yearbook of Chemical Industries Statistics compiled by the Ministry of Economy, Trade and Industry were used as activity data for emissions of methane and carbon dioxide from ethylene production.

Table 4-19 Ethylene production volume

				<i>y</i> 1				
Item	Unit	1990	1995	2000	2005	2006	2007	2008
Ethylene Production	kt	5,966	6,951	7,566	7,549	7,661	7,559	6,520

c) Uncertainties and Time-series Consistency

• Uncertainty

The uncertainty for both CO_2 and CH_4 emission factors for ethylene were calculated by finding the 95% confidence interval of emission factors, based on the decision tree for uncertainty assessment. The estimated uncertainty for both CO_2 and CH_4 were 77.2%. For the uncertainty of activity data, the standard value of 5% given by the Committee for the Greenhouse Gas Emission Estimation Methods was used. As a result, the uncertainty for both CO_2 and CH_4 were estimated as 77%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

For activity data, the same sources are used throughout the time series. The emission factor is constant throughout the time series. Therefore, CO_2 and CH_4 emissions from ethylene production have been estimated in a consistent manner throughout the time-series.

d) Source-specific QA/QC and Verification

See section 4.2.1. d) $\ .$

e) Source-specific Recalculations

Based on a new survey conducted on the CO_2 emission factor, the country-specific emission factor was renewed.

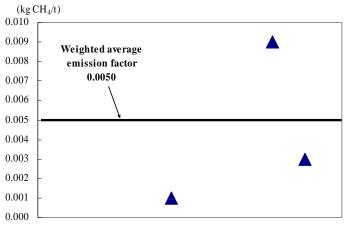
f) Source-specific Planned Improvements

No improvements are planned.

4.3.5.3. 1,2-Dichloroethane (2.B.5.-)

a) Source/Sink Category Description

1,2-dichloroethane (Ethylene Dichloride) is manufactured by reacting ethylene (C_2H_4) and chorine (Cl_2) . The product then passes through washing, refining, and thermolysis processes to become a vinyl chloride monomer (C_2H_3Cl) . A very small amount of CH_4 is contained in the exhaust gases of the reaction, and of the washing and refining processes.


b) Methodological Issues

• Estimation Method

CH₄ emissions from 1,2-dichloroethane production are calculated by multiplying production volume by Japan's country-specific emission factor, in accordance with the *Revised 1996 IPCC Guidelines*.

• Emission Factors

The concentration of methane in waste gas from three member companies of the Vinyl Environmental Council (representing approximately 70% of total 1,2-dichloroethane production in Japan) was measured, and a weighted average was calculated to establish the emission factor. The emission factor is 0.0050 [kg-CH₄/t].

Small \leftarrow Production of 1,2-dichloroethane \rightarrow Large

Figure 4-3 Methane emission factors for 1,2-dichloroethane production Source: Data provided by the Vinyl Environmental Council

Activity Data

1,2-Dichloroethane production volumes from the Yearbook of Chemical Industries Statistics compiled by the Ministry of Economy, Trade and Industry were used as activity data for methane emissions from 1,2-dichloroethane production.

Table 4-20 1,2-Dichloroethane production volume

				-				
Item	Unit	1990	1995	2000	2005	2006	2007	2008
1,2-Dichloroethane Production	kt	2,683	3,014	3,346	3,639	3,511	3,517	3,243

c) Uncertainties and Time-series Consistency

• Uncertainty

The uncertainty of the CH_4 emission factor for 1,2-dichloroethane production were estimated by finding the 95% confidence interval, based on expert judgment. The uncertainty was estimated as 100.7%. For the uncertainty of activity data, the standard value of 5% given by the Committee for the Greenhouse Gas Emission Estimation Methods was used. As a result, the uncertainty of 1,2-dichloroethane production was estimated as 101%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

For activity data, the same sources are used throughout the time series. The emission factor is constant throughout the time series. Therefore, CH_4 emissions from 1,2-Dichloroethane production have been estimated in a consistent manner throughout the time-series.

d) Source-specific QA/QC and Verification

See section 4.2.1. d) .

e) Source-specific Recalculations

There have been no source-specific recalculations.

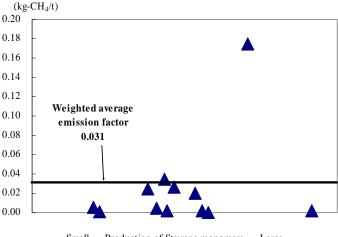
f) Source-specific Planned Improvements

No improvements are planned.

4.3.5.4. Styrene (2.B.5.-)

a) Source/Sink Category Description

CH₄ is emitted in the styrene production process.


b) Methodological Issues

• Estimation Method

 CH_4 emissions from styrene production were calculated by multiplying styrene production volume by Japan's country-specific emission factor, based on the method given in the *Revised 1996 IPCC Guidelines*.

• Emission Factors

Estimates of volume of exhaust gas from flare stacks at a normal operation and an unsteady operation at operating sites in Japan (assuming that 98% of the volume that enters is combusted), and measured volume of waste gas from heating furnaces, were divided by the production volume to calculate emission factors for each company. The weighted average by production from each company was then applied to establish the emission factor. The emission factor is 0.031 [kg-CH₄/t].

 $Small \gets Production \ of \ Styrene \ monomers \rightarrow Large$

Figure 4-4 Methane emission factors for styrene production Source: Data provided by the Japan Petrochemical Industry Association

• Activity Data

Styrene monomer production volumes from the Yearbook of Chemical Industries Statistics compiled by the Ministry of Economy, Trade and Industry were used as activity data for methane emissions from styrene production.

 Table 4-21
 Styrene production volume

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Styrene Production	kt	2,227	2,952	3,020	3,375	3,373	3,417	2,699

c) Uncertainties and Time-series Consistency

• Uncertainty

The uncertainty for the CH_4 emission factor for styrene production was estimated by finding the 95% confidence interval of emission factors, based on the decision tree for uncertainty assessment. The estimated uncertainty was 113.2%. For the uncertainty of activity data, the standard value of 5% given by the Committee for the Greenhouse Gas Emission Estimation Methods was used. As a result, the uncertainty of emissions was estimated as 113%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

For activity data, the same sources are used throughout the time series. The emission factor is constant throughout the time series. Therefore, CH_4 emissions from styrene production have been estimated in a consistent manner throughout the time-series.

d) Source-specific QA/QC and Verification

See section 4.2.1. d) .

e) Source-specific Recalculations

There have been no source-specific recalculations.

f) Source-specific Planned Improvements

No improvements are planned.

4.3.5.5. Methanol (2.B.5.-)

a) Source/Sink Category Description

CH₄ is emitted in the production of methanol.

b) Methodological Issues

• Estimation Method

CH₄ emissions from methanol production are calculated using the method given in the *Revised 1996 IPCC Guidelines*.

According to industry organizations, the production (synthesis) of methanol stopped in Japan in 1995 due to the price difference with overseas methanol. Since then all methanol has been imported, and methanol production plants disappeared from Japan in about 1995. According to the Yearbook of Chemical Industries Statistics, beginning in 1997 there is also no production of refined methanol. The methanol refining process merely dewaters the synthesized methanol, therefore, theoretically no CH_4 is generated.

Accordingly, from 1990 to 1995, emissions are reported using the production volumes in industry organization statistics. For 1996 and thereafter, emissions are reported as "NO" because it is assumed that methanol has not been produced (synthesized) since 1995.

• Emission Factors

The default value for methanol given in the *Revised 1996 IPCC Guidelines* was used. The emission factor is 2 [kg-CH₄/t] (Refer to *Revised 1996 IPCC Guidelines* Vol. 2 p 2.22, Table 2-9).

Activity Data

Production volumes of methanol (on calendar year basis) given in Methanol Supply and Demand published by the Methanol and Formalin Association were used as activity data for methane emissions from methanol production.

Table 4-22	Methanol	production	volume
10010 ± 22	moundior	production	volume

				1			
Item	Unit	1990	1991	1992	1993	1994	1995
Methanol Production	t	83,851	76,772	23,043	45,426	40,662	75,498

c) Uncertainties and Time-series Consistency

• Uncertainty

The uncertainty is not estimated.

• Time-series Consistency

For activity data, the same sources are used throughout the time series. The emission factor is constant throughout the time series. Therefore, CH_4 emissions from methanol production have been estimated in a consistent manner throughout the time-series.

d) Source-specific QA/QC and Verification

See section 4.2.1. d) .

e) Source-specific Recalculations

There have been no source-specific recalculations.

f) Source-specific Planned Improvements

No improvements are planned.

4.3.5.6. Coke (2.B.5.-)

a) Source/Sink Category Description

1) CO₂

This category is reported as "IE" because the emissions of CO_2 from coke production are included in the coal products and production section of the Fuel Combustion Sector (1.A.).

2) CH₄

CH₄ is emitted in coke production.

$3) N_2 O$

We have no measurements of the concentration of N_2O in the gas leaking from coking furnace lids, but N_2O emissions from this source are reported as "NA," the reason being that experts say that N_2O is likely not produced because the atmosphere in a coke oven is normally at least 1,000°C, and is reducing.

b) Methodological Issues

• Estimation Method

 CH_4 emissions from coke production were calculated by multiplying coke production volume by Japan's country-specific emission factor, based on the method given in the *Revised 1996 IPCC Guidelines*.

• Emission Factors

Methane emissions from coke production come from two sources: methane in combustion exhaust gas from gas leakage from the carbonization chamber to the combustion chamber, and methane emitted from the coking furnace lid, the desulfurization tower, or the desulfurization recycling tower, in the carbonization process of coal.

Combustion exhaust gas

The concentration of methane in the exhaust gas from coking furnaces operated by five companies at seven operating sites (surveyed by the Japan Iron and Steel Federation) was weighted by the production volume of coke to derive a weighted average, which was established as the emission factor. The emission factor is 0.089 [kg-CH₄/t].

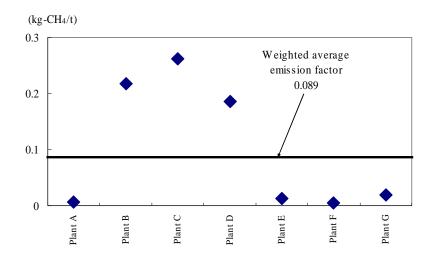


Figure 4-5 Emission factors for methane in combustion exhaust gas from coking furnaces Source: Data provided by the Japan Iron and Steel Federation (actual results for 1999)

> Coking furnace lid, desulfurization tower, and desulfurization recycling tower

The Japan Iron and Steel Federation has had a voluntary plan in place since fiscal year 1997 to manage noxious atmospheric pollutants, and methane emissions have been estimated from emissions of other substances from the lid of coking furnaces. The emission factor has been established by taking a weighted average using this data and the volume of production of coke.

Table 4-23 Emission factor of methane from coking furnace lids, desulfurization towers, and desulfurization recycling towers

			0	-					-			
Item	Unit	1990-1996	1997-1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
CH ₄ emission factors	[kg-CH ₄ /t]	0.238	0.180	0.119	0.062	0.052	0.042	0.055	0.043	0.039	0.040	0.037

* Emission factor change is assumed to be small for FY1990-1996, therefore actual data values for FY1995 is used for other years with no data. For Fy1997-1999, it is assumed that values for 1998 and 1999 are the same as those of 1997. For FY2000 and on, actual data values are adopted.

Source: Japan Iron and Steel Federation data

Methane emission factor for coke production

The aforementioned Combustion Exhaust Gas and Coking Furnace Lids, Desulfurization Towers, and Desulfurization Recycling Towers have been added, and the resulting figure has been used as the emission factor.

• Activity Data

As the activity of CH_4 emissions from coke production, the inventory used the coke production volume given in the Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke and the Yearbook of Mineral Resources and Petroleum Products Statistics compiled by the Ministry of Economy, Industry and Trade.

		10	1016 4-24	Coke pi	oduction	volume		
Item	Unit	1990	1995	2000	2005	2006	2007	2008
Coke Production	kt	47,338	42,279	38,511	38,009	38,720	38,867	36,551

Table 4-24Coke production volume

• Completeness

The SBDT¹ (Table 2(I).A-Gs2) in the CRF requires emissions of carbon dioxide and methane from coke production to be reported as a sub-category of 2.C.1. Steel Manufacture, but coke is also manufactured in Japan in industries other than the steel industry. The emissions have therefore been counted in this category.

c) Uncertainties and Time-series Consistency

• Uncertainty

For the uncertainty of the emission factor for coke production, the uncertainty of fuel combustion emissions from the coking furnace and coking furnace lids were estimated separately. The uncertainty of fuel combustion emissions from the coking furnace and coking furnace lids was estimated as 98.5% and 61.8%, respectively. For the uncertainty of activity data, the standard value of 5% given by the Committee for the Greenhouse Gas Emission Estimation Methods was used. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

For activity data, the same sources are used throughout the time series. The emission factor is based on the information provided by the Japan Iron and Steel Federation estimated using a consistent methodology throughout the time series. Therefore, CH_4 emissions from coke production have been estimated in a consistent manner throughout the time-series.

d) Source-specific QA/QC and Verification

See section 4.2.1. d) .

SBDT: Sectoral Background Data Table

e) Source-specific Recalculations

Coke production volume and CH_4 emissions from coke production provided by the Japan Iron and Steel Federation has been reviewed for years 2000-2007.

f) Source-specific Planned Improvements

No improvements are planned.

4.4. Metal Production (2.C.)

This category covers CO_2 , CH_4 , PFCs and SF_6 emissions from the manufacturing processes of metal products.

This section includes GHG emissions from three sources: Iron and Steel Production (2.C.1), Ferroalloys Production (2.C.2.), Aluminium Production (2.C.3.), and SF_6 Used in Aluminium and Magnesium Foundries (2.C.4.).

In 2008, emissions from Metal Production were 838Gg-CO₂, and represented 0.07% of GHG of the Japan's total GHG emissions. The total emissions of CO₂ and CH₄ from this category had decreased by 54.5% compared to 1990. The total of halocarbons and SF₆ had increased by 252.5% compared to 1995.

Gas		Emiss	ion sub-categor	У	Units	1990	1995	2000	2005	2006	2007	2008
CO ₂	2.C Metal Production	2.C.1	Iron and Steel Production	Use of Electric Arc Furnaces in Steel Production	° -	356	357	248	242	178	212	156
	2.C Metal	2.C.1	Iron and Steel Production	Use of Electric Arc Furnaces in Steel Production	0 4	0.74	0.72	0.67	0.68	0.70	0.71	0.61
CH_4	Production	2.C.2	Ferroalloys Production		Gg-CH ₄	0.19	0.14	0.13	0.13	0.11	0.11	0.11
	Total				$\operatorname{Gg-CH}_4$	0.92	0.85	0.80	0.80	0.82	0.82	0.72
	Total				Gg-CO ₂	19	18	17	17	17	17	15
Total of All G	ases				Gg-CO ₂	375	375	265	259	195	229	171
Gas		Emiss	ion sub-categoi	У	Units	1990	1995	2000	2005	2006	2007	2008
PFCs	2.C Metal Production	2.C.3	Aluminium Pr	oduction	Gg-CO ₂		69.74	17.78	14.80	14.82	14.69	14.67
SF ₆	2.C Metal	2.C.4	0	Used in Aluminium and			5.00	43.00	48.42	45.65	45.58	27.30
~~ 6	Production		M agnesium Fo	oundaries	Gg-CO ₂		119.50	1,027.70	1,157.31	1,091.08	1,089.34	652.47
Total of All G	otal of All Gases			Gg-CO ₂		189.24	1,045.48	1,172.11	1,105.91	1,104.03	667.14	

Table 4-25Emissions from 2.C Metal Production

4.4.1. Iron and Steel Production (2.C.1.)

4.4.1.1. Steel (2.C.1.-)

1) CO₂

Coke oxidizes when it is used as a reduction agent in steel production, and carbon dioxide is generated. The volume of coke used has been included under consumption of fuel in the Fuel Combustion Sector (1.A.), and the carbon dioxide generated through the oxidization of coke used as a reducing agent has already been calculated under Fuel Combustion Sector (1.A.). Therefore, it has been reported as "IE".

4.4.1.2. Pig Iron (2.C.1.-)

1) CO₂

Carbon dioxide generated from pig iron production is emitted when coke is used as a reduction agent. The amount of coke used has been included under consumption of fuel in the Fuel Combustion Sector (1.A.), and the carbon dioxide generated through the oxidization of coke used as a reducing agent has already been calculated under Fuel Combustion Sector (1.A.). Therefore, it has been reported as "IE".

2) CH₄

It is theoretically impossible for methane generation in association with pig iron production, and it has been confirmed that methane is not emitted from actual measurements. Therefore, emissions have been reported as "NA".

4.4.1.3. Sinter (2.C.1.-)

1) CO₂

 CO_2 generated when making sinter is all generated by the combustion of coke fines; these emissions come under the Fuel Combustion Sector (1.A.). As they are already calculated in this 1.A. sector, they are reported as "IE".

 CO_2 emissions from limestone and dolomite used when making sinter are counted under "4.2.3. Limestone and Dolomite Use".

2) CH₄

 CH_4 generated when making sinter is all generated by the combustion of coke fines; these emissions come under the Fuel Combustion Sector (1.A.). As they are already calculated in this sector, they are reported as "IE".

4.4.1.4. Coke (2.C.1.-)

1) CO₂

Coke is mainly produced in iron and steel production in Japan. This category is reported as "IE" because the emissions of CO_2 from coke production are included in the coal products and production section of the Fuel Combustion Sector (1.A.).

2) CH₄

Emissions of methane were calculated at 4.3.5.6. Coke (2.B.5.-), and have been reported as "IE".

4.4.1.5. Use of Electric Arc Furnaces in Steel Production (2.C.1.-)

a) Source/Sink Category Description

 CO_2 is emitted from carbon electrodes when using electric arc furnaces to make steel. CH_4 is also emitted from electric arc furnaces during steel production.

b) Methodological Issues

1) CO_2

Estimation Method

CO₂ emissions from arc furnaces for steel production are estimated by amount of carbon calculated by weight of production and import of carbon electrodes minus weight of export of carbon electrodes. This difference of the carbon is assumed to be diffused to the atmosphere as CO_2 . The carbon included in electric furnaces gas given in the General Energy Statistics are subtracted from the CO_2 emission in this source since these emissions are included in category 1.A fuel combustion.

Activity Data

Production of carbon electrodes given in Yearbook of Ceramics and Building Materials Statistics compiled by the Ministry of Economy, Trade and Industry, and import and export of carbon electrodes given in Trade Statistics of Japan, Ministry of Finance are used.

	Unit	1990	1995	2000	2005	2006	2007	2008
#A Import	t	12,341	18,463	11,363	15,075	13,893	15,035	15,116
#B Domestic production	t	211,933	186,143	184,728	216,061	221,112	229,734	201,256
#C Export	t	87,108	92,812	107,998	138,409	149,330	150,491	134,509
#D Electric furnaces gas	t	39,983	14,300	20,293	26,700	37,217	36,415	39,349
Domestic consumptions (#A + #B - #C - #D)	t	97,184	97,493	67,800	66,028	48,458	57,864	42,514
CO ₂ emissions	Gg-CO ₂	356	357	248	242	178	212	156

Table 4-26 CO₂ emission from carbon electrodes of furnaces

2) CH₄

• Estimation Method

Emissions were calculated by multiplying an emission factor based on actual measurements obtained in Japan by the energy consumption of electric arc furnaces. This is the same method used for calculating CH₄ emissions in the Fuel Combustion Sector (1.A. Solid Fuels).

• Emission Factors

The emission factor of energy consumption of electric arc furnaces (12.8 kg-CH₄/TJ) was determined by using the data from actual measurement surveys. (See Chapter 3, 3.2.1 and Chapter 4, 4.3.4.1)

Activity Data

Energy consumption amounts included in the "electric furnace" category for the iron and steel industries of the General Energy Statistics were used.

	Table 4-27 Energy consumption from electric arc furnaces								
Consumption	Unit	1990	1995	2000	2005	2006	2007	2008	
Furnaces	TJ	57,564	55,986	52,457	52,747	55,051	55,687	47,338	

T 1 1 4 97 **T**

c) Uncertainties and Time-series Consistency

1) CO₂

• Uncertainty

Because all CO_2 from electric arc furnaces are assumed to escape into the atmosphere, no emission factor has been set. Therefore, by assessing the uncertainty for activity data the uncertainty for emissions is assessed. As a result of combining the uncertainties of the parameters for activity data, the uncertainty was estimated as 4.5%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

For activity data (emissions), the same sources are used throughout the time series. Therefore, CO_2 emissions from electric arc furnaces have been estimated in a consistent manner throughout the time-series.

2) CH₄

• Uncertainty

The uncertainty for the emission factor has been estimated as 163% and the uncertainty for activity data has been estimated as 5% (see chapter 3). As a result, the uncertainty for CH_4 emissions has been estimated as 163%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

For activity data, the same sources are used throughout the time series. The emission factor is constant throughout the time series. Therefore, CH_4 emissions from electric arc furnaces in steel production have been estimated in a consistent manner throughout the time-series.

d) Source-specific QA/QC and Verification

See section 4.2.1. d) .

e) Source-specific Recalculations

There have been no source-specific recalculations.

f) Source-specific Planned Improvements

No improvements are planned.

4.4.2. Ferroalloys Production (2.C.2.)

a) Source/Sink Category Description

1) CO₂

Ferroalloys are produced in Japan, and the carbon dioxide that is generated in association with the ferroalloys production is emitted as a result of the oxidization of coke used as a reducing agent. Consumption of coke is included in consumption of fuel under the Fuel Combustion Sector (1.A.), and carbon dioxide generated as a consequence of the oxidization of coke used as a reduction agent has already been calculated under the Fuel Combustion Sector (1.A.). Residual carbon in the ferroalloys is oxidized when the ferroalloys are used in the production of steel, and are released into

the atmosphere as carbon dioxide. Therefore, it has been reported as "IE".

2) CH₄

Ferroalloys are manufactured in Japan in electric arc furnaces, small-scale blast furnaces, and Thermit furnaces. Methane generated in association with ferroalloy production is thought to be generated when the oxidization of coke, a reduction agent, takes place.

b) Methodological Issues

• Estimation Method

Methane emissions from ferroalloy production were calculated by multiplying an emission factor based on actual measurements obtained in Japan by the energy consumption of electric arc furnaces. This is the same method used for calculating CH_4 emissions in the Fuel Combustion Sector (1.A.1 Energy Industries).

• Emission Factors

The value for the emission factor of electric arc furnaces $(12.8 \text{ kg-CH}_4/\text{TJ})$ was used because these furnaces produce ferroalloys.

Activity Data

Energy consumption amounts included in the "ferroalloy" category for the iron and steel industries of the General Energy Statistics were used.

Table 4-28Energy consumption from ferroalloy production

			0.	1		51		
Consumption	Unit	1990	1995	2000	2005	2006	2007	2008
Furnaces (for Ferroalloys)	TJ	14,456	10,699	10,181	10,072	8,783	8,676	8,578

c) Uncertainties and Time-series Consistency

• Uncertainty

The uncertainty for the emission factor has been estimated as 163% and the uncertainty for activity data has been estimated as 5% (see chapter 3). As a result, the uncertainty for CH_4 emissions has been estimated as 163%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

For activity data, the same sources are used throughout the time series. The emission factor is constant throughout the time series. Therefore, CH_4 emissions from furnaces for ferroalloy have been estimated in a consistent manner throughout the time-series.

d) Source-specific QA/QC and Verification

See section 4.2.1. d) .

e) Source-specific Recalculations

There have been no source-specific recalculations.

f) Source-specific Planned Improvements

No improvements are planned.

4.4.3. Aluminium Production (2.C.3.)

a) Source/Sink Category Description

1) CO₂

Aluminum refining is conducted in Japan. Carbon dioxide generated in association with aluminum smelting is emitted in conjunction with the oxidization of the anode paste used as a reducing agent. Consumption of coke, the main ingredient in the anode paste has been included in fuel consumption under the Fuel Combustion Sector (1.A.), and the carbon dioxide that is generated by the oxidization of coke used as a reducing agent has already been calculated under the Fuel Combustion Sector (1.A.). Therefore, it has been reported as "IE".

2) CH₄

Aluminum refining is conducted in Japan. There is a small amount of hydrogen in the pitch that acts as a raw material for the anode paste used in aluminum smelting. Theoretically, therefore, it is possible that methane could be generated. As there is no actual data on emissions, however, it is not possible to calculate emissions. There is also no emission factor offered in the *Revised 1996 IPCC Guidelines*, and no data on the hydrogen content of pitch can be obtained. As it is not possible to estimate an emission factor, emissions have been reported as "NE".

3) PFCs

PFCs are emitted during aluminum refining.

b) Methodological Issues

• Estimation Method

Estimating emissions involved multiplying the production volume of primary aluminum refining by Japan's country-specific emission factors calculated using the equation prescribed in the *Revised 1996 IPCC Guidelines*.

• Emission Factors

The equation prescribed in the Tier 1b method of the *Revised 1996 IPCC Guidelines* was used to determine emission factors, as shown in the table below.

Item	Unit	1995	2000	2005	2006	2007	2008
PFC-14 (CF ₄)	kgPFC-14/t	0.542	0.369	0.307	0.303	0.300	0.300
PFC-116 (C ₂ F ₆)	kgPFC-116/t	0.0542	0.0369	0.0307	0.0303	0.0300	0.0300

Table 4-29 PFCs emission factor of aluminum production

Source: Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy, Trade and Industry

• Activity Data

As the activity data for PFC emissions in conjunction with aluminum refining, we used the aluminum production volumes given in the Yearbook of Minerals and Non-Ferrous Metals Statistics compiled by the Ministry of Economy, Trade and Industry. Japan's primary aluminum production is small, at about 0.03% of world production.

c) Uncertainties and Time-series Consistency

• Uncertainty

For the uncertainty of the emission factor, 33% was applied, according to the *GPG* (2000) default value. For the uncertainty of the activity data, 5%, the value set by the Committee for Greenhouse Gas Estimation Methods was applied. As a result, the uncertainty of the emissions was determined to be 33%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Emissions from 1990 to 1994 have not been estimated due to the lack of data. For years after 1995, The Chemical and Bio Sub-Group, Ministry of Economy, Trade and Industry annually collects and estimates F gas emissions.

d) Source-specific QA/QC and Verification

The data collected and estimated by the Chemical and Bio Sub-Group, Ministry of Economy, Trade and Industry is verified by the Committee for Greenhouse Gas Estimation Methods and is used in the inventory.

e) Source-specific Recalculations

There have been no source-specific recalculations.

f) Source-specific Planned Improvements

No improvements are planned.

4.4.4. SF₆ Used in Aluminium and Magnesium Foundries (2.C.4.)

4.4.4.1. Aluminium

Emission from this source was reported as "NO" as it was been confirmed that Japan had no record of the use of SF_6 in aluminum forging processes.

4.4.4.2. Magnesium

a) Source/Sink Category Description

SF₆ is emitted in magnesium foundries.

b) Methodological Issues

Emissions are an aggregation of all SF_6 used by magnesium foundries. The data that has been reported is given in documentation prepared by the Chemical and Bio Sub-Group of the Ministry of Economy, Trade and Industry's Industrial Structure Council, for emissions of SF_6 used in magnesium foundries. The associated indices are given in the table below.

1000 1 50	Tuble 1.50 Indices formed to 51.6 ennited from magnesian foundates										
Item	Unit	1995	2000	2005	2006	2007	2008				
Consumption of SF_6	t	5	43	48	46	46	27				
Molten Magnesium	t	1,840	14,231	26,287	27,270	25,073	20,853				

Table 4-30 Indices related to SF₆ emitted from magnesium foundries

Source: Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy, Trade and Industry

c) Uncertainties and Time-series Consistency

• Uncertainty

For the uncertainty of the emission factor, 0% was applied, due to the fact that the amount of emissions is equal to the amount of magnesium used. For the uncertainty of the activity data, 5% was applied, according to the value set by the Committee for Greenhouse Gas Estimation Methods. As a result, the uncertainty of the emissions was determined to be 5%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

See section 4.4.3. c) .

d) Source-specific QA/QC and Verification

See section 4.4.3. d) .

e) Source-specific Recalculations

For both data obtained through associations and through the Greenhouse Gas Accounting and Reporting System² etc, the emission data for SF_6 were reviewed.

f) Source-specific Planned Improvements

No improvements are planned.

4.5. Other Production (2.D.)

4.5.1. Pulp and Paper (2.D.1.)

(According to the CRF, it is required to report on emissions of nitrogen oxides (NO_X) , carbon monoxide (CO), non-methane volatile organic compounds (NMVOC), and sulfur dioxide (SO_2) .)

4.5.2. Food and Drink (2.D.2.)

Foods and drinks are manufactured in Japan, and because carbon dioxide is used in the manufacturing process (frozen carbon dioxide and raw material for carbonated drinks, etc.), it is conceivable that carbon dioxide is emitted into the atmosphere in the course of manufacturing. The carbon dioxide used in the process of manufacturing foods and drinks, however, is a by-product gas of petrochemical products, and as such emissions have already been incorporated into the Fuel Combustion Sector (1.A.), they have been reported as "IE".

4.6. Production of Halocarbons and SF_6 (2.E.)

This category covers HFCs, PFCs and SF_6 emissions from the manufacturing processes of Halocarbons and SF_6 .

This section includes GHG emissions from two sources: By-product Emissions: Production of HCFC-22 (2.E.1) and Fugitive Emissions (2.E.2.).

In 2008, emissions from Production of Halocarbons and SF_6 were 2,513Gg-CO₂, and represented 0.2% of GHG of Japan's total GHG emissions. The emissions had decreased by 89.0% compared to 1995.

² The system was enforced in 2006, based on the Law Concerning the Promotion of the Measures to Cope with Global Warming.

Gas	Emissio	on sub-c	category	Units	1995	2000	2005	2006	2007	2008
HFCs	2.E Production of Halocarbons	2.E.1	By-product emissions: Production of HCFC-22	Gg-CO ₂	16,965.00	12,402.00	463.32	656.96	217.62	469.17
in es	and SF_6	2.E.2	Fugitive emissions	Gg-CO ₂	480.12	257.84	352.69	281.29	279.99	232.24
	Total			Gg-CO ₂	17,445.12	12,659.84	816.01	938.25	497.61	701.41
PFCs	2.E	2.E.2	Fugitive emissions	Gg-CO ₂	762.85	1,359.00	837.49	879.14	783.02	523.80
SF_6	Production of Halocarbons	2.E.2	Fugitive	t	197.00	36.00	27.01	57.17	50.16	53.90
51'6	and SF_6	2.1.2	emissions	Gg-CO ₂	4,708.30	860.40	645.63	1,366.36	1,198.82	1,288.21
Total of All G	ases			Gg-CO ₂	22,916.27	14,879.24	2,299.13	3,183.75	2,479.45	2,513.42

Table 4-31Emissions from 2.E Production of Halocarbons and SF6

4.6.1. By-product Emissions: Production of HCFC-22 (2.E.1.-)

a) Source/Sink Category Description

HFC-23 is generated as a by-product of HCFC-22 production.

b) Methodological Issues

Estimation Method

Estimating emissions involved subtracting the recovery and destruction amount of by-product HFC-23 (measured data) from the amount of by-product HFC-23 generated at HCFC-22 production plants in Japan. The amount of by-product HFC-23 was estimated by multiplying the production of HCFC-22 by the generation rate of HFC-23 (obtained from the results of composition analysis of the interior of a reactor).

Emissions of by-product HFC-23 associated with the production of HCFC-22

Emissions of HFC-23 = Production of HCFC-22 (t) ×Rate of generation of HFC-23 (%) - Amount of recovery and destruction (t)

Table 4-32	Indices related to By-product Emissions of HFC-23: Production of HCFC-22

Item	Unit	1995	2000	2005	2006	2007	2008
Production of HCFC-22	t	81,000	95,271	65,715	65,905	61,197	60,401
Rate of generation of HFC-23	%	2.13%	1.70%	1.90%	1.94%	1.82%	2.00%
Emission rate to production	%	1.79%	1.11%	0.06%	0.09%	0.03%	0.07%
Emissions	t	1,450	1,060	40	56	19	40
	MtCO ₂ eq.	16.97	12.40	0.46	0.66	0.22	0.47

Source: Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy, Trade and Industry

*Emissions decreased because all manufacturing facilities were equipped with destruction units.

c) Uncertainties and Time-series Consistency

• Uncertainty

For the uncertainty of the emission factor, 2% was applied, according to the *IPCC 2006 Guidelines* default value. For the uncertainty of the activity data, 5% was applied, according to the value set by the Committee for Greenhouse Gas Estimation Methods. As a result, the uncertainty of the emissions was determined to be 5%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

See section 4.4.3. c) $\$.

d) Source-specific QA/QC and Verification

See section 4.4.3. d) .

e) Source-specific Recalculations

There have been no source-specific recalculations.

f) Source-specific Planned Improvements

No improvements are planned.

4.6.2. Fugitive Emissions (2.E.2.)

a) Source/Sink Category Description

HFCs, PFCs, SF₆ are emitted as fugitive emissions during their manufacturing.

b) Methodological Issues

• Estimation Method

Emissions were estimated based on the mass balance of measurement data at each of HFCs, PFCs, SF_6 manufacturing plant in Japan. Fugitive emissions in production from this source category were reported by subtracting the amount of production from the amount of HFCs, PFCs, SF_6 generated at each gas manufacturing facility. Emissions of HFCs for each year were given by the Japan Fluorocarbon Manufactures Association, and emissions of PFCs and SF_6 were given by the Japan Chemical Industry Association.

The associated indices are given in the table below.

Table 4-33	Indices related to fugitive emissions from HFCs production
------------	--

			-				
Item	Unit	1995	2000	2005	2006	2007	2008
Production of HFCs	t	28,206	29,423	57,060	48,244	49,445	47,991
Emissions	MtCO ₂ eq.	0.480	0.258	0.353	0.281	0.280	0.232

Source: Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy, Trade and Industry

Item	Unit	1995	2000	2005	2006	2007	2008
Production of PFCs	t	1,207	2,336	2,726	3,211	3,216	2,802
Emissions	t	107	181	107	112	99	67
Emissions	MtCO ₂ eq.	0.763	1.359	0.837	0.879	0.783	0.524

Table 4-34 Indices related to fugitive emissions from PFCs production

Source: Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy, Trade and Industry

Table 4-35 Indices related to fugitive emissions from SF₆ production

Item	Unit	1995	2000	2005	2006	2007	2008
Production of SF ₆	t	2,392	1,556	2,313	2,787	2,723	2,647
emissions	t	197.0	36.0	27.0	57.2	50.2	53.9
emissions	MtCO ₂ eq.	4.708	0.860	0.646	1.366	1.199	1.288

Source: Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy, Trade and Industry

c) Uncertainties and Time-series Consistency

• Uncertainty

For the uncertainties of the emission factors, 100% was applied for all HFCs, PFCs and SF₆, according to the *GPG (2000)* default value. For the uncertainties of the activity data, 10% was applied for all HFCs, PFCs and SF₆, according to the value set by the Committee for Greenhouse Gas Estimation Methods. As a result, the uncertainties of the emissions for all HFCs, PFCs and SF₆ were determined to be 100%. The uncertainty assessment methods are summarized in Annex 7.

Time-series Consistency

See section 4.4.3. c) .

d) Source-specific QA/QC and Verification

See section 4.4.3. d) .

e) Source-specific Recalculations

For both data obtained through associations and through the Greenhouse Gas Accounting and Reporting System etc, the emission data for SF_6 were reviewed.

f) Source-specific Planned Improvements

No improvements are planned.

4.7. Consumption of Halocarbons and SF₆ (2.F.)

This category covers HFCs, PFCs and SF_6 emissions from the manufacturing, utilization and disposal processes of the products of Halocarbons and SF_6 used. This section includes GHG emissions from nine sources: Refrigeration and Air Conditioning Equipment (2.F.1), Foam Blowing (2.F.2.), Fire Extinguishers (2.F.3.), Metered Dose Inhalers (2.F.4.-) Solvents (2.F.5.), Other applications using ODS substitutes (2.F.6.), Semiconductors (2.F.7.), Electrical Equipment (2.F.8.) and Other (2.F.9.).

In 2008, emissions from Consumption of Halocarbons and SF_6 were 20,462Gg-CO₂, and represented 1.6% of GHG of Japan's total GHG emissions. The emissions had decreased by 27.8% compared to 1995.

Gas	Emis	sion sul	b-category	Units	1995	2000	2005	2006	2007	2008
		2.F.1	Refrigeration and Air Conditioning Equipment	Gg-CO ₂	840.40	2,688.58	7,663.59	9,272.18	11,438.28	13,236.09
	2.F Consumption	2.F.2	Foam Blowing	Gg-CO ₂	451.76	440.31	364.40	310.23	316.64	286.38
HFCs	of Halocarbons	2.F.3	Fire Extinguishers	Gg-CO ₂	0.00	3.73	5.92	6.03	6.24	6.35
	and SF ₆	2.F.4	Aerosols/Metered Dose Inhalers	Gg-CO ₂	1,365.00	2,834.35	1,571.89	1,056.97	849.75	889.52
		2.F.7	Semiconductors	Gg-CO ₂	157.89	173.60	141.06	153.59	164.49	145.68
	Total			Gg-CO ₂	2,815.05	6,140.56	9,746.87	10,799.00	12,775.40	14,564.01
		2.F.5	Solvents	Gg-CO ₂	10,263.55	2,505.63	2,289.26	2,266.80	1,926.97	1,318.27
	2.F Consumption	2.F.7	Semiconductors	Gg-CO ₂	3,144.23	5,637.07	3,860.52	4,154.06	3,685.45	2,756.49
PFCs	of Halocarbons and SF6	2.F.9	Other-Railway Silicon Rectifiers	Gg-CO ₂	0.00	0.00	0.00	0.93	1.86	2.79
	Total		•	Gg-CO ₂	13,407.78	8,142.70	6,149.78	6,421.79	5,614.28	4,077.55
	2.F Consumption of	2.F.7	Semiconductors	t	47.22	94.16	72.50	60.24	50.08	39.85
SF ₆	Halocarbons and SF6	2.F.8	Electrical Equipment	t	460.46	127.62	39.45	42.41	38.59	36.32
	Total		•	t	507.68	221.77	111.95	102.65	88.67	76.17
	Total			Gg-CO ₂	12,133.65	5,300.39	2,675.51	2,453.41	2,119.29	1,820.54
Total of All C	lases			Gg-CO ₂	28,356.48	19,583.66	18,572.16	19,674.20	20,508.96	20,462.09

Table 4-36Emissions from 2.F Consumption of Halocarbons and SF6

4.7.1. Refrigeration and Air Conditioning Equipment (2.F.1.)

4.7.1.1. Domestic Refrigeration (2.F.1.-)

a) Source/Sink Category Description

1) HFCs

HFCs are emitted from the production and use (including failure of devices) of domestic refrigeration.

2) PFCs

Emission from this source in the "production" category was reported as "NO" as Japan had no record of their use in the production of the products. The emission was also reported as "NO" in the "use" and "disposal" categories, because it was unlikely that PFCs were used in imported products, or refrigerants were refilled.

b) Methodological Issues

• Estimation Method

The collected volume of HFC under regulation was subtracted from 1) fugitive refrigerant ratio from production, 2) fugitive refrigerant ratio from use (including failure of devices), and 3) refrigerant contained at the time of disposal, separately, based on production and shipment volumes and

refrigerant contained. Then, all there were combined.

Emissions from use and disposal were estimated by summing up the values calculated for each year of the production of devices.

$\underline{Emissions \ of \ HFCs \ from \ Domestic \ Refrigeration}$ HFC emissions = total refrigerant contained at production × fugitive refrigerant ratio at production + \sum (number of operated devices containing HFC × refrigerant contained per operated device × fugitive refrigerant ratio from use) + \sum (number of disposed devices containing HFC × refrigerant contained per disposed device - collected volume of HFC

The associated indices are given in the table below.

Item	Unit	1995	2000	2005	2006	2007	2008
Total HFC charged in the year of production	t	520	590	0.3	0.4	0.3	0
Fugitive refrigerant ratio at production	%	1.00%	1.00%	0.17%	0.05%	0%	0%
Number of operated HFC devices	1,000 devices	7,829	33,213	41,796	39,754	37,225	34,509
Refrigerant charged per device at production	g	150	125	125	125	125	125
Operational fugitive ratio (including failure)	%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%
Number of HFC devices disposed	1,000 devices	0	177	1,839	2,314	2,771	3,154
Volume of HFC collected under law	t/year	—	_	52	68	91	111
Emissions	t	8.7	40.1	187.8	227.7	259.5	283.9
	MtCO ₂ eq.	0.011	0.052	0.244	0.296	0.337	0.369

Table 4-37 Indices related to emissions of HFCs from domestic refrigeration

Source: Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy Trade and Industry

c) Uncertainties and Time-series Consistency

Uncertainty

For the uncertainties of the emission factors, 50% was applied for all production, use, and disposal, according to the values used in a similar category. For the uncertainties of the activity data, 40% was applied for all production, use, and disposal, according to the value set by the Committee for Greenhouse Gas Estimation Methods. As a result, the uncertainties of the emissions for all production, use, and disposal were determined to be 64%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

See section 4.4.3. c) .

d) Source-specific QA/QC and Verification

See section 4.4.3. d) .

e) Source-specific Recalculations

For both data obtained through associations and through the Greenhouse Gas Accounting and Reporting System etc, the emission data for HFC were reviewed.

f) Source-specific Planned Improvements

No improvements are planned.

4.7.1.2. Commercial Refrigeration (2.F.1.-)

4.7.1.2.a. Commercial Refrigeration

a) Source/Sink Category Description

1) HFCs

HFCs are emitted from the manufacturing, operation, maintenance, accidents, and disposal of commercial refrigeration.

2) PFCs

Emissions from this source in the "production" category were reported as "NO" as Japan had no record of their use in the production of the products. The emission was also reported as "NO" in the "use" and "disposal" categories, because it was unlikely that PFCs were used in imported products, or refrigerants were refilled.

b) Methodological Issues

• Estimation Method

In accordance with the IPCC Guidelines, emissions of each species of F-gases from 1) manufacturing, 2) installation, 3) operation and 4) disposal are estimated for the devices below.

centrifugal refrigerating machine, screw refrigerating machine, refrigerator-freezer unit, transport refrigerator-freezer unit, separately placed showcase, built-in showcase, ice making machinery, water fountain, commercial refrigerator-freezer, all-in-one air conditioning system, gas heat pump, chilling unit

Emissions of HFCs from Commercial Refrigeration
Methods below are applied to each type of device and refrigerant (HFCs)
1) manufacturing
Emissions from manufacturing = Σ (number of device produced × volume of refrigerant contained
× fugitive refrigerant ratio from manufacturing)
2) installation
Emissions from operation = Σ (number of device charged refrigerant in place produced
\times volume of refrigerant contained \times fugitive refrigerant ratio from installation)
3) operation
Emissions from maintenance = Σ (number of devices operated × volume of refrigerant contained
\times fugitive refrigerant ratio from operation)
-volume collected
4) disposal
Emissions from disposal = Σ (number of devices disposed × average volume of refrigerant contained)
-volume collected
-volume concerca
* "number of devices operated" and "number of devices disposed" are estimated from the volume of shipment
and lifetime of device.

The associated indices are given in the table below.

Item	Unit	1995	2000	2005	2006	2007	2008
Number of HFC devices produced	1,000 devices	222	380	1,413	1,339	1,391	1,445
Average volume of refrigerant charged at	g/device	358	587	3,377	3,626	3,547	3,532
Fugitive refrigerant ratio at production	%	0.2%	0.2%	0.2%	0.2%	0.2%	0.1%
Number of devices charged in production	1,000 devices	9	32	138	168	190	199
Average volume of refrigerant during	g/device	17,806	9,221	23,914	26,073	25,170	26,529
Fugitive refrigerant ratio during installation	%	1.2%	1.4%	1.8%	1.7%	1.7%	1.7%
Number of devices operated	1,000 devices	375	1,957	6,770	7,884	8,983	10,027
Volume of refrigerant during operation	g/device	1,012	1,043	4,549	5,024	5,361	5,629
Fugitive refrigerant ratio during use	%		2-17% (d	epending of	n the kind o	of device)	
Number of devices disposed	1,000 devices	1	23	127	169	220	269
Volume of HFC collected under law during	t	0	0	0	0	236	469
Volume of HFC collected under law at	t	0	0	183	206	186	199
Emissions	t	32.7	189.2	2,006.1	2,853.0	3,630.4	4,233.5
	MtCO ₂ eq.	0.042	0.283	3.523	5.168	6.880	8.250

 Table 4-38
 Indices related to emissions of HFCs from commercial refrigeration

Source: Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy Trade and Industry

* From 2002 onward, "volume of refrigerant" and "fugitive refrigerant ratio from operation" increased because devices became larger with the increase of commercial package AC devices.

c) Uncertainties and Time-series Consistency

• Uncertainty

See section 4.7.1.1. c) .

• Time-series Consistency

See section 4.4.3. c) .

d) Source-specific QA/QC and Verification

See section 4.4.3. d) .

e) Source-specific Recalculations

There have been no source-specific recalculations.

f) Source-specific Planned Improvements

No improvements are planned.

4.7.1.2.b. Automatic Vending machine

a) Source/Sink Category Description

1) HFCs

HFCs are emitted from manufacturing, accidents, and disposals of automatic vending machines.

2) PFCs

Emission from this source in the "production" category was reported as "NO" as Japan had no record of their use in production. The emissions were also reported as "NO" in the "use" and "disposal" categories, because it was unlikely that PFCs were used in imported products or refrigerants were refilled..

b) Methodological Issues

• Estimation Method

Emissions of F-gases from 1) manufacturing, 2) accidents and 3) disposals are estimated, based on production and shipment amounts and amounts of refrigerants charged.

Emissions of HFCs from Automatic Vender machine
1) manufacturing
Emissions from manufacturing = Σ (number of device produced × volume of refrigerant contained
\times fugitive refrigerant ratio from manufacturing)
2) accident
Emissions from accident = Σ (number of devices operated × volume of refrigerant contained× incidence rate × average fugitive rate in accident)
3) disposal
(a) until 2001
Emissions from disposal = Σ {number of devices disposed × volume of refrigerant contained
\times (1 - collection rate) }
(b) from 2002 onward
Emissions from disposal = Σ (number of devices disposed × average volume of refrigerant contained) - volume collected

The associated indices are given in the table below.

Table 4-39	Indices related to emissions of HFCs from automatic vender machines
------------	---

Item	Unit	1995	2000	2005	2006	2007	2008
Number of HFC devices produced	1,000 devices	0	272	355	338	301	270
Refrigerant charged per device	g	0	300	220	219	219	219
Fugitive refrigerant ratio at production	%	—	0.4%	0.3%	0.3%	0.3%	0.3%
Number of devices operated	1,000 devices	0	284	1,999	2,265	2,393	2,384
Incidence rate	%	—	0.4%	0.3%	0.3%	0.3%	0.3%
Fugitive refrigerant ratio (failure)	%	—	20.0%	20.0%	20.0%	20.0%	20.0%
Fugitive refrigerant ratio (fixing)	%	—	0.9%	0.5%	0.5%	0.5%	0.4%
Number of devices disposed	1,000 devices	0	0	0	0	183	213
Volume of HFC collected under law	t	-	-	-	-	42	-
Emissions	t	0.00	0.39	0.57	0.59	0.56	12.44
	MtCO ₂ eq.	0.000	0.001	0.001	0.001	0.001	0.019

Source: Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy Trade and Industry

* Accidents of devices charged with HFCs almost never occurred in 1999 and 2000, therefore, were reported as 0. After 2001 onward, the number of accidents are reflected in the estimation.

c) Uncertainties and Time-series Consistency

• Uncertainty

See section 4.7.1.1. c) .

• *Time-series Consistency* See section 4.4.3. c) .

d) Source-specific QA/QC and Verification

See section 4.4.3. d) .

e) Source-specific Recalculations

For both data obtained through associations and through the Greenhouse Gas Accounting and Reporting System etc, the emission data for HFC were reviewed.

f) Source-specific Planned Improvements

No improvements are planned.

4.7.1.3. Transport Refrigeration (2.F.1.-)

1) HFCs

Emission was reported as "IE" since HFCs in this category had been included in the total reported in 4.7.1.2. Commercial Refrigeration (2.F.1.-).

2) PFCs

Emission from this source in the "production" category was reported as "NO" since Japan had no record of their use in the production. The emission was also reported as "NO" in the "use" and "disposal" categories, because it was unlikely that PFCs were used in imported products or refrigerants were refilled.

4.7.1.4. Industrial Refrigeration (2.F.1.-)

1) HFCs

HFCs emissions have been reported as "IE", as they are included in 4.7.1.2. Commercial Refrigeration (2.F.1.-).

2) PFCs

Emission from this source in the "production" category was reported as "NO" since Japan had no record of their use in the production of the products. The emission was also reported as "NO" in the "use" and "disposal" categories, because it was unlikely that PFCs were used in imported products or refrigerants were refilled.

4.7.1.5. Stationary Air-Conditioning (Household) (2.F.1.-)

a) Source/Sink Category Description

1) HFCs

HFCs are emitted from the manufacturing, operation, and disposals of household stationary air-conditioning devices.

2) PFCs

Emission from this source in the "production" category was reported as "NO" since Japan had no record of their use in production. The emission was also reported as "NO" in the "use" and "disposal"

categories, because it was unlikely that PFCs were used in imported products or refrigerants were refilled..

b) Methodological Issues

• Estimation Method

In accordance with the IPCC Guidelines, emissions of each species of F-gases from 1) manufacturing, 2) operation, 3) disposals are estimated, based on production and shipment amounts and amounts of refrigerants charged.

Emissions of HFCs from Stationary Air-Conditioning (Household)
1) monufacturing
1) manufacturing
Emissions from manufacturing = Σ (number of devices produced × volume of refrigerant contained
\times fugitive refrigerant ratio from manufacturing)
2) operation
Emissions from operation = Σ (number of devices for shipment
\times volume of refrigerant contained \times fugitive refrigerant ratio from operation
3) disposals
Emissions from disposal = Σ (number of devices disposed × average volume of refrigerant contained) - volume collected
* "number of devices for shipment" and "number of devices disposed" are estimated from volume of shipment and lifetime of device.

The associated indices are given in the table below.

Table 4-40 Indices related to emissions of HFCs (R-410a) from stationary air-conditioning

(household)											
Item	Unit	1995	2000	2005	2006	2007	2008				
Number of HFC devices produced	1,000 devices	0	1,077	3,981	4,116	4,172	3,970				
Refrigerant charged per device	g	1,000	1,000	1,000	1,000	1,000	1,000				
Fugitive refrigerant ratio at production	%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%				
Number of devices operated	1,000 devices	0	1,726	26,091	33,238	40,356	47,584				
Average refrigerant charged during use	g/device	0	1,000	1,000	1,000	1,000	1,000				
Fugitive refrigerant ratio during use	%	2%	2%	2%	2%	2%	2%				
Number of devices disposed	1,000	0	2	83	142	227	351				
Volume of HFC collected under law	t/year	—	_	10	19	40	67				
Emissions	t	0	38	596	783	981	1,206				
	MtCO ₂ eq.	0.000	0.066	1.029	1.351	1.693	2.080				

Source: Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy Trade and Industry

c) Uncertainties and Time-series Consistency

• Uncertainty

See section 4.7.1.1. c) .

• Time-series Consistency

See section 4.4.3. c) .

d) Source-specific QA/QC and Verification

See section 4.4.3. d) .

e) Source-specific Recalculations

For both data obtained through associations and through the Greenhouse Gas Accounting and Reporting System etc, the emission data for HFC were reviewed.

f) Source-specific Planned Improvements

No improvements are planned.

4.7.1.6. Mobile Air-Conditioning (Car Air Conditioners) (2.F.1.-)

a) Source/Sink Category Description

1) HFCs

HFCs are emitted from manufacturing, operation, breakdowns, accidents, and disposals of mobile air-conditioning devices.

2) PFCs

Emission from this source in the "production" category was reported as "NO" since Japan had no record of their use in production. The emission was also reported as "NO" in the "use" and "disposal" categories, because it was unlikely that PFCs were used in imported products or refrigerants were refilled.

b) Methodological Issues

• Estimation Method

In accordance with the IPCC Guidelines, emissions of each species of F-gases from 1) manufacturing, 2) operation, 3)breakdowns, 4) accidents and 5) disposals are estimated.

Emissions of HFCs from Mobile Air-Conditioning (Car Air Conditioners)
Methods below are applied for each type of car
1) manufacturing Emissions from manufacturing = Σ (number of devices produced × volume of refrigerant contained × fugitive refrigerant ratio from manufacturing)
2) operation Emissions from operation = Σ (number of cars operated × volume of refrigerant contained × fugitive refrigerant ratio from operation)
3) breakdowns Emissions from maintenance = Σ (number of cars operated × volume of refrigerant contained × rate of breakdowns × fugitive refrigerant ratio from breakdowns)
 4) accidents Emissions from accident =Σ (number of cars in completely destroyed × volume of refrigerant contained at time of accident)
5) disposal (a) until 2001 Emissions from disposal =Σ {number of cars disposed × volume of refrigerant contained ×(1 - collection rate) }
(b) from 2002 onward Emissions from disposal = Σ (number of cars disposed × average volume of refrigerant contained) - volume collected

Item	Unit	1995	2000	2005	2006	2007	2008
Number of cars produced	1,000 devices	9,745	9,761	10,407	11,074	11,191	11,163
Refrigerant charged per device at production	g	4	4	3	3	3	3
Number of cars operated with HFC air conditioners	1,000 devices	15,655	42,374	60,364	62,351	63,687	63,396
Average refrigerant charged per device	g	700	615	548	536	524	520
Fugitive refrigerant ratio during use per year per device (normal car)	g	15	15	10	10	10	10
Breakdown incidence	%	4%	4%	4%	4%	4%	4%
Fugitive refrigerant ratio from breakdown cars	%	50%	50%	50%	50%	50%	50%
Number of cars completely destroyed	1,000 devices	50	136	193	200	204	203
Average refrigerant charged in completely destroyed car	g	681	610	522	506	490	476
Number of cars disposed	1,000 devices	116	789	2,058	1,471	1,893	2,176
Average refrigerant charged upon disposal	g	676	593	522	484	475	468
Volume of HFC collected (under law from FY2002 and beyond)	t/year	-	-	531	489	604	686
Emissions	t	605	1,759	2,205	1,889	1,944	1,937
121113510115	MtCO ₂ eq.	0.787	2.287	2.866	2.456	2.528	2.518

 Table 4-41
 Indices related to emissions of HFC-134a from car air conditioners

Source: Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy Trade and Industry

c) Uncertainties and Time-series Consistency

• Uncertainty

See section 4.7.1.1. c) .

• Time-series Consistency

See section 4.4.3. c) .

d) Source-specific QA/QC and Verification

See section 4.4.3. d) .

e) Source-specific Recalculations

For both data obtained through associations and through the Greenhouse Gas Accounting and Reporting System etc, the emission data for HFC were reviewed.

f) Source-specific Planned Improvements

No improvements are planned.

4.7.2. Foam Blowing (2.F.2.)

4.7.2.1. Hard Foam (2.F.2.-)

4.7.2.1.a. Urethane Foam (HFC-134a)

a) Source/Sink Category Description

HFC-134a is emitted as a result of foam blowing agent use.

b) Methodological Issues

• Estimation Method

In accordance with the IPCC Guidelines (closed-cell foams), emissions were calculated assuming that 10% of the emission from foam blowing agents used each year occurred within the first year after production, with the remainder emitted over 20 years at the rate of 4.5% per year. The data on the

amount of foam blowing agents used each year was provided by the Japan Urethane Foam Association, Japan Urethane Raw Materials Association.

It is difficult to separate the "use" emission from that at the time of "disposal" because urethane foams were disposed of at various times. Accordingly, the emissions in the "use" and "disposal" categories were combined and reported under the "use" category, while the emission in the "disposal" category was reported as "IE".

<u>Urethane-related HFC-134a emissions</u> HFC-134a emissions = Amount of HFC-134a used [t] × Leakage during foam blowing [%] + Total amount used upto the previous year [t] × Percentage of annual emissions during use [%] = (Emission during production) + (Emission during use)

 Table 4-42
 Indices related to emissions of HFC-134a from urethane foam

Item	Unit	1995	2000	2005	2006	2007	2008
HFC-134a Use	t	0	167	224	259	216	145
Leakage during foam blowing	%	10%	10%	10%	10%	10%	10%
Annual emissions rate during use	%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%
Emissions within the first year after production	t	0	17	35	33	28	15
Emissions during use	t	0	0	44	54	65	75
Emissions	t	0	16.7	78.8	86.7	92.8	89.5
Emissions during production	MtCO ₂ eq.	0	0.022	0.046	0.043	0.036	0.019
Emissions during use	MtCO ₂ eq.	0	0.000	0.057	0.070	0.085	0.098
Emissions	MtCO ₂ eq.	0	0.022	0.102	0.113	0.121	0.116

Source: For HFC-134a Use, leakage during foam blowing, and annual emissions rate during use, Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy Trade and Industry

*: The amount of HFC-134a used in 1995-1999 was zero.

c) Uncertainties and Time-series Consistency

• Uncertainty

For the uncertainties of the emission factors, 50% was applied for both production and use, according to the values used in a similar category. For the uncertainties of the activity data, 50% was applied for both production and use, according to *GPG (2000)*'s default value. As a result, the uncertainties of the emissions for both production and use were determined to be 71%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

See section 4.4.3. c) $\$.

d) Source-specific QA/QC and Verification

See section 4.4.3. d) .

e) Source-specific Recalculations

There have been no source-specific recalculations.

f) Source-specific Planned Improvements

No improvements are planned.

4.7.2.1.b. High Expanded Polyethylene Foam (HFC-134a, HFC-152) (2.F.2.-)

a) Source/Sink Category Description

HFC-134a is emitted as a result of foam blowing agent use.

b) Methodological Issues

• Estimation Method

In accordance with the IPCC Guidelines (open-cell foams), emissions were calculated assuming that all of the emissions from foam blowing agents used occurred at the time of production. The amount of the emissions from foam blowing agents used each year was provided by the High Expanded Polyethylene Foam Industry Association.

Table 4-43 Indices related to emissions of HFC-134a from high expanded polyethylene foam

Item	Unit	1995	2000	2005	2006	2007	2008
HFC-134a Use	t	346	322	128	120	120	100
Emissions	t	346	322	128	120	120	100
Linissions	MtCO ₂ eq.	0.450	0.419	0.166	0.156	0.156	0.130

Source: Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy Trade and Industry

Table 4-44 Indices related to emissions of HFC-152a from high expanded polyethylene foam

Item	Unit	1995	2000	2005	2006	2007	2008
HFC-152a Use	t	14	0	0	0	0	0
Emissions	t	14	0	0	0	0	0
Linissions	MtCO ₂ eq.	0.002	0	0	0	0	0

Source: Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy Trade and Industry

c) Uncertainties and Time-series Consistency

• Uncertainty

See section 4.7.2.1.a. c).

• Time-series Consistency

See section 4.4.3. c) .

d) Source-specific QA/QC and Verification

See section 4.4.3. d) .

e) Source-specific Recalculations

There have been no source-specific recalculations.

f) Source-specific Planned Improvements

No improvements are planned.

4.7.2.1.c. Extruded Polystyrene Foam (HFC-134a) (2.F.2.-)

a) Source/Sink Category Description

HFC-134a is emitted as a result of foam blowing agent use.

b) Methodological Issues

• Estimation Method

Emissions were calculated assuming that 25% of the emission of foam blowing agents occurs within the first year after production, with the remainder emitted over 30 years at the rate of 2.5% per year. The amount of the emissions from foam blowing agents used each year was provided by the Extruded Polystyrene Foam Industry Association. This assumption is consistent with the IPCC Good Practice Guidance and the estimation method under PRTR for the amount of transferred HCFC at polystyrene foam production sites.

It is difficult to separate the "use" emission from that at the time of "disposal" because heat insulation material is disposed of at various times such as the renovation and dismantling of buildings, and in times of disaster. Since disposed polystyrene foam is considered to be emitting HFCs as same as that in use, these emissions are combined and reported under "use", while the emissions from "disposal" were reported as "IE".

Extruded polystyrene foam-related HFC-134a emissions
HFC-134a emissions =
Amount of HFC-134a used in particular year [t] × Leakage during foam blowing 25%
+ Total amount used in the past up to the previous year $[t] \times$ Annual emission rate during use [%]

Item	Unit	1995	2000	2005	2006	2007	2008
HFC-134a Use	t	0	0	26	5	0	0
Foam productization rate	%	75%	75%	75%	75%	75%	75%
Annual emission rate during use	%	—	—	2.5%	2.5%	2.5%	2.5%
Emissions during production	t	0	0	7	1	0	0
Emissions during use	t	0	0	67	31	31	31
Emissions	t	0	0	74	32	31	31
Emissions during production	MtCO ₂ eq.	0.00	0.00	0.01	0.00	0.00	0.00
Emission during use	MtCO ₂ eq.	0.00	0.00	0.09	0.04	0.04	0.04
Emissions	MtCO ₂ eq.	0.00	0.00	0.10	0.04	0.04	0.04

Table 4-45Indices related to emissions of HFC-134a from extruded polystyrene foam

Source: For HFC-134a Use, foam productization rate, and annual emissions rate during use, Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy Trade and Industry

The amount of HFC-134a used in 1995-2000 was zero.

c) Uncertainties and Time-series Consistency

• Uncertainty

See section 4.7.2.1.a. c).

• Time-series Consistency

See section 4.4.3. c) .

d) Source-specific QA/QC and Verification

See section 4.4.3. d) .

e) Source-specific Recalculations

There have been no source-specific recalculations.

f) Source-specific Planned Improvements

No improvements are planned.

4.7.2.2. Soft Foam (2.F.2.-)

All foam using HFCs for forming is hard foam. Emissions have therefore been reported as "NO".

4.7.3. Fire Extinguishers (2.F.3.)

a) Source/Sink Category Description

HFCs are emitted by the use of halogen fire extinguishers.

b) Methodological Issues

• Estimation Method

HFC-23 and HFC-227ea are used for the productions of fire extinguishers. However, as of 2004, only HFC-227ea is filled in the bottles for fire extinguishing equipments, and each company purchases pre-filled HFC-23 fire extinguisher bottles.

HFCs emission from this category was reported as "NO" by expert judgment since HFC-227ea was a very small amount, 0.0007(t) (= 700g) when emission from production in FY2004 was estimated. For use, at the time around 1995, almost no HFC filled fire extinguishers existed on the market, therefore it is assumed that there was not any use, resulting in NO for 1995 emissions.

For 1996 and following years, calculations were performed using the following equation and based on the HFC extinguishing agent stock.

```
HFC emissions from use of fire extinguishers
```

HFC emissions [t] = HFC extinguishing agent stocks [t] \times Emission factor during use

Concerning the emission at the time of disposal of fire extinguishers, it is reported as "NO" because the use of HFC for fire extinguishers has just started, and also the expected lifetime of buildings is 30-40 years, therefore they are unlikely to be disposed of as of present.

• Emission Factors

There are still no findings on the emission factor of HFC extinguishing agents when using them. The emission rate (0.00088) determined from refills of halons (provided by the Fire Defense Agency), which are similar extinguishing agents, was adopted as the emission factor for this category.

	Unit	2002	2003	2004	2005	2006	2007	Average
Installations of halon 1301 (A)	t	17,094	17,090	17,060	16,994	17,075	16,889	17,034
Refills of halon 1301 (B)	t	13	13	22	13	14	15	15
(B) / (A)		0.00076	0.00076	0.00129	0.00076	0.00082	0.00089	0.00088

Table 4-46 References for the Emission factor of fire extinguishers (The emission ratio of halon fire extinguishers)

• Activity Data

HFC stock amounts provided by the Fire Defense Agency were used as activity data for HFC emissions from fire extinguishing agents use.

				-			
Item	Unit	1995	2000	2005	2006	2007	2008
Stocks of HFC-23	t	0	306	478	481	496	501
HFC-23 emissions	t	NO	0.27	0.42	0.42	0.44	0.44
TH C-25 emissions	Gg-CO ₂	NO	3.15	4.92	4.96	5.11	5.16
Stocks of HFC-227ea	t	0	225	392	421	442	467
HFC-227ea emissions	t	NO	0.20	0.34	0.37	0.39	0.41
TH C-227ea emissions	Gg-CO ₂	NO	0.57	1.00	1.07	1.13	1.19
Total emissions	Gg-CO ₂	0.00	3.73	5.92	6.03	6.24	6.35

Table 4-47 The amounts of the HFC extinguishing agent stock

c) Uncertainties and Time-series Consistency

• Uncertainty

For the uncertainties of the emission factor for fire extinguisher use, 50% was applied, according to the values used in a similar category. For the uncertainties of the activity data, 40% was applied according to the value set by the Committee for Greenhouse Gas Estimation Methods. As a result, the uncertainties of the emissions during use for the category were determined to be 64%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Calculations are performed with a method consistently used from FY1995, based on an emission factor and activity data received from the Fire Defense Agency.

d) Source-specific QA/QC and Verification

The data received from the Fire Defense Agency is compiled by the Chemical and Bio Sub-Group, Ministry of Economy, Trade and Industry. It is verified by the Committee for Greenhouse Gas Estimation Methods and is used in the inventory.

e) Source-specific Recalculations

There have been no source-specific recalculations.

f) Source-specific Planned Improvements

No improvements are planned.

4.7.4. Aerosols/Metered Dose Inhalers (2.F.4.)

4.7.4.1. Aerosols (2.F.4.-)

a) Source/Sink Category Description

HFCs are emitted from the manufacturing and use of aerosols.

b) Methodological Issues

• Estimation Method

In accordance with the IPCC Guidelines, emissions were calculated on the assumption that 50% of the emission from the amount of aerosol filled in the products (potential emissions) occurred in the year of production, with the remaining 50% emitted in the following year. Fugitive emissions from manufacturing is considered as the balance between the amount used for production and the actual measurement amount filled in the products, and it is included in the emissions. The data on the amount used for production and the amount filled in the products were provided by the Aerosol Industry Association of Japan. HFC is considered to be actually remaining in disposed aerosols at some level. However, the amount of emission at the time of "disposal" was reported as "IE" since it is included in the calculation for the "use" category.

 F-gas (HFC-134a, HFC-152a) emissions associated with the manufacturing of Aerosol

 F-gas emissions in year n = Fugitive emissions during manufacturing (t)

 +
 F-gas potential emissions in year (n-1) × 50 (%)

 +
 F-gas potential emissions in year n × 50 (%)

 Fugitive emissions during manufacturing = F-gas consumed during manufacturing in year n

 F-gas potential emissions

The associated indices are given in the table below.

Item	Unit	1994	1995	2000	2005	2006	2007	2008
Potential Emissions	t	800	1,300	2,044	604	361	307	343
Fugitive emissions during production*	t	-	-	80.2	24.9	14.0	13.2	12.8
Emissions in the year produced, during use	t	400	650	1,022	302	180	154	172
Remaining (emissions in the next year)	t	400	650	1,022	302	180	154	172
Emissions	t	-	1,050	2,137	908	497	347	338
	MtCO ₂ eq.	-	1.365	2.778	1.181	0.646	0.452	0.439

Table 4-48 Indices related to emissions of HFC-134a from aerosols

* under investigation

Source: Potential Emissions: Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy Trade and Industry

* Fugitive emissions from 1994 to 1997 are included in potential emissions.

Item	Unit	1995	2000	2005	2006	2007	2008
Potential Emissions	t	-	34	1,300	1,438	1,193	1,416
Fugitive emissions during production*	t	-	1.1	28.9	40.6	123.8	380.3
Emissions in the year produced, during use	t	-	17	650	719	596	708
Remaining (emissions in the next year)	t	-	17	650	719	596	708
Emissions	t	-	18	1,217	1,409	1,439	1,685
	MtCO ₂ eq.	-	0.003	0.170	0.197	0.201	0.236

Table 4-49	Indices related to emissions of HFC-152a from aerosols

* under investigation

Source: Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy Trade and Industry

c) Uncertainties and Time-series Consistency

• Uncertainty

For the uncertainties of the emission factors, 0% was applied for all production, use and disposal, due to the fact that the amount of emissions is equal to the amount of aerosols used. For the uncertainties of the activity data, 40% was applied for all production, use, and disposal, according to the value set by the Committee for Greenhouse Gas Estimation Methods. As a result, the uncertainties of the emissions for all production, use and disposal were determined to be 40%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

See section 4.4.3. c) .

d) Source-specific QA/QC and Verification

See section 4.4.3. d) .

e) Source-specific Recalculations

There have been no source-specific recalculations.

f) Source-specific Planned Improvements

No improvements are planned.

4.7.4.2. Metered Dose Inhalers (2.F.4.-)

a) Source/Sink Category Description

HFCs are emitted from the use and disposal of metered dose inhalers.

b) Methodological Issues

• Estimation Method

In accordance with the IPCC Guidelines, emissions were calculated on the assumption that from the amount used each year, 50% of the emission occurred in the year of production, with the remaining 50% emitted in the following year.

The amount of purchased gas, the amount of the use of domestically produced MDI, and the use of imported MDI, and the amount of disposal of MDI were provided by the Federation of Pharmaceutical Manufacturers' Associations of Japan (FPMAJ). FPMAJ estimates the amount of HFC

2008

disposal by mainly including destructed MDI that were defective products.

F-gas (HFC-134a, HFC-227ea) emissions associated with the manufacturing of MDI
F-gas emissions in year $n =$ Fugitive emissions during manufacturing (t)
+ F-gas potential emissions in year (n - 1) \times 50 (%)
+ F-gas potential emissions in year $n \times 50$ (%)
- amount of disposal of F-gas contained in MDI
Potential emissions of F-gas = F-gas contained in domestic produced MDI + F-gas contained in imported MDI

The associated indices are given in the table below.

Item	Unit	1995	2000	2005	2006	2007	
ses of F-mas	t	_	14	11	1.0	0.7	

 Table 4-50
 Indices related to emissions of HFC-134a from MDI

Purchases of F-gas	t	-	1.4	1.1	1.0	0.7	1.1
Usage of domestic MDI	t	-	1.4	0.9	0.9	0.6	0.9
Usage of imported MDI	t	-	42	71	69	60	62
Amount collected and destroyed	t	-	0.1	1.9	0.3	1.3	0.5
Emissions	t	-	37	63	70	64	61
11113510115	MtCO ₂ eq.	-	0.048	0.082	0.091	0.083	0.080

Source: Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy Trade and Industry

Item	Unit	1995	2000	2005	2006	2007	2008
Purchases of F-gas	t	-	0.0	42.8	41.2	38.0	48.0
Usage of domestic MDI	t	-	0.0	41.0	39.4	36.2	45.9
Usage of imported MDI	t	-	3.6	2.1	1.4	0.7	9.0
Amount collected and destroyed	t	-	0.0	1.2	1.5	1.3	1.6
Emissions	t	-	1.8	48.1	42.3	39.3	46.4
	MtCO ₂ eq.	-	0.005	0.139	0.123	0.114	0.135

Table 4-51Indices related to emissions of HFC-227ea from MDI

For the Usage of domestic MDI, Usage of imported MDI, and Amount collected and destroyed:

Source: Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy Trade and Industry

c) Uncertainties and Time-series Consistency

• Uncertainty

For the uncertainties of the emission factors, 0% was applied for all production, use and disposal, due to the fact that the amount of emissions is equal to the amount of MDI used. For the uncertainties of the activity data, 40% was applied for all production, use and disposal, according to the value set by the Committee for Greenhouse Gas Estimation Methods. As a result, the uncertainties of the emissions for all production, use and disposal were determined to be 40%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

See section 4.4.3. c) .

d) Source-specific QA/QC and Verification

See section 4.4.3. d) .

e) Source-specific Recalculations

There have been no source-specific recalculations.

f) Source-specific Planned Improvements

No improvements are planned.

4.7.5. Solvents (2.F.5.)

a) Source/Sink Category Description

PFCs are emitted from the use of solvents. The liquids PFCs used were C_5F_{12} (PFC-41-12) and C_6F_{14} (PFC-51-14). HFCs used as solvents correspond to confidential data; therefore, these data are reported as included numbers in the total of PFCs.

b) Methodological Issues

• Estimation Method

Assuming that almost all of the total amount of liquid PFC shipment was used in cleaners and for cleaning purposes each year, the entire amount was reported in the "use" category as the amount of emissions. Emission during production was reported as "IE" as it was believed to be included in "Fugitive Emissions (2.E.2)". Emission at the time of disposal was reported as "IE" on the assumption, from the point of view of conservativeness, that the entire amount including that was disposed of, was emitted during use, because of the difficulty in determining the status of the disposal of PFCs. It is confirmed that no disposals were identified in 1995. The associated indices are given in the table below. Emissions from PFCs contained in railway rectifiers are subtracted from liquid PFC emissions to yield the total PFC emissions.

Item	Unit	1995	2000	2005	2006	2007	2008
Liquid PFC emissions	GgCO ₂ eq.	10356.1	2624.0	2289.3	2266.8	1927.0	1318.3
Liquid PFC contained in Railway rectifiers	GgCO ₂ eq.	92.5	118.4	0.0	0.0	0.0	0.0
PFC emissions from solvents	GgCO ₂ eq.	10263.6	2505.6	2289.3	2266.8	1927.0	1318.3

Table 4-52 Indices related to emissions of PFCs etc. from solvents use

Source for liquid PFC: Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy Trade and Industry

c) Uncertainties and Time-series Consistency

• Uncertainty

For the uncertainties of the emission factors, 0% was applied for solvent use, due to the fact that the amount of emissions is equal to the amount of solvent used. For the uncertainties of the activity data, 40% was applied for solvent using according to the value set by the Committee for Greenhouse Gas Estimation Methods. As a result, the uncertainties of the emissions were determined to be 40%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Emissions are estimated in a manner consistent over the time-series methodologically and from the point of view of data source.

d) Source-specific QA/QC and Verification

See section 4.4.3. d) .

e) Source-specific Recalculations

For both data obtained through associations and through the Greenhouse Gas Accounting and Reporting System etc, the emission data for PFC were reviewed. Additionally, it is now understood that a part of the total amount of liquid PFC shipment is used in railway rectifiers, therefore this was subtracted from the total shipment to yield PFC emissions.

f) Source-specific Planned Improvements

No improvements are planned.

4.7.6. Other applications using ODS substitutes (2.F.6.)

Refrigerants filled in research and medical equipment are captured and included in other refrigerant categories, therefore the emissions from this category is reported as "IE", based on expert judgment.

4.7.7. Semiconductors (2.F.7.)

4.7.7.1. Semiconductors

a) Source/Sink Category Description

HFCs, PFCs and SF₆, are emitted from the manufacturing of semiconductors.

b) Methodological Issues

• Estimation Method

Methods of emissions from semiconductors are in line with IPCC guidelines. These emissions are estimated with purchase of F-gases, process supply rate, use rate of F-gas, removal rate, by-product generation ratio and removal ratio for by-products.

In addition, regarding the treatment of 10% as residue of process supply rate, these emissions are reported in this category in case of a 90% recharging rate and subsequent shipment. In cases of shipment after decomposition of the residual 10% and cleansing of the containment shell, or releasement into the atmosphere, these emissions are reported in "2.E.2. Production of Halocarbons and SF_6 ". In case of release into the atmosphere, these emissions are reported in "2.E.2".

Japan Electronics and Information Technology Industries Association data are used for F-gases purchased.

Emissions from manufacturing (during F-gas charging to containment shell for shipment) are already reported in "2.E.2. Production of Halocarbons and SF_6 ", therefore, are reported as "IE" for this category. Theoretically, emissions from disposal can not be generated, therefore are reported as "NA".

F-gas emissions in Semiconductor Manufacturing
Methods below are applied for each F-gas:
(i) HFC-23, PFCs (PFC-14, PFC-116, PFC-218, PFC-c318), SF ₆ emissions
Emissions = Total CO ₂ equivalent emissions from all production lines - Total CO ₂ equivalent amount destroyed in all production lines
Total CO ₂ equivalent emissions from all production lines = Σ each production line Σ {amount purchased per F-gas \times process supply rate \times (1 - use rate of F-gas) \times GWP}
Total CO ₂ equivalent amount destroyed in all production lines = Σ each production line Σ {amount purchased per F-gas \times process supply rate \times (1 - use rate of F-gas) \times fraction of F-gas destroyed \times GWP}
(For production lines without destruction facilities: fraction of F-gas destroyed = 0) (ii) By-produced PFC-14 emissions
Emissions = Total CO ₂ equivalent emissions from all production lines - Total CO ₂ equivalent amount destroyed in all production lines
Total CO ₂ equivalent emissions from all production lines = Σ each production line Σ (purchases of PFCs \times process supply rate \times by production rate \times GWP)
Total CO ₂ equivalent amount destroyed in all production lines = Σ each production line Σ (purchases of PFCs \times process supply rate \times by production rate \times fraction of F-gas destroyed \times GWP)
(For production lines without destruction facilities: fraction of F-gas destroyed = 0)

Relevant indices are shown in Table below.

Table 4-53 Indices related to emissions of F-gases from manufacturing of semiconductors

Item	Unit	1995	2000	2005	2006	2007	2008
PFC-14 purchased	t	313.0	299.9	231.5	232.9	277.5	276.9
PFC-116 purchased	t	209.5	561.2	393.2	355.6	321.0	284.9
PFC-218 purchased	t	0.0	9.9	181.8	189.2	195.1	181.0
PFC-c318 purchased	t	0.6	38.6	24.8	28.3	33.4	40.2
HFC-23 purchased	t	47.8	49.4	42.1	48.6	62.1	73.7
SF ₆ purchased	t	90.8	131.9	96.8	85.8	82.9	79.1
Process supply rate	%	90%	90%	90%	90%	90%	90%
Use rate of PFC etc	%		20%-70%	(depending	on the kin	d of F-gas)	
Fraction of F-gas destroyed	%	90%	90%	90%	90%	90%	90%
CF ₄ by-production rate	%	(C ₂ F ₆ (PFC-	116): 10%,	C ₃ F ₈ (PFC	2-218): 20%	
By-production CF ₄ removal rate	%	90%	90%	90%	90%	90%	90%
HFCs emissions	Mt-CO ₂	0.158	0.172	0.138	0.150	0.161	0.142
PFCs emissions	Mt-CO ₂	3.046	5.409	3.712	3.995	3.567	2.665
SF ₆ emissions	Mt-CO ₂	1.005	1.484	1.111	0.940	0.878	0.694

Source: Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy, Trade and Industry

Item	Unit	1995	2000	2005	2006	2007
Use rate of PFC-14	%	20	20	20	20	20
Use rate of PFC-116	%	30	30	30	30	30
Use rate of PFC-218	%	60	60	60	60	60
Use rate of PFC-c318	%	70	70	70	70	70
Use rate of HFC-23	%	70	70	70	70	70
Use rate of SF ₆	%	50	50	50	50	50

Table 4-54 Use rate of HFCs, PFCs, and SF6 during semiconductor manufacturing

*: use rate of PFC etc is a default value from the IPCC guidelines.

c) Uncertainties and Time-series Consistency

• Uncertainty

For the uncertainties of the emission factors, 50% was applied for all HFCs, PFCs and SF₆, according to the values used in a similar category. For the uncertainties of the activity data, 40% was applied for all HFCs, PFCs and SF₆, according to the value set by the Committee for Greenhouse Gas Estimation Methods. As a result, the uncertainties of the emissions for all HFCs, PFCs and SF₆ were determined to be 64%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

See section 4.4.3. c) .

d) Source-specific QA/QC and Verification

See section 4.4.3. d) .

e) Source-specific Recalculations

For both data obtained through associations and through the Greenhouse Gas Accounting and Reporting System etc, the emission data for halocarbons and SF_6 were reviewed.

f) Source-specific Planned Improvements

No improvements are planned.

4.7.7.2. Liquid Crystals

a) Source/Sink Category Description

HFCs, PFCs and SF₆, are emitted from the manufacturing of liquid crystals.

b) Methodological Issues

• Estimation Method

Same methods applied to semiconductors are also applied to emissions from manufacturing of liquid crystals. World LCD Industry Cooperation Committee has established a voluntary action plan to reduce PFCs emissions and has engaged in reducing PFC emissions. In these activities, it should be applied IPCC methods.

Item	Unit	1995	2000	2005	2006	2007	2008
PFC-14 purchased	t	20.7	47.3	77.8	86.5	80.4	69.3
PFC-116 purchased	t	0.4	2.7	9.9	8.7	5.2	4.1
PFC-c318 purchased	t	0.0	0.0	0.8	1.2	2.0	1.9
HFC-23 purchased	t	0.1	0.7	1.6	1.6	1.7	1.5
SF ₆ purchased	t	11.5	85.3	101.4	106.5	117.4	146.8
Use rate of PFC	%	90%	90%	90%	90%	90%	90%
Fraction of F-gas destroyed	%		20%-70%	(depending	on the kin	d of F-gas)	
CF ₄ by-production rate	%	90%	90%	90%	90%	90%	90%
By-production CF ₄ removal rate	%			C ₂ F ₆ (PFC-	-116): 10%		
Desellection Efficiency of CF ₄	%	90%	90%	90%	90%	90%	90%
HFCs emissions	Mt-CO ₂	0.000	0.002	0.003	0.003	0.003	0.003
PFCs emissions	Mt-CO ₂	0.099	0.228	0.149	0.159	0.119	0.092
SF ₆ emissions	Mt-CO ₂	0.124	0.766	0.622	0.500	0.319	0.259

Table 4-55 Indices related to emissions of F-gases from manufacturing of liquid crystals

Source: Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy, Trade and Industry

*: use rate of PFC etc is a default value from the IPCC guidelines.

c) Uncertainties and Time-series Consistency

• Uncertainty

See section 4.7.7.1. c).

• Time-series Consistency

See section 4.4.3. c) .

d) Source-specific QA/QC and Verification

See section 4.4.3. d) .

e) Source-specific Recalculations

For both data obtained through associations and through the Greenhouse Gas Accounting and Reporting System etc, the emission data for halocarbons and SF_6 were reviewed.

f) Source-specific Planned Improvements

No improvements are planned.

4.7.8. Electrical Equipment (2.F.8.)

a) Source/Sink Category Description

SF₆ are emitted during the manufacturing and use of electrical equipment.

b) Methodological Issues

• Estimation Method

Emissions from producing electrical equipment were calculated by multiplying the amount of SF_6 purchased by assembly fugitive rate. Emissions from the use of electrical equipment were calculated based on the fugitive rate during the use of electrical equipment. Emissions from the inspection and disposal of electrical equipment were obtained by actual measurements of SF_6 .

In CRF, the emission was reported as "IE" after including the emission from disposal into the use of electrical equipment.

<u>SF₆ emissions from the production of electrical equipment</u> SF₆ Emissions from the production = SF₆ purchased (t) ×assembly fugitive rate (%)

SF₆ emission from the use of electrical equipment

 SF_6 emission from the use

= Stocks of $SF_6 \times rate$ of emitted SF_6 into the environment during the use of electrical equipments (0.1%)

<u> SF_6 emission from the inspection of electrical equipment</u>

 SF_6 emission from the inspection_= actual measurements of SF_6

SF₆ emission from the disposal of electrical equipment

 SF_6 emission from the disposal = actual measurements of SF_6

The associated indices are given in the table below.

Table 4-56	Indices related	to emissions of	of SF ₆ from	electrical	equipment	assembly

Item	Unit	1995	2000	2005	2006	2007	2008
SF ₆ purchased	t	1,380	649	629	595	619	784
SF ₆ charged to electrical equipment	t	1,464	450	582	527	555	726
Stocks (other than in electrical equipment)	t	-	105	29	54	47	40
Assembly fugitive rate	%	29.0%	14.6%	2.8%	2.4%	2.7%	2.3%
Emissions	t	400	100	23	19	20	19
	Mt-CO ₂	9.560	2.402	0.548	0.460	0.482	0.444

For SF₆ purchased, SF₆ charged to electrical equipment, Stocks in other than electrical equipment, Assembly fugitive rate: Source: Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy, Trade and Industry

Table 4-57 Indices related to emissions of SF₆ during the use of electrical equipment

Item	Unit	1995	2000	2005	2006	2007	2008
Stocks of SF ₆	t	6,300	8,000	8,700	8,800	8,900	9,000
Operational fugitive rate	%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%
SF ₆ emissions during use *	t	6.3	8.0	8.7	8.8	8.9	9.0
SF ₆ emissions during maintenance and disposal *	t	54.00	14.00	2.50	4.90	4.00	5.10
SF_6 emissions during use, maintenance, and disposal	t	60.46	27.13	16.51	23.18	18.44	17.75
Si ₆ emissions during use, maintenance, and disposa	Gg-CO ₂	1444.99	648.36	394.48	554.03	440.80	424.19

* excluding data from the Greenhouse Gas Accounting and Reporting System

Source: For Stocks of SF₆, Operational fugitive rate, SF₆ emissions during use, maintenance, and disposal: Documents of Group for Prevention of Global Warming, Chemical and Bio Sub-Group, Industrial Structure Council, Ministry of Economy, Trade and Industry

c) Uncertainties and Time-series Consistency

• Uncertainty

For the uncertainties of the emission factors, 30% was applied for production, and 50% was applied for use and disposal, according to the *GPG (2000)*'s default value. For the uncertainties of the activity data, 40% was applied for all production, use and disposal, according to the value set by the

Committee for Greenhouse Gas Estimation Methods. As a result, the uncertainty of the emissions for production was determined to be 50%, and 64% for use and disposal. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

See section 4.4.3. c) .

d) Source-specific QA/QC and Verification

See section 4.4.3. d) .

e) Source-specific Recalculations

There have been no source-specific recalculations.

f) Source-specific Planned Improvements

No improvements are planned.

4.7.9. Other - Railway Silicon Rectifiers (2.F.9.)

a) Source/Sink Category Description

PFCs are emitted at disposal of railway silicon rectifiers.

b) Methodological Issues

• Estimation Method

Based on the number of devices containing PFC-51-14, the amount of PFC-51-14 contained, and lifetime of the devices, given in the Survey on Management Methods of Halons/Liquid PFCs etc, the amount of PFC-51-14 disposed after use in railway silicon rectifiers in each fiscal year was estimated. This was done by multiplying the number of railway silicon rectifiers disposed per year, by the amount of PFC contained in each device. PFC emissions are calculated by subtracting the amount of PFC-51-14 destroyed in a specific fiscal year from the PFC disposed after use in railway silicon rectifiers in the same fiscal year.

PFC emissions at disposal of railway silicon rectifiers

= PFC disposed after use in railway silicon rectifiers - PFC destroyed

		Dispose	unom	ixan way	Sincon	Rectiff	015
Item	Unit	1995	2000	2005	2006	2007	2008
Amount of PFC disposed	Gg-CO ₂	0.00	0.00	0.00	0.93	1.86	2.79

Table 4-58 Amounts of PFC Disposed from Railway Silicon Rectifiers

c) Uncertainties and Time-series Consistency

• Uncertainty

For the uncertainties of the emission factors, 0% was applied for solvent use, due to the fact that the amount of emissions is equal to the amount of solvent used. For the uncertainties of the activity data, 40% was applied for solvent using according to the value set by the Committee for Greenhouse Gas Estimation Methods. As a result, the uncertainties of the emissions were determined to be 40%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Emissions are estimated in a manner consistent over the time-series methodologically and from the point of view of data source.

d) Source-specific QA/QC and Verification

See section 4.2.1. d) .

e) Source-specific Recalculations

Because emissions from the disposal of railway silicon rectifiers in Japan have been ascertained, emissions for all years were recalculated using that information.

f) Source-specific Planned Improvements

No improvements are planned.

References

- 1. IPCC, Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, 1997
- IPCC, Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, 2000
- IUPAC website "Atomic Weights of the Elements 1999" (http://www.chem.qmul.ac.uk/iupac/AtWt/AtWt99.html)
- 4. Ministry of the Environment Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2006
- 5. Ministry of Economy, Trade and Industry, Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke
- 6. Ministry of Economy, Trade and Industry, Yearbook of Chemical Industries Statistics
- 7. Ministry of Economy, Trade and Industry, Documents of Group for prevention of global warming, Chemical and Bio Sub-Group, Industrial Structure Council
- 8. Agency for Natural Resources and Energy, General Energy Statistics
- 9. Ministry of Economy, Trade and Industry, Yearbook of Mineral Resources and Petroleum Products Statistics
- 10. Ministry of Economy, Trade and Industry, Yearbook of Minerals and Non-Ferrous Metals Statistics
- 11. Ministry of Economy, Trade and Industry, Yearbook of Current Survey of Energy Consumption
- 12. Ministry of Economy, Trade and Industry, Yearbook of Ceramics and Building Materials Statistics
- 13. Ministry of Economy, Trade and Industry, Yearbook of Iron and Steel, Non-ferrous Metals, and Fabricated Metals Statistics
- 14. Ministry of Economy, Trade and Industry, Yearbook of Iron and Steel Statistics
- 15. Ministry of Finance, Trade Statistics of Japan
- 16. Japan Lime Association, The Story of Lime
- 17. Methanol and Formalin Association, Methanol Supply and Demand

Chapter 5. Solvent and Other Product Use (CRF sector 3)

5.1. Overview of Sector

 CO_2 , N_2O , and NMVOC are emitted from solvent and other product use. In this chapter, emissions due to the following product uses are estimated:

- Paint solvents
- Degreasing and dry-cleaning
- Chemical products
- Other products (e.g. anesthesia)

In 2008, total GHG emissions from the solvent and other product use sector amounted to 160Gg-CO₂ equivalent, accounting for 0.01% of total national emissions (excluding LULUCF) from Japan. "3.D.-Use of Nitrous Oxide for Anesthesia" is the only greenhouse gas emission source in this sector.

5.2. Paint Application (3.A.)

Paint solvents are used in Japan, but their application is basically restricted to mixing, therefore are assumed not to entail chemical reactions. Therefore, they do not generate CO_2 or N_2O . They have been reported as "NA."

5.3. Degreasing and Dry-Cleaning (3.B.)

1) CO₂

Degreasing and dry-cleaning are practiced in Japan.

Degreasing is defined as, "washing processes that do not involve chemical reactions", and it is assumed that it does not generate CO_2 . Although the CO_2 emissions may occur in association with washing methods involving dry ice or carbonic gas, such methods are not thought to be used in Japan. There are no processes in dry-cleaning in which chemical reactions may occur, and it is basically assumed that it does not generate CO_2 . However washing methods using liquefied carbonic gas are being used experimentally in research facilities and it is not possible to completely negate the possibility of CO_2 emissions.

As a result, these activities have been reported as "NE" due to the fact that there are no sufficient data available on the actual condition of emissions from degreasing and dry-cleaning and the absence of a default emission factor prevents any calculations from being performed.

2) N_2O

Degreasing and dry-cleaning are practiced in Japan, but degreasing is defined as, 'washing processes that do not involve chemical reactions', and there are no processes in dry-cleaning in which chemical reactions may occur. Therefore, it is assumed that N_2O is not generated. In Japan, there are also no methods which have the potential to emit N_2O used for degreasing or dry-cleaning, and they have therefore been reported as "NA".

5.4. Chemical Products, Manufacture and Processing (3.C.)

(The Common Reporting Format (CRF) requires that emissions of NMVOC should be reported.)

5.5. Other (3.D.)

5.5.1. Use of Nitrous Oxide for Anesthesia (3.D.-)

a) Source/Sink Category Description

Nitrous oxide is emitted during anesthetics (laughing gas) use. Since 2006, some hospitals have installed N_2O destruction units, and the reductions achieved are reflected in the total emissions. Only N_2O is used as an anesthetic in Japan, and CO_2 is not. Therefore, CO_2 emissions have been reported as "NA".

In 2008, total GHG emissions from this category amounted to 160Gg-CO2 equivalent, accounting for 0.01% of total national emissions (excluding LULUCF) from Japan.

	Iu	510 5 1	1111003 02	lue enns	sions du	ing une	stileties	(luugiiii	15 Sus) (100	
Gas	Category			Units	1990	1995	2000	2005	2006	2007	2008
$N_{\alpha}()$			Use of	Gg-N ₂ O	0.93	1.41	1.10	0.86	0.78	0.52	0.52
	3.D Other	3.D Nitrous Oxide for Anesthesia	Gg-CO ₂	287.07	437.58	340.99	266.41	242.34	159.95	160.44	

 Table 5-1
 Nitrous oxide emissions during anesthetics (laughing gas) use

b) Methodological Issues

• Estimation Method

In relation to emissions of N_2O from use of anesthetics, the actual amount of N_2O shipped as an anesthetic by pharmaceutical manufacturers or importers has been reported for 2005 and preceding years. For 2006 and beyond, the amount of N_2O collected is calculated using the amount of Laughing Gas used in three domestic hospitals equipped with N_2O destruction units for anesthesia, and a destruction rate of 99.9 %. This is subtracted from the N_2O shipped for medical use to yield the amount of N_2O emitted.

 $\begin{array}{l} \mbox{Amount of N_2O emitted during the use of laughing gas} \\ = N_2O \mbox{ shipped for medical use} \\ - \mbox{Amount of laughing gas used in 3 hospitals equipped with N_2O destruction units} \\ \times \mbox{ destruction rate} \end{array}$

Emission Factors

It is assumed that all of the N_2O used as medical gas escapes into the atmosphere, unless collected. Therefore, no emission factor has been established.

Activity Data

The volume of shipments of N_2O for anesthetics (on calendar year basis) is given in the Ministry of Health, Labour and Welfare's Statistics of Production by Pharmaceutical Industry. This is used for 2005 and preceding years, and for 2006 and beyond, the amount of N_2O collected in three domestic hospitals equipped with N_2O destruction units is subtracted from the above-mentioned shipment.

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Laughing gas shipment amount	kg-N ₂ O	926,030	1,411,534	1,099,979	859,389	789,558	519,011	519,011
N ₂ O collected in three domestic hospitals	kg-N ₂ O	-	-	-	-	7,822	3,042	1,454

 Table 5-2
 Laughing gas shipment amount and N₂O collected in three domestic hospitals (calendar vear basis)

* For 2008 Laughing Gas shipment amount, the 2007 value is used.

c) Uncertainties and Time-series Consistency

• Uncertainty

Because all N_2O used for anesthetics are assumed to escape into the atmosphere, no emission factor has been set. Therefore, the uncertainty for activity data is also the uncertainty for emissions. As Statistics of Production by Pharmaceutical Industry is a fundamental statistic based on statistical law, a 5% uncertainty was given for this emission source.

• Time-series Consistency

The volumes of shipments are taken from the Statistics of Production by Pharmaceutical Industry in a consistent manner throughout the time series.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the GPG (2000). Tier 1 QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. QA/QC activities are summarized in Annex 6.

e) Source-specific Recalculations

For 2006 and beyond, the amount of N_2O collected in three domestic hospitals equipped with laughing gas destruction units is subtracted from the medical N_2O shipment amount to yield emissions.

f) Source-specific Planned Improvements

No improvements are planned.

5.5.2. Fire Extinguishers (3.D.-)

1) CO₂

Many types of fire extinguishers in Japan are filled with CO_2 , which is emitted into the atmosphere when a fire extinguisher is used. All of the CO_2 with which the fire extinguishers are filled, however, is the by-product gas generated from petrochemicals or petroleum refining. Such emissions are included in the calculation of Chapter 1, section 1.A.1.b. Petroleum Refining, and therefore, have been reported as "IE".

2) N_2O

 N_2O is not used in the fire extinguishers in Japan. Therefore the N_2O emissions from this category are reported as "NO".

5.5.3. Aerosol Cans (3.D.-)

1) CO₂

Aerosol products, which fill spray cans with carbon dioxide, are manufactured in Japan. It is assumed that CO_2 could be emitted into the atmosphere when the aerosol products are used. However, because the CO_2 used in the aerosol industry is a by-product gas of petrochemical products, these emissions are counted in the Combustion of Fuel sector (1.A.), and have been reported as "IE" here.

2) N_2O

Aerosol products manufactured in Japan do not use N_2O . Theoretically, no N_2O is emitted, and it has been reported as "NA" here.

References

- 1. Ministry of the Environment Committee for the Greenhouse Gases Emissions Estimation Methods, *Review of Greenhouse Gases Emissions Estimation Methods Part 2*, August 2002.
- 2. Ministry of Health, Labour and Welfare's Statistics of Production by Pharmaceutical Industry.

Chapter 6. Agriculture (CRF sector 4)

6.1. Overview of Sector

Greenhouse gas emissions from the agricultural sector are calculated in five categories: 4A, 4B, 4C, 4D, and 4F. In 4A: Enteric Fermentation, methane gas generated and emitted by cattle, buffalo, sheep, goats, horses, and swine as the result of enteric fermentation is reported. In 4B: Manure Management, methane and nitrous oxide generated by treatment of manure excreted by cattle, buffalo, sheep, goats, horses, swine and poultry are reported. In 4C: Rice Cultivation, methane emissions from paddy fields (continuously flooded and intermittently flooded) cultivated for rice production are reported. In 4D: Agricultural Soils, methane and nitrous oxide emitted directly and indirectly from agricultural soil as well as pastures, ranges, and paddocks manure are reported. There is NO emission reported for 4E: urePrescribed Burning of Savannas, since Japan has no emissions from field burning of grains, legumes, root crops, and sugar cane during agricultural activities are reported in 4F: Field Burning of Agricultural Residues.

The Revised 1996 IPCC Guidelines require emissions from the agricultural sector to be reported as a three-year average. The Japanese inventory uses the year before and the year after the relevant year to report a three-year average for emissions.

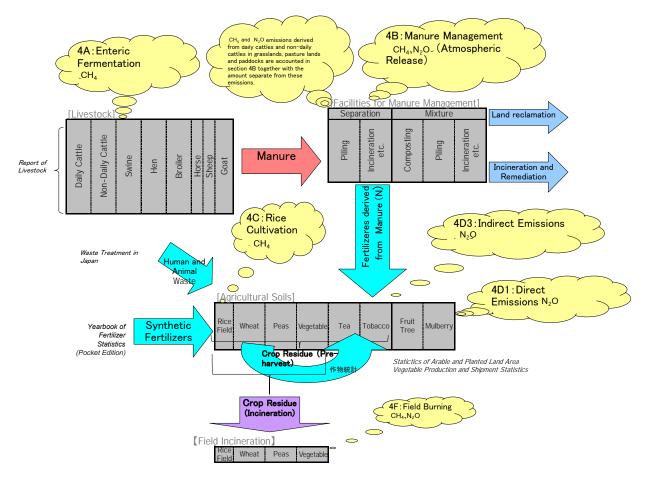


Figure 6-1 Relationships among the categories in the agricultural sector

GHG emissions in the Agricultural Sector in FY 2008 were 25,845 Gg-CO₂, comprising 2.0% of total emissions. The value represents a reduction by 17.5% from FY 1990.

6.2. Enteric Fermentation (4.A.)

Ruminants such as cattle, buffalo, sheep, and goats have multi-chamber stomachs. The rumen carries out anaerobic fermentation to break down cellulose and other substances, thereby releasing CH_4 . Horses and swine are not ruminants and have monogastric stomachs, but fermentation in their digestive tracts produces small amounts of CH_4 , which is released into the atmosphere These methane emissions are calculated and reported in the *Enteric Fermentation* (4.A.) section.

GHG emissions from Enteric Fermentation in FY 2008 were 6,945Gg-CO₂, comprising 0.5% of total emissions. The Value represents a reduction by 9.5% from FY 1990.

Gas	Livestock species	Unit	1990	1995	2000	2005	2006	2007	2008
	4.A.1 Dairy Cattle	Gg-CH4	192.6	184.4	172.8	162.9	160.7	157.8	155.5
	4.A.1 Non-Dairy Cattle	Gg-CH4	158.2	164.6	165.5	158.2	160.4	162.0	162.8
	4.A.2. Buffalo	Gg-CH4	0.012	0.007	0.005	0.004	0.004	0.004	0.004
	4.A.3. Sheep	Gg-CH4	0.09	0.06	0.05	0.04	0.04	0.04	0.05
CH ₄	4.A.4. Goats	Gg-CH4	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	4.A.6. Horse	Gg-CH4	2.1	2.1	1.9	1.6	1.5	1.5	1.5
	4.A.8. Swine	Gg-CH4	12.5	11.0	10.7	10.6	10.6	10.7	10.8
	Total	Gg-CH ₄	365.6	362.2	351.0	333.4	333.3	332.1	330.7
	TOTAL	Gg-CO ₂ eq	7,677	7,606	7,370	7,002	7,000	6,974	6,945

 Table 6-1
 CH₄ emissions from enteric fermentation

6.2.1. Cattle (4.A.1.)

a) Source/Sink Category Description

This section provides the estimation methods for CH_4 emissions from enteric fermentation in Cattle.

b) Methodological Issues

•Estimation Method

In accordance with Decision Tree of the *Good Practice Guidance (2000)* (Page 4.24 Fig. 4.2), calculations for dairy and non-dairy cattle should be performed using the Tier 2 method. The Tier 2 method requires the total energy intake of livestock to be multiplied by the methane conversion factor to derive the emission factor, but it has been in practice in Japan on livestock-related research to use volume of dry matter intake. It is considered that, by applying the results of previous researches, the estimation method using volume of dry matter intake provides more accurate data. For that reason, a technique similar to the Tier 2 Method but specific to Japan was used for the calculation of methane emissions associated with enteric fermentation by cattle. The emissions were calculated by multiplying the cattle population (dairy and non-dairy) by the emission factors established based on their dry matter intake.

As cattle begin to eat normal feed at the age of five to six months, the calculation of the methane emissions associated with enteric fermentation includes cattle aged five months or older.

To reflect the actual situation of emissions in Japan, categorization of cattle is defined as shown below, and the estimation of methane emissions is conducted by type and age.

Table 6-2	Categorization and assumptions underlying calculation of methane emissions associated with
	enteric fermentation in cattle

An	imal type	Assumptions for Calculation of Emissions
e	Lactating	_
attl	Non-lactating	_
Dairy cattle	Heifers (under 2 years old, excluding 5- and 6-month olds)	Calculation excludes 6/24 of the population which was assumed to be 6 months or younger; therefore actually covering only 18/24 of the population 2 years or younger.
	Heifers (5 to 6 months old)	Calculation covers 5- and 6-month olds comprising 2/24 of the population under 2 years old.
	Breeding cows (1 year and older)	-
	Breeding cows (under 1 year, excluding 5- and 6-month olds)	Calculation excludes 6/12 of the population which was assumed to be 6 months or younger; therefore covering 6/12 of the population under 1 year old.
attle	Breeding cows (5 and 6 months old)	Calculation covers 5- and 6-month olds comprising 2/12 of the population under 1 year old.
ry c	Japanese cattle (1 year and older)	-
Non-dairy cattle	Japanese cattle (under 1 year, excluding 5- and 6-month olds)	Calculation excludes 6/12 of the population which was assumed to be 6 months or younger; therefore covering 6/12 of the population under 1 year old.
	Japanese cattle (5 to 6 months old)	Calculation covers 5- and 6-month olds comprising 2/12 of the population under 1 year old.
	Dairy breeds (excluding 5- and 6-month olds)	Calculation excludes 6/24 of the population which was assumed to be 6 months or younger; therefore covering 18/24 of the population under 2 year old.
	Dairy breeds (5 to 6 months old)	Calculation covers 5- and 6-month olds comprising 2/24 of the population under 2 years old.

•Emission Factors

The emission factor for methane associated with enteric fermentation in cattle has been established on the basis of breath testing of ruminant livestock in Japan; it is based on the measured data for volume of methane generated from dry matter intake.

Results of measurements have made it clear that it is possible to estimate methane from enteric fermentation in ruminant livestock using the equation given below, which uses dry matter intake as the explanatory variable (Shibata et. al,(1993), Reference 30).

Equation for estimating methane emissions associated with enteric fermentation in ruminant livestock
$Y = -17.766 + 42.793 X - 0.849 X^2$
Y : Volume of methane generated [1 / day]
X : Dry matter intake [kg/day]

Average dry matter intake estimated from *Japan Feed Standards* compiled by the Japan Livestock Industry Association is applied to the above equation to establish emission factors. The dry matter intake was calculated by substituting fat-adjusted milk yield, body weight, and weight gain per day into the equation established for each type of cattle. Data for the fat-adjusted milk yield was obtained from the *Statistics on Milk and Dairy Products* (Ministry of Agriculture, Fisheries and Forestry; MAFF) and the *Statistics on Livestock* (MAFF), and those for the fat content from the *Statistics of Livestock Production Costs* (MAFF). Both sets of the data are updated on a yearly basis. Data for body weight and weight gain per day were obtained from the table of weight by age (months) for each type of cattle included at the back of the *Japanese Feeding Standards* (Japan Livestock Industry Association).

CH₄ Emission Factor of Enteric Fermentation (kg-CH₄/head)

=(Methane generated [L/day/head]) / (Volume of 1 mol) \times (molecular weight of methane) \times (no. of days in year)

= Y/22.4 (l/mol)×0.016 (kg/mol)×365or 366 (day)

		Item	Unit	1990	1995	2000	2005	2007	2008	2009
Lactating		ing	kg/head/day	18.2	19.2	20.0	20.9	20.9	21.0	21.0
Cat	Dry		kg/head/day	8.2	8.3	8.5	8.5	10.6	10.6	10.6
airy	Heifer	: Under Two Year, over six month	kg/head/day	7.1	7.2	7.5	7.7	7.7	7.7	7.7
Ő	Heifer	: Five and six month	kg/head/day	3.6	3.6	3.8	4.2	4.3	4.3	4.3
	ng s	One Year and Over	kg/head/day	6.6	6.6	7.1	6.6	6.4	6.3	6.3
	Breeding Cows	Under One Year, over six month	kg/head/day	5.5	5.5	6.7	6.2	6.0	5.9	5.9
e	ġ,	Fiveand six month	kg/head/day	3.8	3.8	4.4	4.1	4.0	4.0	4.0
attle		Japanese cattle (M): One Year and Over	kg/head/day	8.4	8.4	8.4	8.3	8.3	7.7	7.7
ъ С	e	Japanese cattle (M): Under One Year, over six month	kg/head/day	6.8	6.8	6.8	6.8	6.8	7.2	7.2
Non-Dairy	cattle	Japanese cattle (M): Fiveand six month	kg/head/day	4.3	4.3	4.3	4.4	4.4	4.4	4.4
-uc		Japanese cattle (F): One Year and Over	kg/head/day	5.7	5.7	6.4	6.0	5.8	5.7	5.7
ž	fattening	Japanese cattle (F): Under One Year, over six month	kg/head/day	4.9	4.9	6.1	5.6	5.4	5.3	5.3
	fatte	Japanese cattle (F): Fiveand six month	kg/head/day	3.4	3.4	4.1	3.8	3.7	3.6	3.6
		Dairy breed: Over six month	kg/head/day	8.7	8.7	8.7	8.7	8.7	8.7	8.7
		Dairy breed: Five and six month	kg/head/day	5.3	5.3	5.3	5.3	5.3	5.3	5.3

Table 6-3 Dry matter intake by cattle

Table 6-4	Emission facto	r associated	with enteric	fermentation by cattle

		Item	Unit	1990	1995	2000	2005	2007	2008	2009
attle	Lacta	ting	kgCH4/head/year	125.0	128.3	130.0	131.9	132.2	132.0	132.0
Cat	Dry		kgCH4/head/year	72.0	72.7	74.0	74.1	88.9	88.7	88.7
Dairy	Heifer	r: Under Two Year, over six month	kgCH4/head/year	63.4	64.7	66.9	67.8	68.1	68.0	68.0
Ď	Heifer	r: Five and six month	kgCH4/head/year	32.7	32.9	34.4	38.1	38.9	38.8	38.8
	ing s	One Year and Over	kgCH4/head/year	59.0	59.2	63.1	59.3	57.9	57.0	57.0
	reeding Cows	Under One Year, over six month	kgCH4/head/year	49.8	50.0	60.1	56.3	54.8	53.8	53.8
е	Br	Fiveand six month	kgCH4/head/year	34.9	35.0	40.4	37.8	36.9	36.2	36.2
attle		Japanese cattle (M): One Year and Over	kgCH4/head/year	73.2	73.4	73.2	72.8	72.8	68.5	68.5
C C	le	Japanese cattle (M): Under One Year, over six	kgCH4/head/year	61.1	61.3	61.1	61.2	61.4	64.5	64.5
Non-Dairy	cattle	Japanese cattle (M): Fiveand six month	kgCH4/head/year	39.6	39.7	39.6	39.9	40.2	39.8	39.8
-uc		Japanese cattle (F): One Year and Over	kgCH4/head/year	51.8	51.9	58.1	54.2	52.8	51.9	51.9
ž	fattening	Japanese cattle (F): Under One Year, over six	kgCH4/head/year	44.3	44.5	55.3	51.2	49.7	48.7	48.7
	fatt	Japanese cattle (F): Fiveand six month	kgCH4/head/year	31.0	31.0	37.4	34.6	33.5	32.9	32.9
		Dairy breed: Over six month	kgCH4/head/year	75.6	75.8	75.6	75.6	75.8	75.6	75.6
		Dairy breed: Five and six month	kgCH4/head/year	48.0	48.1	48.0	48.0	48.1	48.0	48.0

•Activity Data

The values used for activity data for this source are calculated by using the herd size for each type of livestock at 1 February in each year, recorded by the Ministry of Agriculture, Forestry and Fisheries in its *Livestock Statistics*.

		Item	Unit	1990	1995	2000	2005	2007	2008	2009
attle	Lactat	Lactating		1,082	1,035	971	900	862	848	848
Cat	Dry		1000 head	332	299	249	231	213	207	207
Dairy	Heifer	: Under Two Year, over six month	1000 head	491	445	379	379	344	334	334
ñ	Heifer	: Five and six month	1000 head	55	49	42	42	38	37	37
	ng s	One Year and Over	1000 head	679	646	612	594	634	650	650
	reeding Cows	Under One Year, over six month	1000 head	17	13	12	14	17	16	16
e	P B	Fiveand six month	1000 head	6	4	4	5	6	5	5
attle		Japanese cattle (M): One Year and Over	1000 head	368	412	385	374	407	414	414
L C	le	Japanese cattle (M): Under One Year, over six month	1000 head	125	133	114	119	123	130	130
Non-Dairy	cattle	Japanese cattle (M): Fiveand six month	1000 head	42	44	38	40	41	43	43
-uc		Japanese cattle (F): One Year and Over	1000 head	197	265	246	290	309	323	323
ž	fattening	Japanese cattle (F): Under One Year, over six month	1000 head	102	105	93	89	96	105	105
	fatt	Japanese cattle (F): Fiveand six month	1000 head	34	35	31	30	32	35	35
		Dairy breed: Over six month	1000 head	805	808	845	789	800	775	775
		Dairy breed: Five and six month	1000 head	89	90	94	88	89	86	86

 Table 6-5
 Activity data associated with enteric fermentation by cattle (Single year)

* Data for 2009 are substituted by data for 2008

c) Uncertainties and Time-series Consistency

•Uncertainties

An uncertainty assessment was conducted for the categories indicated in Table 6-2, there were 4 categories for dairy cattle and 11 categories for non-dairy cattle. The uncertainties for emission factors were calculated by finding the 95% confidence interval in accordance with the equation indicated in the section *Emission Factors*. Populations of cattle (Activity data) are decided by survey of total population in the *Livestock Statistics*, but standard error for cattle is not described. Therefore, the uncertainties for activity data were determined to be 5% in accordance with decision tree indicated in Annex 7. As a result, the uncertainties of the emissions were determined to be 15% for dairy cattle and 19% for non-dairy cattle. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Emission factors were calculated consistently from FY 1990 onward by the method mentioned in the section on Emission Factors. Activity data were calculated consistently from FY 1989 onward from the data in Livestock Statistics.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance* (2000) methods. Tier 1 QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. QA/QC activities are summarized in Annex 6.1.

e) Source-specific Recalculations

By the revision of butterfat rate from FY 1990 to FY 2007, emissions were revised for daily cattle.

For non-daily cattle, with the publication of *Japanese Feeding Standard: Beef Cattle* (2008 edition), the weight for non-dairy cattle was updated and the equation for estimation of dry matter intake was changed from FY 2008. As a result, weights from FY2000 to FY2007 were revised and emissions were changed.

In the agricultural sector, a 3-year average has been used. Thus, cause of revision and update of the activity data for FY 2008, the emissions for FY 2007 were revised accordingly.

f) Source-specific Planned Improvements

- The *Good Practice Guidance (2000)* suggests that emission factors be calculated by multiplying the total country-specific gross energy intake by the CH_4 conversion factor. However, Japan estimates the emission factor by multiplying the volume of dry-matter by the CH_4 conversion factor, and the difference that may arise as a result of these two different estimating methods needs to be reviewed.
- It is anticipated that improvements in nutrition management techniques and techniques to suppress methane fermentation by controlling fermentation in the rumen (such as by the addition of fatty acid calcium and polyphenols to feed) will find increasing use, but estimation methods which can reflect them in emission is not developed although methane inhabitation amount changes by the component composition of feed, degrees and quantity of unsaturation for fatty acid calcium is not generated. It is necessary to develop estimation methods that can reflect measures to control methane generation.

6.2.2. Buffalo, Sheep, Goats, Horses & Swine (4.A.2., 4.A.3., 4.A.4., 4.A.6., 4.A.8.)

a) Source/Sink Category Description

This section provides the estimation methods for CH_4 emissions from enteric fermentation in Buffalo, Sheep, Goats, Horses and Swine.

b) Methodological Issues

•Estimation Method

Methane emissions associated with enteric fermentation by buffalo, sheep, goats, swine, and horses were calculated using the Tier 1 Method in accordance with the Decision Tree of the *Good Practice Guidance* (2000).

Emission Factors

The emission factor for methane associated with sheep and goats has been established in the same way as for cattle, based on the emissions of methane estimated from dry matter intake.

In Japan, most of sheep are farmed for meat and they are smaller than sheep for wool production assumed in IPCC guidelines as default. Therefore, we consider that emission factor for sheep in Japan is lower than default in IPCC guidelines. As for goats, research findings in this regard do not exist in Japan. However, the emission factor for goat was regarded as equivalent to the one for sheep by the experts (the expert judgment). Therefore, the emission factor for sheep is also used for goats.

The emission factor for swine has been established on the basis of results of research conducted in Japan. The emission factor used for horses and buffalo is the default value given in the *Revised 1996 IPCC Guidelines*.

Table 6-6 Emission factors for CH ₄ associated with enteric fermentation in sheep, goats, horses and sw	ine
--	-----

Animal type	Dry Matter Intake [kg]	CH ₄ Generation factor [kg/year/head] ^a
Sheep, goats	0.8	4.1
Swine ^b	1	1.1
Horses ^c	-	18.0
Buffalo ^c	_	55.0

a: Calculated by the formula: (Methane generated [L/day/head]) / (Volume of 1 mol) × (molecular weight of methane) × (no. of days in year)

b: Mamoru Saito, Methane emissions from fattening swine and expectant swine (1988) (Reference 29)

c: Revised 1996 IPCC Guidelines

•Activity Data

The values used for activity data are used for sheep and goats given in the *Statistical Document of Livestock Breeding* offered by the Japan Livestock Industry Association. The values used for activity data for swine are the herd size at 1 February in each year, as recorded by the Ministry of Agriculture, Forestry and Fisheries in its *Livestock Statistics*. The values used for activity data for horses given in the *Statistical Document of Horse* offered by the Ministry of Agriculture, Forestry and Fisheries, for buffalo given *Statistics on Livestock in Okinawa Prefecture*.

Type of animal	Unit	1990	1995	2000	2005	2007	2008	2009
Sheep	1000 head	21	14	12	9	10	12	12
Goats	1000 head	26	19	22	16	15	14	14
Swine	1000 head	11,335	9,900	9,788	9,620	9,745	9,899	9,899
Horse	1000 head	116	118	105	87	83	83	83
Buffalo	1000 head	0.21	0.12	0.10	0.08	0.08	0.08	0.08

Table 6-7Activity data associated with enteric fermentation by buffalo, sheep, goats, swine, and horses

* Data for 2009 are substituted by data for 2008

c) Uncertainties and Time-series Consistency

•*Uncertainties*

An uncertainty assessment was conducted by each livestock category. The uncertainties for emission factors were applied 50% of default data given in the *Good Practice Guidance (2000)*. As the uncertainty for activity data, 0.83% of standard error for swine given in the *Livestock Statistic* was applied to swine. Since sample standard deviation can't be obtained and expert judgment is impossible, and non-fundamental statistics, 100% was applied to other livestock in accordance with the decision tree of uncertainty assessment. As a result, the uncertainties of the emissions were determined to be 50% for swine and 112% for buffalo, sheep and goats. The uncertainty assessment methods are summarized in Annex 7.

•*Time-series Consistency*

For emission factors, same values were used consistently from FY 1990 to FY 2007. Activity data for sheep and goats applied the data given in the *Statistical Document of Livestock Breeding*, those for swine applied the data given in the *Livestock Statistics*; those for horses applied the data given in *Statistical Document of Horse*, and those for buffalo applied the data given in the *Livestock Statistics* of Okinawa, consistently since FY 1989.

d) Source-specific QA/QC and Verification

Refer to section "6.2.1. Cattle ".

e) Source-specific Recalculations

In the agricultural sector, a 3-year average has been used. Thus, cause of revision and update of the activity data for FY 2008, the emissions for FY 2007 were revised accordingly.

f) Source-specific Planned Improvements

Although the default emission factor in the *Revised 1996 IPCC Guidelines* or the *Good Practice Guidance (2000)* has been used for some livestock categories, there is a need to discuss whether it is possible to establish country-specific emission factors for Japan.

6.2.3. Poultry (4.A.9.)

It is conceivable that methane is emitted from enteric fermentation in poultry, but the Japanese literature offers no data on emission factors, and neither the *Revised 1996 IPCC Guidelines* nor the *Good Practice Guidance (2000)* offer default emission factors. Therefore, this category has been reported as "NE".

In addition, poultry other than hens and broiler are not covered by official statistics, suggesting that they may be assumed to be negligible.

6.2.4. Camels and Llamas, Mules and Asses (4.A.5., 4.A.7.)

Japan reported "NO" in this subcategory as it was unlikely that these animals were raised for agricultural purposes.

6.2.5. Other (4.A.10.)

The only livestock that are bred in Japan are cattle, sheep, goats, horses, swine and poultry. Therefore, this category has been reported as "NO".

6.3. Manure Management (4.B.)

Livestock manure generates methane when its organic content is converted to methane gas through methane fermentation, or when methane from enteric fermentation dissolved in manure is released by aeration or agitation. In manure management, N_2O is produced mainly by microorganism via nitrification and denitrification processes.

 CH_4 and N_2O emissions from manure management in FY 2008 are 2,328Gg- CO_2 and 4,768Gg- CO_2 , comprising 0.2% and 0.4% of total emissions, respectively. The value represents a reduction by 24.8% and 13.8% from FY 1990, respectively.

	Table 0-8 CH ₄ and N ₂ O emissions from investock manufe management								
Gas	Livestock species	Unit	1990	1995	2000	2005	2006	2007	2008
	4.B.1 Dairy Cattle	Gg-CH4	123.2	115.7	106.2	98.2	95.0	91.7	89.4
	4.B.1 Non-Dairy Cattle	Gg-CH4	4.5	4.6	4.5	4.4	4.5	4.6	4.6
	4.B.2. Buffalo	Gg-CH4	0.0004	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
	4.B.3. Sheep	Gg-CH4	0.006	0.004	0.003	0.003	0.003	0.003	0.003
CIL	4.B.4. Goats	Gg-CH4	0.005	0.003	0.004	0.003	0.003	0.003	0.003
CH4	4.B.6. Horse	Gg-CH4	0.2	0.2	0.2	0.2	0.2	0.2	0.2
	4.B.8. Swine	Gg-CH4	15.9	13.9	13.6	13.5	13.5	13.6	13.7
	4.B.9. Poultry	Gg-CH4	3.5	3.2	3.0	2.9	2.9	3.0	3.0
	T. (.]	Gg-CH4	147.3	137.8	127.5	119.2	116.1	113.1	110.8
	Total	Gg-CO2eq	3,094	2,893	2,678	2,503	2,439	2,374	2,328
	4.B.1 Dairy Cattle	Gg-N2O	2.7	2.6	2.3	2.2	2.1	2.0	2.0
	4.B.1 Non-Dairy Cattle	Gg-N ₂ O	2.8	2.9	2.8	2.8	2.8	2.9	2.9
	4.B.2. Buffalo	Ca NaO							
		Gg-N2O	0.00012	0.00007	0.00005	0.00004	0.00004	0.00004	0.00004
	4.B.3. Sheep	Gg-N2O Gg-N2O	0.00012	0.00007	0.00005	0.00004	0.00004	0.00004	0.00004
NO	4.B.3. Sheep 4.B.4. Goats	- e							
N2O	1	Gg-N ₂ O	0.007	0.005	0.004	0.003	0.003	0.004	0.004
N2O	4.B.4. Goats	Gg-N ₂ O Gg-N ₂ O	0.007 0.03	0.005 0.02	0.004 0.03	0.003 0.02	0.003 0.02	0.004 0.02	0.004
N2O	4.B.4. Goats 4.B.6. Horse	Gg-N2O Gg-N2O Gg-N2O	0.007 0.03 0.1	0.005 0.02 0.1	0.004 0.03 0.1	0.003 0.02 0.1	0.003 0.02 0.1	0.004 0.02 0.1	0.004 0.02 0.1
N2O	4.B.4. Goats 4.B.6. Horse 4.B.8. Swine 4.B.9. Poultry	Gg-N ₂ O Gg-N ₂ O Gg-N ₂ O Gg-N ₂ O	0.007 0.03 0.1 4.8	0.005 0.02 0.1 4.2	0.004 0.03 0.1 4.1	0.003 0.02 0.1 4.1	0.003 0.02 0.1 4.1	0.004 0.02 0.1 4.1	0.004 0.02 0.1 4.1
N2O	4.B.4. Goats 4.B.6. Horse 4.B.8. Swine	Gg-N2O Gg-N2O Gg-N2O Gg-N2O Gg-N2O Gg-N2O Gg-N2O Gg-N2O Gg-N2O	0.007 0.03 0.1 4.8 3.8	0.005 0.02 0.1 4.2 3.9	0.004 0.03 0.1 4.1 3.7	0.003 0.02 0.1 4.1 3.6	0.003 0.02 0.1 4.1 3.6	0.004 0.02 0.1 4.1 3.7	0.004 0.02 0.1 4.1 3.6

Table 6-8 CH₄ and N₂O emissions from livestock manure management

6.3.1. Cattle, Swine and Poultry (4.B.1., 4.B.8., 4.B.9.)

a) Source/Sink Category Description

This section provides the estimation methods for CH_4 and N_2O emissions for manure management from cattle, swine and poultry. The estimations for cattle were conducted separately for "shedded" and "pastured" cattle. CH_4 emissions were reported in this category and N_2O emissions for "pastured" were reported in "4.D.2 Pasture, Range and Paddock Manure".

b) Methodological Issues

i) Cattle, Swine and Poultry in shed and barn

•Estimation Method

Methane emissions associated with the treatment of manure excreted by cattle in a shed and barn (dairy and non-dairy), swine, and poultry (hen and broilers) were calculated by multiplying the volume of organic matter contained in manure from each type of livestock by the emission factor for each type of treatment method.

$$E = \sum \left(EF_n \times A_n \right)$$

E: Methane emissions associated with the management of manure excreted by cattle, swine and poultry (g-CH₄)

 EF_n : Emission factor for treatment method *n* (g-CH₄/g-Organic matter);

 A_n : Amount of organic matter contained in manure treated by method n (g-Organic matter).

Nitrous oxide emissions associated with the management of manure excreted by cattle (dairy and non-dairy), swine, and poultry (hen and broilers) were calculated by multiplying the amount of nitrogen contained in manure of each type of animal by the emission factor for each type of treatment

method.

$$E = \sum \left(EF_n \times A_n \right) \times 44/28$$

E: Nitrous oxide emission associated with management of manure excreted by cattle, swine and poultry (g-N₂O) EF_n : Emission factor for treatment method *n* (g-N₂O/g-N);

 A_n : Amount of nitrogen contained in manure treated by method n (g-N)

•Emission Factors

Emission factors for methane and nitrous oxide (See below tables) associated with Animal Waste Management System (hereafter, AWMS) of dairy cattle, non-dairy cattle, swine, hens, and broilers have been established for each treating method of for each type of livestock, on the basis of the results of research carried out in Japan after reviewing its validity in accordance with the decision tree shown in Figure 6-2.

Moisture for dairy cattle feces are high, and they easily make anaerobic condition. It is considered to be the reason for high CH_4 emission factor for piling.

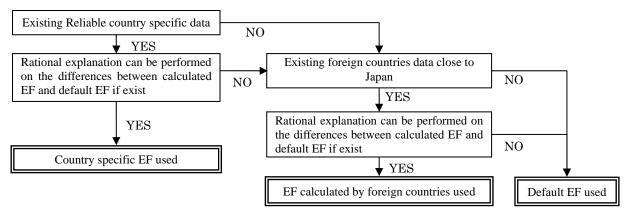


Figure 6-2 Decision tree for determination of EF

treating method		Daily Ca	ttle	Non-daily cattle		Swine		Hen, Broiler	
12. Pi	t storage	3.90 %	D^1	3.00 %	D^1	8.7 %	D^1	—	
13. Sun drying		0.20 %	J^3	0.20 %	J^3	0.20 %	J ³	0.20 %	J^3
	14a. Thermal drying			0	%				Z^4
	14b. Composting (feces)	0.044 %	D^1	0.034 %	D^1	0.080 %	J ⁹	0.080%	J^9
er	14c. Piling	3.80 %	J^5	0.13 %	J^5	0.16 %	J ⁵	0.14 %	J^5
Other	14d. Incineration			0.4	4 %				O^{46}
14. (14e. Composting (liquid)					0.097 %	D^1		
1	14e. Composting	0.044 %	\mathbf{D}^1	0.034 %	D^1	0.080 %	1 9		
	(feces and urine mixed)					0.080 %	J		
	14f. Purification	0.0087%	D^1	0.0067%	D^1	0.019%	D^1		

	treating method	Daily Cat	tle	Non-daily c	attle	Swine		Hen, Bı	roiler
12. Pit	tstorage			0.10 %			D^1		
13. Su	n drying			2.) %				D^1
	14a. Thermal drying			2.) %				D^1
	14b. Composting (feces)	0.25 %		6	J^7	0.16 %			J^9
er	14c. Piling	2.40 %	J^5	1.60 %	J^5	2.50 %	J^5	2.0 %	D^1
Other	14d. Incineration		0.1 %						O^4
4.0	14e. Composting (liquid)				\mathbf{J}^7	2.0 %	D^1		
1	14e. Composting	2.0%	D^1	0.25%		0.16%	1 9		
	(feces and urine mixed)					0.10%	J		
	14f. Purification			5.0 %			J^8		

Table 6-10 N₂O Emission factors for each method of treating manure from cattle, Swine Hen & Broiler

D: Default value of IPCC Guideline

J: Established by data of Japan

O: Established by data of other countries

Z: Emission can not occur because of mechanism

* Manure excreted by hen and broiler was categorized as feces since it contains a very small amount of urine.

Sources for Table 6-9 and Table 6-10

1: GPG (2000) (Reference 4)

- 2: IPCC, Revised 1996 IPCC Guidelines (Reference 3)
- 3: Makoto Ishibashi et. al, "Development of technology of reducing GHG on the livestock industry(second report)" (2003) (Reference 34)
- 4: Japan Livestock Technology Association, GHGs emissions control in livestock Summary, (2002) (Reference 22)
- 5: Takashi Osada et.al, Greenhouse gas generation from livestock waste composting (2005) (Reference 38)
- 6: IPCC(1995): IPCC 1995 Report (Reference 2)
- 7: Takashi Osada et. al, Determination of nitrous oxide, methane, and ammonia emissions from a swine waste composting process (2000) (Reference 36)
- 8: Takashi Osada, Nitrous Oxide Emission from Purification of Liquid Portion of Swine Wastewater (2003) (Reference 37)
- Project Report of Survey on Prevention of Global Warming in the Agriculture, Forest and Fisheries Sector within the Environment and Biomass Comprehensive Strategy Promotion Project in FY 2008 (Nationwide Survey) (Reference 47)

•Activity Data

The values used for the activity data for emissions of methane and nitrous oxide associated with management of livestock excretion from dairy cattle, non-dairy cattle, swine, hens and broilers, are estimates of the volume of organic matter and the volume of nitrogen excreted annually by various types of livestock, respectively.

Total annual volume of organic matter by domestic livestock was calculated by multiplying the population of each type of animal by the amount of manure per head by the proportion of organic matter in feces or urine. Total nitrogen amount was calculated by multiplying the population of each type of animal by the nitrogen content volume of feces or urine excreted per head. The volume of organic matter and nitrogen amount was allocated to each category of manure management by multiplying the total volume by the percentage of manure treated separately and the percentage per treatment method. For livestock population, same references indicated in '4.A. Enteric Fermentation' are used.

Estimating activity data for CH_4 (volume of organic matter excreted) Volume of organic matter excreted [Gg] = Livestock herd or flock size [1000 head] \times volume of feces or urine excreted [kg/head/day] \times days per year [day] \times proportion of organic matter in feces or urine [%] \times proportions of feces and urine separated [%] \times share of each treating method [%] \times 1000 Source: Livestock herd/flock: MAFF, *Livestock Statistics* Volume of feces or urine excreted: Tsuiki et. al, A Computer Program for Estimating the Amount of Livestock Wastes. (1997) (Reference 44)

Proportion of organic matter in feces or urine: Japan Livestock Technology Association, *GHGs emissions control in livestock Summary*. (2002) (Reference 22)

Proportions of feces or urine separated: Same as above

Share of each treating method: Japan Livestock Technology Association, *GHGs emissions control in livestock Part4*, March 1999 (Reference 25)

Estimating activity data for N₂O (volume of nitrogen excreted by each type of livestock)

Volume of nitrogen excreted [Gg-N] = Livestock herd or flock size [1000 head]

imes nitrogen content volume of feces or urine excreted [kg-N/head/day] imes days per year [day]

 \times proportion of feces and urine separated [%] \times share of each treating method [%]

Source:

Nitrogen content volume in feces or urine excreted: Tsuiki et. al, A Computer Program for Estimating the Amount of Livestock Wastes. (1997) (Reference 44) Other elements of the equation are same as for methane.

_____**k**

> Cattle population

In order to avoid duplication with the cattle under grazing, the cattle population was calculated by subtracting activity data for grazing cattle determined by the formula, "Grazing population \times Number of grazing days (190 days) / Number of days in year (365 or 366 days)", from the total population of dairy and non-dairy cattle.

	Type of livestock		or urine excreted ead/day]	Nitrogen content urine excreted	volume in feces or [gN/head/day]
		feces	urine	Feces	urine
Dalari	Lactating	45.5	13.4	152.8	152.7
Dairy Cattle	Dry and Inexperienced Birthing	29.7	6.1	38.5	57.8
Cattle	Heifer: Under Two Years	17.9	6.7	85.3	73.3
Non Doim	Under Two years	17.8	6.5	67.8	62.0
Non-Dairy Cattle	Over Two Years	20.0	6.7	62.7	83.3
Cattle	Dairy breed	18.0	7.2	64.7	76.4
Swine	Growing-Finishing	2.1	3.8	8.3	25.9
Swille	Breeding	3.3	7.0	11.0	40.0
Hen	poult	0.059	-	1.54	-
пеп	adult	0.136	-	3.28	-
	Broiler	0.130	-	2.62	-

 Table 6-11
 Feces and urine excreted, by type of livestock

Source: Japan Livestock Technology Association, GHGs emissions control in livestock Summary. (2002) (Reference 22)

Type of livestock	Organic ma	tter content	Nitrogen content		
Type of livestock	Feces	Urine	Feces	Urine	
Dairy Cattle	16%	0.5%	0.4%	0.8%	
Non-Dairy Cattle	18%	0.5%	0.4%	0.8%	
Swine	20%	0.5%	1.0%	0.5%	
Hen	15%		2.0%	_	
Broiler	15%		2.0%		

Source: Japan Livestock Technology Association, GHGs emissions control in livestock Summary. (2002) (Reference 22)

Type of livestock	Separated	Mixed					
Dairy Cattle	60%	40%					
Non-Dairy Cattle	7%	93%					
Swine	70%	30%					
Hen	100%	—					
Broiler	100%	_					

Table 6-13Proportion of separated and mixed treatment of manure, by type of livestock

Source: Japan Livestock Technology Association, GHGs emissions control in livestock Summary. (2002) (Reference 22)

State of M (Separated or		Treating method	Dairy Cattle	Non-Dairy Cattle	Swine	Hen	Broiler
Separated	Feces	Sun drying	2.8%	1.5%	7.0%	30.0%	15.0%
-		Thermal drying	0.0%	0.0%	0.7%	3.0%	0.0%
		Composting	9.0%	11.0%	62.0%	42.0%	5.1%
		Piling	88.0%	87.0%	29.6%	23.0%	66.9%
		Incineration	0.2%	0.5%	0.7%	2.0%	13.0%
	Urine	Composting (liquid)	1.5%	9.0%	10.0%	_	_
		Purification	2.5%	2.0%	45.0%	_	_
		Pit storage	96.0%	89.0%	45.0%	-	_
Mixed		Sun drying	4.7%	3.4%	6.0%	—	-
		Thermal drying	0.0%	0.0%	0.0%	_	_
		Composting (liquid)	20.0%	22.0%	29.0%	_	_
		Piling	14.0%	74.0%	20.0%	_	_
		Purification	0.3%	0.0%	22.0%	_	_
		Pit storage	61.0%	0.6%	23.0%	_	_

Table 6-14 Percentage of manure management by type of animal

Source: Japan Livestock Technology Association, GHGs emissions control in livestock Part4. (1999) (Reference 23)

Completeness

Poultry other than hens and broiler are not covered by official statistics, and they are assumed to be negligible. Therefore, only hens and broiler are considered as estimation target from poultry.

Climate Regions

In the Tier 1 method, the *Good Practice Guidance (2000)* requires that emissions be calculated using herd size by climate regions.

In accordance with the climate categories given in the *Revised 1996 IPCC Guidelines*, Japan should be divided into temperate and cool zones. The average temperature over all prefectures in Japan is around 15 °C. This figure is almost the same as the threshold given in the *Revised 1996 IPCC Guidelines*. Therefore, emissions have been calculated on the assumption that all of Japan falls into the temperate zone, without a need to categorize regions into temperate or cool zone.

ii) Cattle under grazing

Organic matter contained in manure excreted by livestock during grazing (i.e. dung and urine deposited onto grazing and watering grounds by the grazing livestock) is converted to methane through the methane fermentation process, and emitted into the atmosphere. The nitrogen-containing manure also generates ammonium ions, which in turn generates nitrous oxide in the process of oxidation under aerobic conditions.

Emissions in this category are reported for cattle grazing owing to the unavailability of statistics and

other information regarding the grazing of other animals. CH_4 emissions are reported in this category and N₂O emissions from grazing cattle are reported in 4D2.

•Estimation Method

For methane and nitrous oxide emitted from pasture, range, and paddock manure, the amount of emissions was calculated for cattle by multiplying the Japan-specific emission factors by the total grazing population in accordance with the Decision Tree in the *Good Practice Guide (2000)* (page 4.55, Fig. 4.7).

•Emission Factors

Data for the amounts (g) of methane and nitrous oxide emitted from manure excreted per head of cattle per day were used as the emission factors. The data were established by multiplying the model output value of carbon content in manure excreted by grazing cattle during the grazing period by the actual measurement values of methane and nitrous oxide generated per amount of carbon contained in the manure of the grazing cattle.

The amount of carbon contained in the manure of the grazing cattle was calculated by a growth model of grazing cattle based on grass production, quality of grass, climatic conditions, and age in days of grazing cattle.

Table	Table 6-15 Emission factors for animal production							
GHGs	Emission Factors	Unit						
CH_4	3.67	[g CH ₄ /head/day]						
N ₂ O	0.32	[g N ₂ O-N/head/day]						

Table 6-15 Emission factors for animal production

Source: Japan Livestock Technology Association, GHGs emissions control in livestock Part6. (2001) (Reference 24)

•Activity Data

Activity data was determined by multiplying the grazing population by the duration of the grazing period. The grazing population was derived from the total grazing population in both public and private pastures reported in the *2004 Livestock Statistics*. For the grazing population in prior years, the percentage of the average grazing population (= Grazing population reported in the *Livestock Statistics* / Total population raised) as in FY 2003 and FY 2004 was determined first, and then the grazing population for each fiscal year was calculated on the assumption that the percentage was the same in all fiscal years.

The duration of 190 days was established for the grazing period, using the values for seasonal grazing (average grazing period: 172.8 days; the number of pastures 623) and year-round grazing (assumed grazing period: 365 days; the number of pastures 61) indicated in the *Report on National Factual Survey of Cattle Pastures (2000)*, and averaging the grazing days weighted by the number of pastures.

Item	Unit	1990	1995	2000	2005	2007	2008	2009
Amount of grazing daily cattle	head	302,219	281,603	252,088	245,100	311,900	305,225	305,225
Amount of grazing non-daily cattle	head	99,734	103,162	99,759	116,300	134,500	136,013	136,013

Table 6-16 Trends in the population of grazing cattle

iii)Reporting in Common Reporting Format (CRF)

In the CRF, with regard to CH₄ emissions from this category, it is required to report emissions by each

livestock. However, for N_2O emissions from this category, it is required to report emissions by AWMS (11. Anaerobic Lagoons, 12. Liquid Systems, 13. Solid Storage and Dry Lot, 14. Other).

For cattle, swine, and poultry, Japan's country-specific manure management categories and the implementation rates of the management categories have been established for each type of animal. For details, see Table 6-17 below.

The current CRF divides the reporting categories into Anaerobic Lagoons, Liquid Systems, Solid Storage and Dry Lots, and Other. In Japan, however, composting is widely practiced, particularly with respect to domestic livestock feces. Consequently the composting-related subcategories of "Piling" and "Composting" have been established under the Other category. Additional subcategories of "Thermal drying" and "Incineration", which are practiced for the purposes of volume reduction and easier handling of dung, have been also included in the Other category. Urine undergoes purification treatment as sewage with high concentrations of pollutants. Accordingly, a subcategory of "Purification" has been added to the CRF category of Other.

Japan	l			
Manu treatn		Manure management category	CRF	Description of Treatment
		Sun drying	13. Solid Storage and Dry Lot	Dried under sunlight to facilitate handling (for storage and odor prevention).
		Thermal drying	14. Other (a. Thermal drying)	Dried by heat to facilitate handling.
ent	Feces	Composting	14. Other (b. Composting)	Fermented for several days to several weeks with forced aeration and agitation in lidded or closed tanks.
Separate treatment	Fe	Piling	14. Other (c. Piling)	Piling system is a method of composting methods. Piled about 1.5-2m height on compost bed or in shed to ferment for several months with occasional turning.
Separa		Incineration	14. Other (d. Incineration)	For volume reduction or disposal, and use as an energy source (e.g. chicken manure boiler).
		14. Other (e. Composting (liquid))	Treated in an aeration storage tank.	
	Urine	Purification	14. Other (f. Purification)	Separate pollutants using aerobic microbes, such as activated sludge.
		Pit storage	12. Liquid systems	Stored in a storage tank.
		Sun drying	13. Solid Storage and Dry Lot	Dried under sunlight to facilitate handling.
	ut	Thermal drying	14. Other (a. Thermal drying)	Same as above, Thermal drying.
1	Mixed treatment	Liquid Composting	14. Other (e. Composting (liquid))	Solids are fermented for several days to several weeks with forced aeration and agitation in lidded or closed tank. Liquids are treated in an aeration storage tank.
	пхе	Piling	14. Other (c. Piling)	Same as above, Piling.
	N	Purification	14. Other (f. Purification)	Same as above, Purification.
		Pit storage	12. Liquid systems	Stored in a storage tank (e.g. slurry storage).

Table 6-17 Correspondence between the Japanese and CRF manure management categories

Composting is widely practiced in Japan because, among other things: (1) it is essential for Japanese livestock farmers to facilitate transportation and handling, because the lack of space required for the on-site reduction of manure makes it necessary to direct the manure for uses outside their farms; and (2) compost is in considerably higher demand as a fertilizer for various crops than is slurry or liquid manure in Japan where fertilizers tend to be lost by heavy rain and the expectations of the protection of water quality, prevention of odor, and sanitary management are high.

"11. Anaerobic Lagoons" have been reported as "NO". Because there are quite small number of livestock farmers who has enough area of field to spread manure, and it is assumed that there are no livestock farmers who use anaerobic lagoons. There are cases when manure is spread to fields in Japan, but even in these cases, stirring is conducted before the spreading. Therefore, there are no anaerobic manure management systems.

iv) Nitrogen in Livestock Manure Applied to Agricultural Soil

At present, calculation of the percentages of manure-derived organic fertilizer application in 4.D.3.: *Indirect Emissions* uses the total nitrogen content of livestock manure less the amount of volatilization into the atmosphere and the amount treated by "Incineration" and "Purification" treatments through which nitrogen is completely eliminated. The portion disposed of in landfill as waste was also subtracted from the total nitrogen content in livestock manure. Buffalo, sheep, goats, and horses are excluded from the calculation because they produce very small amounts of manure and details of their management in Japan are unknown.

•Estimation Method

The percentage of application of manure-derived organic fertilizers was calculated by subtracting the nitrogen contents in the livestock manure disposed of in the "direct final disposal", the nitrogen volatized as nitrous oxide, the nitrogen volatilized as ammonia and nitrogen oxides, and the nitrogen eliminated by the "incineration" and "purification", from the total nitrogen contained in livestock manure excreted in a shed and barn.

$N_D = N_{ab}$	$N_{ll} - N_{N2O} - N_{NH3+NOx} - N_{inc+waa} - N_{waste}$
N _{D:}	Amount of nitrogen in manure-derived fertilizer applied to agricultural soil (kg-N)
N _{all:}	Total amount of nitrogen excreted by livestock (deposited in shed and barn) (kg-N)
N _{N2O:}	Nitrogen in livestock manure volatilized as nitrous oxide (deposited in shed and barn) (kg-N)
N _{NH3+NOx:}	Nitrogen in manure volatilized as NH_3 and NO_X (deposited in shed and barn) (kg-NH_3-N + $NO_X\text{-}N)$
N _{inc+waa:}	Nitrogen eliminated by "incineration" and "purification(deposited in shed and barn) (kg-N)
N _{waste:}	Amount of nitrogen in manure that is disposed of in the "final direct disposal" (kg-N)

Source: Japan Livestock Technology Association, GHGs emissions control in livestock Summary (2002) (Reference 22)

\succ Amount of N_2O volatilized into the atmosphere

The amount of N_2O volatilized into the atmosphere was determined from the calculation results of nitrous oxide emissions from livestock manure.

> Amount volatilized as ammonia and nitrogen oxides

The amount of nitrogen that is volatilized as ammonia and nitrogen oxides from livestock manure was calculated by multiplying the nitrogen excreted by each type of animal by the percentage of nitrogen that is volatilized as ammonia and nitrogen oxides from manure of each type of animal. Because the percentage of nitrogen that is volatilized as nitrogen oxides is unknown, the percentages of the volatilization of ammonia and nitrogen oxides from manure were determined together with the percentage volatilized as ammonia based on the data in the *Estimated Volatilization of Ammonia from Livestock Manure* in the *Control of Greenhouse Gas Emissions in Livestock: Summary* (Japan Livestock Technology Association).

1 0	
Type of Animal	Value
Dairy and non-dairy cattle	10%
Swine	20%
Hen and broilers	30%

 Table 6-18 Estimated percentage of volatilized ammonia from livestock manure

Source: Japan Livestock Technology Association, GHGs emissions control in livestock Summary. (2002) (Reference 22)

> Nitrogen eliminated by incineration or purification

The amount was determined from the values of nitrogen disposed of through incineration and purification processes in manure management.

> Nitrogen in manure disposed of in direct final disposal

Livestock manure disposed of in landfill as waste is either treated before disposal ("treated disposal") or sent directly to landfill untreated ("direct final disposal").

Because the manure that is disposed of in "direct final disposal" is detained as a mixture of dung and urine prior to the disposal in landfill, a portion of manure held under the Storage subcategory in the Mixed Treatment category was deemed to have been disposed of in "direct final disposal" (note: manure of hen and broilers was deemed to have been treated under the "Feces - Piling" subcategory. The amount of manure that is disposed of in "treated disposal" is negligible and its treatment method is unknown; therefore, manure that is treated before final disposal was included in the calculation of the manure disposed in the "direct final disposal".

For the amount of nitrogen in manure disposed of in "direct final disposal," the total amounts of manure disposed in the "direct final disposal" and "treated disposal" shown in the *Report on the Survey for Research on the Wide-range Movement of Wastes and the State of Cyclical Use of Wastes* were apportioned to the volume of dung and urine of cattle and swine that was treated under the Storage subcategory of the Mixed Treatment category and the volume of manure of hen and broilers that was treated under the "Feces - Piling" of feces subcategory. The amounts that had been apportioned to the cattle and swine were further apportioned to dung and urine. Finally, the amounts of nitrogen content were calculated by multiplying the apportioned amounts by the nitrogen content calculated by dividing nitrogen amount in manure treated in storage system by manure amount treated in storage system in each of dung and urine of each type of animal (Table 6-11).

Nitrogen content in livestock manure disposed in the direct final disposal

- = Volume disposed of per type of animal and feces/urine × Nitrogen content in feces/urine of the type of animal
- =Total amount of direct final disposal and treated final disposal \times Average nitrogen contents in manure treated by storage system
- =Total amount of direct final disposal and treated final disposal \times Nitrogen amount in manure treated by storage system / Manure amount treated by storage system

Item	Unit	1990	1995	2000	2005	2007	2008	2009
the amount of N in animal manure (N_{all})	tN	789,405	748,584	708,663	683,651	687,339	687,104	687,104
the amount of N2O-N released from animal(except Incineration method and Wastewater manage method) (N_{N2O})	tN	8,934	8,485	7,981	7,690	7,736	7,743	7,743
the amount of NH3-N and Nox-N released from animal manure $(N_{\rm NH3+Nox})$	tN	144,935	137,392	130,075	125,673	127,245	127,084	127,084
the amount of N vanished by Incineration method and Wastewater manage method $(N_{inc+waa})$	tN	69,056	60,313	57,938	56,691	57,253	58,163	58,163
the amount of N vanished by $buryying in the ground. (N_{waste})$	tN	489	464	429	417	429	513	513
the amount of N used as fertilizer (N_D)	tN	565,991	541,931	512,239	493,180	494,675	493,601	493,601

Table 6-19 Nitrogen in livestock manure applied to agricultural soil

c) Uncertainties and Time-series Consistency

•Uncertainties

An uncertainty assessment was conducted for individual livestock categories. For cattle, uncertainty assessments were conducted separately for "shedded" and "pastured" cattle and both uncertainties combined. For the uncertainties of the emission factors for livestock, excluding pastured cattle, the values given in the *Good Practice Guidance (2000)* and the values calculated by expert judgment in accordance with the decision tree for uncertainty assessment, were applied.

For the uncertainties of emission factors for pastured cattle, the values calculated by expert judgment were applied in accordance with the decision tree for uncertainty assessment. For the uncertainties of the activity data, 0.83% (the standard error for swine given in the *Livestock Statistics*) was applied to swine, and 1.99% (the standard error for hens given in the *Livestock Statistics*) was applied to hens, and broilers. For cattle (total population), 5% is adopted, same as "6.2.1. Enteric Fermentation, Cattle". Activity data for pastured cattle is indicated in the Livestock Statistics, but standard error is not indicated and it is difficult to judge applying above precision for cattle (total). Therefore, 50% was applied for pastured cattle in accordance with the decision tree of uncertainty.

As a result, the uncertainties of the emissions for CH_4 and N_2O were determined to be 78% and 91% for dairy cattle, 73% and 125% for non-dairy cattle, 106% and 92% for Swine, 53% and 79% for Poultry, respectively. The uncertainty assessment methods are summarized in Annex 7.

•Time-series Consistency

Emission factors were calculated consistently from FY 1989 onward by the method mentioned in the section on *Emission Factors*. Activity data were calculated consistently from FY 1989 onward from the data in *Livestock Statistics*.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance* (2000) methods. Tier 1 QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. For some country specific emission factors, there were significant differences between the default emission factor. In the case, the factors of differences were analysed. QA/QC activities are summarised in Annex 6.1.

e) Source-specific Recalculations

By using new country specific emission factor by the result of research, emission factors for CH_4 and N_2O for swine, hen and broiler (Composting (feces) (14b), Composting (Mixed treatment) (14e)) was updated. As a result, emissions from FY 1990 to FY 2007 were changed.

In the agricultural sector, a 3-year average has been used. Thus, cause of revision and update of the activity data for FY 2008, the emissions for FY 2007 were revised accordingly.

f) Source-specific Planned Improvements

As research on actual emissions has been conducted by the organizations and agencies concerned, a review of emission factors and parameters will be implemented when the new data are obtained.

In addition, since the estimation of the amount of nitrogen fertilized in agricultural soil from livestock manure has a possibility of overestimate, this issue has been continuously discussed in the Committee for Greenhouse Gas Emission Estimation Methods.

6.3.2. Buffalo, Sheep, Goats & Horses (4.B.2., 4.B.3., 4.B.4., 4.B.6.)

a) Source/Sink Category Description

This section provides the estimation methods for CH_4 and N_2O emissions for manure management from Buffalo, Sheep, Goats and Horses.

b) Methodological Issues

1) CH₄

•Estimation Method

Methane emissions associated with the management of manure excreted by buffalo, sheep, goats, and horses were calculated using the Tier 1 method in accordance with the Decision Tree of the *Good Practice Guidance* (2000) (Page 4.33, Fig. 4.3).

Methane emissions associated with manure management $(kg-CH_4)$
= Emission factor for animal (kg-CH ₄ /year/head) \times Population of the animal

•Emission Factors

The emission factors for methane associated with a management of manure from sheep, goats and horses are the default values for temperate zones in industrialized nations, given in the *Revised 1996 IPCC Guidelines*. For buffalo, the default value given for the temperate zone in Asia was used.

Tuete e 20 Zimboren Tuetere fer Sheep, gewas with horses					
Type of livestock	Emission Factors [kg CH ₄ /head/year]	reference			
Sheep	0.28				
Goats	0.18	Revised 1996 IPCC Guidelines Vol. 2 p. 4.6 Table 4-4			
Horses	2.08				
Buffalo	2.0	Revised 1996 IPCC Guidelines, Vol. 3, p. 4.13, Table 4-6			

Table 6-20 Emission factors for sheep, goats and horses

•Activity Data

Same as '4.A. Enteric Fermentation', Calculation of activity data for sheep and goats used the values listed in the *Statistical Document of Livestock Breeding* offered by the Japan Livestock Industry Association and horses used the values listed in the the *Statistical Document of Horse* offered by the MAFF. Data for buffalo in the calculation used the population of buffalo listed in the *Statistics on Livestock in Okinawa Prefecture* (Table 6-7).

2) N_2O

•Estimation Method

 N_2O emissions associated with a management of the manure of sheep, goats and horses have been calculated, using the Tier 1 method in accordance with Decision Tree of the Good Practice Guidance (2000) (Page 4.41, Fig. 4.4) (Refer to 4B-CH₄-2007.xls for details of the calculation process.)

<u>Nitrous oxide emission associated with livestock manure (kg-N₂O)</u> = Emission factor per manure management category of each type of animal [kg-N₂O-N/kg-N]) × Nitrogen content of manure [kg-N/head] × Percentage of manure management category × Population of livestock [head]

•Emission Factors

The emission factors for N_2O associated with a management of manure from sheep, goats and horses are the default values for temperate zones in Asia & Far East, given in the *Revised 1996 IPCC Guidelines*.

	, I	
	Manure Management Category	Emission Factor [kg-N ₂ O-N/ kg-N]
11.	Anaerobic Lagoons	0.1%
12.	Liquid Systems (Pit storage)	0.1%
13.	Solid Storage and Dry Lot (Sun drying)	2.0%
	a. Thermal Drying	0.0%
	b. Compsting	0.0%
	c. Piling	0.0%
н	d. Incineration	0.0%
14.Other	e. Liquid Compsting	0.0%
0.4	f. Purification	0.0%
1,	g. Daily Spread	0.0%
	h. Pasture Range and Paddock	2.0%
	i. Used Fuel	0.0%
	j. Other system	0.5%

Table 6-21 Emission factors for buffalo, sheep, goats and horses [kg-N₂O-N/kg-N]

Source: Revised 1966 IPCC Guidelines, Vol. 3, page 4.121, Table B-1 (Reference 3)

Activity Data

In order to determine the activity data for buffalo, sheep, goats, and horses, first, the total nitrogen was calculated by multiplying the population of each type of animal by the nitrogen content of manure per head of animal. Then, the amount of nitrogen per manure management category was calculated by multiplying the total nitrogen by the percentage of each management category. For the nitrogen contents of manure and the percentage of each manure management category, the default values given in the *Revised 1996 IPCC Guidelines* were used. For the population size per type of livestock, the same values used in the calculation of methane emissions were used.

	10
Type of Animal	Emission Factor [kg-N/head/year]
Buffalo [*]	40
Sheep	12
Goats [*]	40
Horses [*]	40

Table 6-22 Amounts of nitrogen in manure excreted by buffalo, sheep, goats, and horses [kg-N/head/year]

Source: *Revised 1996 IPCC Guidelines*, Vol. 3, page 4.99, Table 4-20, 1 (Reference 3) * Value for "Other animals" was used.

Table 6-23 Percentage of each manure management category for buffalo, sheep, goat	p, goats, and norses
---	----------------------

Trac	atmont Catagory	Percentage of Treatment			
Trea	atment Category	Buffalo	Sheep	Goats	Horses
11.	Anaerobic Lagoons	0%	0%	0%	0%
12.	Liquid Systems (Pit storage)	0%	0%	0%	0%
13.	Solid Storage and Dry Lot (Sun drying)	14%	0%	0%	0%
	a. Thermal Drying	0%	0%	0%	0%
	b. Composting	0%	0%	0%	0%
	c. Piling	0%	0%	0%	0%
н	d. Incineration	0%	0%	0%	0%
14.Other	e. Liquid Composting	0%	0%	0%	0%
-4 O.4	f. Purification	0%	0%	0%	0%
Ť.	g. Daily Spread	16%	0%	0%	0%
	h. Pasture, Range and Paddock	29%	83%	95%	95%
	i. Used as Fuel	40%	0%	0%	0%
	j. Other system	0%	17%	5%	5%

c) Uncertainties and Time-series Consistency

•Uncertainties

An uncertainty assessment was conducted for individual livestock categories. With respect to the uncertainties for emission factors for CH_4 and N_2O from each livestock, 100%—the concerned or similar sources given in the *Good Practice Guidance (2000)*—were applied in accordance with the decision tree for uncertainty assessment. For the uncertainty of the activity data in each livestock, 100% was applied in accordance with decision tree. As a result, the uncertainties of the emissions were determined to be 141% for each livestock. The uncertainty assessment methods are summarized in Annex 7.

•*Time-series Consistency*

For emission factors, same values were used consistently from FY 1989 to FY 2008. Activity data were calculated consistently from FY 1989 onward from the data in the *Statistical Document of Livestock Breeding*, the *Statistical Document of Horse* and the Livestock Statistics of Okinawa.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)* methods. Tier 1 QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. QA/QC activities are summarized in Annex 6.1.

e) Source-specific Recalculations

In the agricultural sector, a 3-year average has been used. Thus, cause of revision and update of the activity data for FY 2008, the emissions for FY 2007 were revised accordingly.

f) Source-specific Planned Improvements

There is a need to discuss whether Japan's country-specific emission factors will be established on the

basis of actual measurements.

6.3.3. Camels and Llamas, Mules and Asses (4.B.5., 4.B.7.)

Japan reported "NO" in this section as these animals were not likely to be raised for agricultural purposes.

6.3.4. Other (4.B.10.)

The only livestock that are bred in Japan are cattle, buffalo, sheep, goats, horses, swine and poultry. Therefore, this category has been reported as "NO".

6.4. Rice Cultivation (4.C.)

Methane is generated under anaerobic conditions by the action of microbes. Therefore, paddy fields provide favorable conditions for methane generation.

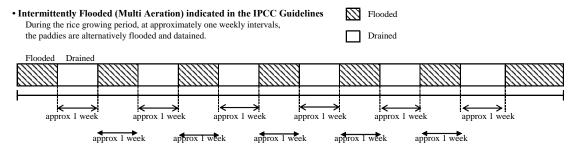
Intermittently and continuously flooded paddy fields are targeted in this category. In Japan, Rice cultivation is practiced mainly on intermittently flooded paddy field.

 CH_4 emissions from Rice Cultivation in FY 2008 are 5,614Gg-CO₂, comprising 0.4% of total emissions. The value represents a reduction by 19.3% from FY 1990.

Gas	Item	Unit	1990	1995	2000	2005	2006	2007	2008
	4.C.1 Intermittently Flooded	Gg-CH4	11.6	11.8	9.8	9.5	9.5	9.4	9.3
CH4	4.C.1 Continuously Flooded	Gg-CH4	319.9	325.5	272.1	263.8	262.3	259.8	258.0
СП4	Total	Gg-CH4	331.4	337.3	281.9	273.3	271.8	269.2	267.3
	Total	Gg-CO ₂ eq	6,960	7,083	5,920	5,739	5,707	5,652	5,614

Table 6-24 CH₄ emissions from rice cultivation

6.4.1. Intermittently Flooded (Single Aeration) (4.C.1.-)


a) Source/Sink Category Description

This section provides the estimation methods for CH_4 emissions from intermittently flooded rice cultivation.

• Water management regime in Japanese paddy fields

The general practice of intermittent flooding (single aeration) by paddy farmers in Japan is different in nature from the intermittently flooded paddy field (complex drainage of ponded water) concept in the *IPCC Guidelines*. The diagram below presents the outline.

Chapter 6. Agriculture

• The general practice of Intermittently Flooding by paddy farmers in Japan

In mid-June, for a period of between five and seven days is the mid-season drainage. From July on the practice is to alternate three days of flooding with two days of drainage (intermittent flooding)

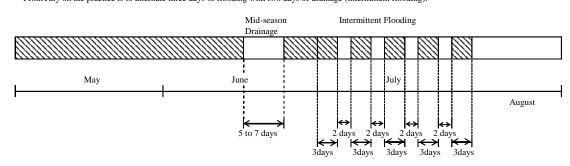


Figure 6-3 Comparison of water management regime in Japan and intermittent flooding (single aeration) indicated in the *IPCC Guidelines*

b) Methodological Issues

•Estimation Method

Methane emissions from intermittently flooded paddy fields (single aeration) were calculated by taking the overall usage of organic fertilizers into account, since the actual measurements of emission factors per soil type for each type of organic fertilizer application existed.

The amount of methane generated per type of soil for each method of organic matter management was calculated by multiplying the area of intermittently flooded paddy fields by the "amount of methane generated per type of soil per unit area for each management method", "percentage of the area of each type of soil", and "percentage of each management method".

<u>Methane emission from intermittently flooded paddy fields (single aeration) (kg-CH₄)</u> = \sum (Emission factor for organic matter management method *n* for soil type *m* [kg-CH₄/m²] × Area of paddy fields [m²] × Percentage of intermittently flooded paddy field × Percentage of soil type *m* × Percentage of organic matter management method *n*)

•Emission Factors

The following table summarizes the emission factors established for each category of this source.

The established emission factors are based on actual measurements of five soil types, with and without straw amendment. Actual data on soil types subject to composting is not available, but the methane emission of composted soil is 1.2 to 1.3 times more than that of un-composted soil. Therefore, the emission factor for composted soil, by soil type, was established as 1.25 times larger than the value for un-composted soil.

Type of soil	Straw amendment [gCH ₄ /m ² /year]	Various compost amendment [gCH4/m²/year]	No-amendment [gCH ₄ /m²/year]
Andosol	8.50	7.59	6.07
Yellow soil	21.4	14.6	11.7
Lowland soil	19.1	15.3	12.2
Gley soil	17.8	13.8	11.0
Peat soil	26.8	20.5	16.4

Table 6-25 Methane emission factor for intermittently flooded paddy fields (single aeration)
--

Source: Haruo Tsuruta (2000) (Reference 33)

•Activity Data

It is assumed that intermittently flooded paddy fields (single aeration) comprise some 98% of planted paddy area and continuously flooded paddies¹ comprise the remaining 2%.

The method of establishing activity data for emissions of methane from intermittently flooded paddy fields (single aeration) was to multiply the planted paddy area given in the Ministry of Agriculture, Forestry and Fisheries in *Statistics of Cultivated and Planted area*, by the proportion of area by each soil types (Takata et al. (2009)), and then by the proportion subject to organic mulch management. Since the survey for proportion of organic mulch management was conducted in FY2008, their data was reflected to the estimation.

Table 6-26 Proportion	of Ionon's cur	aca araa ranracan	ted by checify	coil tunes
10000-201100000000000000000000000000000	or Japan's Sur	acc area represent	lieu by specifi	- SOIL LYDES

	-	• •		• •	
Soil type	~1991	1992	1997	2001	2002~
Andosol, moist andosol, andosol gley soil	13.06%	13.06%	13.14%	13.20%	13.20%
Brown forest soil, gray ground soil, gley ground soil, yellow soil, dark red soil, red soil, lithosol	11.31%	11.31%	11.03%	10.80%	10.80%
Brown lowland soil, grey lowland soil, regosol	40.82%	40.82%	40.62%	40.46%	40.46%
Gley soil, strong gley soil	28.94%	28.94%	29.20%	29.40%	29.40%
Black peat, peat soil	5.85%	5.85%	6.02%	6.15%	6.15%
	Andosol, moist andosol, andosol gley soil Brown forest soil, gray ground soil, gley ground soil, yellow soil, dark red soil, red soil, lithosol Brown lowland soil, grey lowland soil, regosol Gley soil, strong gley soil	Andosol, moist andosol, andosol gley soil13.06%Brown forest soil, gray ground soil, gley ground soil, yellow soil, dark red soil, red soil, lithosol11.31%Brown lowland soil, grey lowland soil, regosol40.82%Gley soil, strong gley soil28.94%	Andosol, moist andosol, andosol gley soil13.06%Brown forest soil, gray ground soil, gley ground soil, yellow soil, dark red soil, red soil, lithosol11.31%Brown lowland soil, grey lowland soil, regosol40.82%Gley soil, strong gley soil28.94%	Andosol, moist andosol, andosol gley soil13.06%13.14%Brown forest soil, gray ground soil, gley ground soil, yellow soil, dark red soil, red soil, lithosol11.31%11.31%Brown lowland soil, grey lowland soil, regosol40.82%40.82%Gley soil, strong gley soil28.94%28.94%29.20%	Andosol, moist andosol, andosol gley soil 13.06% 13.06% 13.14% 13.20% Brown forest soil, gray ground soil, gley ground soil, yellow soil, dark red soil, red soil, lithosol 11.31% 11.31% 11.03% 10.80% Brown lowland soil, grey lowland soil, regosol 40.82% 40.62% 40.46% Gley soil, strong gley soil 28.94% 28.94% 29.20% 29.40%

*1992 data and 2001 data were original data. 1993-2000 data were calculated by using interpolation between 1992 and 2001. 1992 data was used for data before FY1991 and 2001 data was used for data after FY2002. Source: Calculated from Takata et al.(2009) (Reference 48)

 Table 6-27 Proportion of organic mulch management in Japan

Organic amendment	1990~2007	2008
Straw amendment	60%	65%
Various compost amendment	20%	18%
No-amendment	20%	17%
		H (B (10)

Source : 1990~2007: MAFF, "Basis Survey of Soil Environment" (Reference 49)

2008: MAFF, "Project for Development of Preventive System for Greenhouse Gas Emissions from Paddy Soils" (Reference 50)

Item	Unit	1990	1995	2000	2005	2007	2008	2009
Area of paddy field	kha	2,055	2,106	1,763	1,702	1,669	1,624	1,621

Source: Statistics of Cultivated and Planted Area (MAFF) (Reference 13)

¹ Revised 1996 IPCC Guidelines, vol.2 Workbook, p4.18, Table 4.9

c) Uncertainties and Time-series Consistency

•Uncertainties

The uncertainties for CH_4 emissions from intermittently flooded (multi aeration) paddy fields are assessed with respect to each organic mulch management regime (straw amendment, various compost amendment and no-amendment), because the uncertainty assessment methods differ for each management regime.

For the uncertainties of the emission factors the values given in the *Good Practice Guidance* (2000) or the values calculated by expert judgment were applied in accordance with the decision tree for uncertainty assessment. For the uncertainty of the activity data, 0.34% for area of paddy fields given in the *Statistics of Cultivated and Planted Area* was applied.

As a result, the uncertainties of the emissions were determined to be 32% for straw amendment, 32% for no-amendment and 46% for various compost amendment. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Emissions are estimated by using consistent estimation methods and data sources.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance* (2000) methods. Tier 1 QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. QA/QC activities are summarized in Annex 6.1.

e) Source-specific Recalculations

By the revision of the proportion of Japan's surface area represented by specific soil types and the proportion of organic mulch management, emissions from FY1990 to FY2007 were revised.

In the agricultural sector, 3-year average values have been used for estimation and report. Thus, cause of revision and update of the activity data for FY 2008, the emissions for FY 2007 were revised accordingly.

f) Source-specific Planned Improvements

The Ministry of Agriculture, Forestry and Fisheries is currently conducting a comprehensive study aimed at agricultural land. A part of results of this study were reflected for estimation in this year. There will be a review to be conducted on the estimation methods and parameter when new results of the study become available.

Work is progressing on developing an estimation method that uses the DNDC model, and the application of Tier 3 will be discussed in the future.

6.4.2. Continuously Flooded (4.C.1.-)

a) Source/Sink Category Description

This section provides the estimation methods for CH_4 emissions from continuously flooded rice cultivation.

b) Methodological Issues

•Estimation Method

Methane emissions from continuously flooded paddies have been calculated by using country-specific emission factors for different soil types and for different organic amendments, in accordance with Decision Tree of the *Good Practice Guidance (2000)* (Page 4.79, Fig. 4.9).

•Emission Factors

Research results² in Japan indicate that emissions of methane from intermittently flooded paddy fields are 42% to 45% less than those from continuously flooded paddy fields. This knowledge formed the basis for the establishment of an emission factor for methane from continuously flooded paddy fields: divide the implied emission factor, which is gotten by divided emissions by cropland area, for intermittently flooded paddy fields by 0.565 (1-0.435). Since proportion of area by soil types and proportion of organic mulch management change every year, the implied emission factor for intermittently flooded paddy fields changes every year. Therefore, the emission factor for continuously flooded paddy fields changed annually.

			j		r and j		
Item	Unit	1990	1995	2000	2005	2007	2008
Continuously flooded paddy fields	gCH4/m ² /year	28.12	28.12	28.12	28.12	28.12	28.62
Intermittently flooded paddy fields (mid-season drainage)	gCH ₄ /m ² /year	15.89	15.89	15.89	15.89	15.89	16.17

* Implied emission factor is described for intermittently flooded paddy fields (single aeration)

•Activity Data

It is assumed that intermittently flooded paddy fields (single aeration) comprise some 98% of planted paddy area and continuously flooded paddies comprise the remaining 2%.

The method of establishing activity data for emissions of methane from continuously flooded paddy fields was to multiply the planted paddy area given in the Ministry of Agriculture, Forestry and Fisheries in *Statistics of Cultivated and Planted area*, by 2%.

c) Uncertainties and Time-series Consistency

•Uncertainties

The uncertainties for emission factors were calculated from the uncertainties of each parameter decided by expert judgment. For the uncertainty for activity data, 0.34% of standard error for area of paddy field given in the *Statistics of Cultivated and Planted Area* was applied. As a result, the uncertainty of the emissions was determined to be 116%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Refer to section 6.4.1. Intermittently Flooded.

d) Source-specific QA/QC and Verification

Refer to section 6.4.1. Intermittently Flooded.

² Kazuyuki Yagi, *Establishment of GHGs reduction model*, Incorporated foundation, Society for the Study of Agricultural Technology: "A Report on an Investigation of how to quantify the amount of Greenhouse Gases Emissions reduced in 2000F.Y." p.27

e) Source-specific Recalculations

.By the revision of the proportion of Japan's surface area represented by specific soil types and the proportion of organic mulch management for "6.4.1. Intermittently Flooded", implied emission factor for "Intermittently Flooded" were revised. Therefore, emissions for "Continuously Flooded" from FY1990 to FY2007 were revised.

In the agricultural sector, 3-year average values have been used for estimation and report. Thus, cause of revision and update of the activity data for FY 2008, the emissions for FY 2007 were revised accordingly.

f) Source-specific Planned Improvements

Japan's CH_4 emission ratio of "Intermittently Flooded / Continuously Flooded" are measured on only one site; therefore, further data collection is regarded as necessary.

6.4.3. Rainfed & Deep Water (4.C.2., 4.C.3.)

As indicated in the IRRI (International Rice Research Institute) *World Rice Statistics* 1993–94, rain-fed paddy fields and wet bed methods do not exist in Japan. Therefore, this category has been reported as "NO".

6.4.4. Other (4.C.4.)

Just as indicated in the IRRI (International Rice Research Institute) *World Rice Statistics 1993-94*, a possible source of emissions in this category is upland crop paddies, but since upland crop paddies are not flooded, like the soil of fields, they are acidic and do not become anaerobic. The bacteria that generate methane are definitely anaerobic, and unless the soil is maintained in an anaerobic state, there will be no generation of methane. As generation of methane is not feasible, this category was reported as "NA".

6.5. Agricultural Soils (4.D.)

This section provides the estimation methods for N_2O direct emissions from soils (by applied synthetic fertilizers, organic fertilizers, nitrogen fixation by N-fixing crops, crop residue and plowing of organic soil), and for N_2O indirect emissions (by atmospheric deposition and nitrogen leaching and run-off).

• Direct Emissions (N_2O)

Application of synthetic fertilizers, organic fertilizers, nitrogen fixation by N-fixing crops or use of crop residues for soil amendment generates ammonium ions in the soil. The soil emits nitrous oxide in the process of oxidizing the ammonium ions into nitrate-nitrogen under aerobic conditions. N_2O is emitted via denitrification of nitrate. Nitrous oxide is generated when organic soil containing nitrogen is plowed.

• Indirect Emissions (N_2O)

Nitrogen compounds such as ammonia, that volatilize and are released into the atmosphere from synthetic fertilizers applied to agricultural soils and organic material derived from livestock manure are deposited on soil as the results of various actions, including turbulent diffusion, molecular diffusion, effect of electrostatic forces, chemical reactions, plant respiration, and being washed put of

the air by rain. In this section, the amount of nitrous oxide generated by microbe activity on the deposited nitrogen compounds was calculated.

Nitrous oxide is generated by the action of microbes on nitrogen that leaches or runs off as nitrate from synthetic fertilizers and manure-derived materials applied to agricultural soil.

 N_2O emissions from agricultural soils in FY 2008 are 6,050Gg-CO₂, comprising 0.5% of total emissions. The value represents a reduction by 22.8% from FY 1990.

Gas		Item	Unit	1990	1995	2000	2005	2006	2007	2008
		Synthetic Fertilizers	Gg-N ₂ O	6.2	5.4	4.9	4.8	4.8	4.5	4.1
		Organic Fertilizers	Gg-N2O	4.3	3.9	3.6	3.5	3.4	3.4	3.4
	4.D.1. Direct Emission	N-fixing Crops	Gg-N ₂ O	0.3	0.2	0.3	0.3	0.3	0.3	0.3
		Crop Residue	Gg-N2O	2.0	2.1	2.0	1.9	1.9	1.9	1.9
NO		Plowing of Organic Soil	Gg-N ₂ O	0.4	0.4	0.4	0.4	0.4	0.4	0.4
N ₂ O	4.D.2. Pasture, Range and Paddock Manure		Gg-N2O	0.04	0.04	0.03	0.03	0.04	0.04	0.04
	4.D.3. Indirect Emission	Atmospheric Deposition	Gg-N ₂ O	5.1	4.8	4.4	4.3	4.3	4.3	4.2
	4.D.5. Indirect Emission	Nitrogen Leaching and Run-off	Gg-N2O	6.9	6.4	5.8	5.6	5.6	5.4	5.2
	Total		Gg-N2O	25.3	23.1	21.5	20.8	20.8	20.1	19.5
		10(a)	Gg-CO2eq	7,841	7,160	6,667	6,438	6,437	6,233	6,050

Table 6-30 N₂O emissions from agricultural soils

6.5.1. Direct Soil Emissions (4.D.1.)

6.5.1.1. Synthetic Fertilizers (4.D.1.-)

a) Source/Sink Category Description

This section provides the estimation methods for N_2O emissions by the application of synthetic fertilizers.

b) Methodological Issues

•Methodology for Estimating Emissions / Removals of GHGs

Nitrous oxide emissions associated with the application of synthetic fertilizer to farmland soil (field lands) were calculated, using country-specific emission factors, and in accordance with Decision Tree of the *Good Practice Guidance (2000)* (Page. 4.55 Fig. 4.7).

<u>Nitrous oxide emissions associated with the application of synthetic fertilizer in agricultural soil</u> (upland fields) (kg- N_2O)

= Emission factor [kg-N₂O-N/kg-N] × Amount of nitrogen contained in synthetic fertilizer applied in upland farming [kg-N] × 44/28

•Emission Factors

Emission factors for nitrous oxide associated with the application of synthetic fertilizers to farmland soil (field lands) were established based on actual data measurement conducted in Japan. The emission factor is also used for organic Fertilizer

Emission factors for nitrous oxide associated with the application of synthetic fertilizers and organic fertilizers was defined as the same value, because there was no the significant difference between

emission factors of synthetic fertilizers and organic fertilizers, analyzing data on N_2O emissions from Japanese agricultural fields.

Comparing emission factors among various crops, it was identified that emission factor of tea was significantly higher and emission factor of rice was significantly lower than those of other crops. As there were not significant differences among the other crops, three emission factors were defined (for rice, tea and other crops). Emission factor of Japan is lower than that of default value in the *Revised 1996 IPCC Guidelines*. It is the reason that the volcanic ash soil that is widely distributed in Japan releases little N₂O emissions. The emission factor of rice is adopted as a default value within the 2006 IPCC Guidelines and its validity has been internationally confirmed.

	<u> </u>
Crop species	Emission Factor (kgN ₂ O-N/kgN)
Paddy rice	0.31 %
Tea	2.9 %
Other species	0.62 %

Table 6-31 N₂O emission factor for synthetic fertilizer to agricultural soil

(Reference) Akiyama et. al, Direct N₂O emissions and estimate of N₂O emission factors from Japanese agricultural soils. (2006) (Reference 39)

Akiyama et. al, Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: Summary of available data (2006) (Reference 40)

•Activity Data

For coordination with the way emission factors have been set, the amount of synthetic fertilizer used by crop type is used as the activity data of N_2O emissions arising from the application of synthetic fertilizers to agricultural soil. The amount of synthetic fertilizer used can be ascertained from statistical information on the total amount used, but because there are no data enabling one to determine the annual amounts applied by crop type, values corresponding to the amounts of nitrogen applied for each crop type are found by taking the area of land planted with each crop type that can be found using statistical information and multiplying by the results of studies on the amounts of synthetic fertilizers applied per unit area for each crop type in Japan. Total synthetic fertilizer demand is apportioned to each crop type in accordance with the corresponding application amount for each crop type.

Activity data for N₂O emissions from the application of synthetic fertilizers to dry fields

Volume of nitrogen-based fertilizer applied to agricultural soil of each crop field [t] = Demand for synthetic fertilizer [tN] \times (Area of each crop field [ha] \times Amount of synthetic fertilizer used in each crop field [kgN/10a]) / (Σ Area of each crop field [ha] \times Amount of synthetic fertilizer used in each crop field [kgN/10a])

The amounts of fertilizer applied by crop type are known because the amounts of synthetic and organic fertilizers applied for each crop type were determined by a farming study conducted in 2000 (*A report on an Investigation of how to quantify the amount of Greenhouse Gases Emissions reduced in 2000 F.Y.* (Reference 28)). Because experts reason that there is likely little year-on-year change in application amounts to crops except for paddy rice and tea, data on the amounts of synthetic fertilizer applied per unit area according to the 2000 study (Reference 28) were applied uniformly for these crops in all years.

Because of regulations and other factors, fertilizer application amounts for tea change from year to year. Nonaka (2005) (Reference 45) has found the amounts of nitrogen applied to tea fields (the total of synthetic and organic) in 1993, 1998, and 2002. For these application amounts, the ratio of synthetic fertilizer to organic fertilizer applied to tea according to the 2000 study (Reference 28) was used to estimate the amounts of synthetic and organic fertilizer applied, which were then used in calculations. Time-series data were prepared by interpolating from 1993 to 2002, using the 1993 data for previous years, and using the 2002 data for subsequent years (see Table 6-34). For paddy rice, the report uses application amount data for years that can be determined using Statistical Survey on Farm Management and Economy (Ministry of Agriculture, Forestry and Fisheries). The value of paddy rice was substituted for upland rice.

Item	Unit	1990	1995	2000	2005	2007	2008	2009
Demand for Synthetic Fertilizer	tN	611,955	527,517	487,406	471,190	479,034	360,071	360,071
* Data for 2000 is substituted by data	C 2000)

* Data for 2009 is substituted by data for 2008

Table 6-33 Amount of synthetic fertilizers application per area by each type of crop (other than rice and tea)

Amount of application [kg N/10a]
Amount of application [kg N/10a]
21.27
14.70
12.70
3.10
10.00
6.20
10.00
4.12
16.20
22.90
15.40

		•			-			
Item	Unit	1990	1995	2000	2005	2007	2008	2009
Amount of synthetic fertilizers application per area (rice)	kg-N/10a	9.65	8.71	7.34	6.62	6.27	6.27	6.27
Amount of synthetic fertilizers application per area (tea)	kg-N/10a	57.23	54.88	48.06	44.76	44.76	44.76	44.76
* The data of vice for 2000 and substituted by the data for 2008								

* The data of rice for 2009 are substituted by the data for 2008

TT 1 1 C 25 A	c ·	1 1	· · · · ·
Table 6-35 Are	a of cropping	y by each	type of crop
14010 0 00 1110	a or cropping	, oj euen	cype of crop

		-		• 1	-			
Item	Unit	1990	1995	2000	2005	2007	2008	2009
Vegetables	ha	620,100	564,400	524,900	476,300	468,000	469,500	469,500
Rice	ha	2,055,000	2,106,000	1,763,000	1,702,000	1,669,000	1,624,000	1,621,000
Fruit	ha	346,300	314,900	286,200	265,400	258,400	254,700	254,700
Теа	ha	58,500	53,700	50,400	48,700	48,200	48,000	47,300
Potatoes	ha	115,800	104,400	94,600	86,900	87,400	84,900	84,900
Pulse	ha	256,600	155,500	191,800	193,900	191,300	199,700	199,700
Feed crops	ha	1,096,000	1,013,000	1,026,000	1,030,000	1,012,000	1,012,000	1,008,000
Sweet potato	ha	60,600	49,400	43,400	40,800	40,700	40,700	40,500
Wheat	ha	366,400	210,200	236,600	268,300	264,000	265,400	266,200
Coarse cereal (including Buckwheat)	ha	29,600	23,400	38,400	45,900	47,400	49,100	49,100
Mulberries	ha	59,500	26,300	5,880	2,998	2,363	2,011	2,011
Industrial crops	ha	142,900	124,500	116,300	110,300	108,130	107,520	109,230
Tobacco	ha	30,000	26,400	24,000	19,100	17,670	16,780	15,770
Upland rice	ha	18,900	11,600	7,060	4,470	3,640	3,200	3,000

* Data for 2009 are substituted by data for 2008

data	references					
Demand for synthetic (chemical) fertilizer	Yearbook of Fertilizer Statistics (Pocket Edition)					
Amount of synthetic fertilizers application per	Ministry of Agriculture, Forestry and Fisheries (MAFF) :					
area (rice)	"Reserch of agricultural management"					
Amount of synthetic fertilizers application per	Kunihiko Nonaka (2005) (References 45),					
area (tea)	Establishment of GHGs reduction model, Incorporated					
	foundation, Society for the Study of Agricultural					
	Technology(2002), (References 28)					
Amount of synthetic fertilizers application per	Establishment of GHGs reduction model, Incorporated					
area by each type of crop (other than rice and tea)	foundation, Society for the Study of Agricultural					
	Technology(2002), (References 28)					
Area of cropping: Vegetables, rice, Fruit, Tea,	MAFF, Statistics of Cultivated and Planted Area					
Pulse, Feed crops, Sweet potato, Wheat,	Note: The values of "Vegetable" is excluded "Potatoes",					
Buckwheat, Mulberries(-2001), Industrial crops	"Industrial crops" is excluded "Tea" and "Tobacco"					
Area of cropping: Potatoes	MAFF, Vegetable Production and Shipment Statistics					
Area of cropping: Tobacco	JT Survey					
Mulberries(2002-)	MAFF Survey					

c) Uncertainties and Time-series Consistency

Uncertainties

 N_2O emissions by the application of synthetic fertilizers were estimated for each crop species. Thus, the uncertainties of N_2O emissions by the application of synthetic fertilizers were also calculated for each crop species and then finally combined as total uncertainties. The uncertainties for the emission factors were calculated by combining the uncertainties of parameters, estimated by expert judgment or using sample standard deviations. As a result, the uncertainties for emission factors were determined to be 220.0% for paddy rice, 211.7% for tea, 181.7% for other crops. For the uncertainty for activity data, 0.33% for paddy rice and 0.27% for other crops (the value for area of upland fields), which is standard error given in the Statistics of Cultivated and Planted Area , was applied. As a result, the uncertainties of the emissions were determined to be 139%. The uncertainty assessment methods are summarized in Annex 7.

• Time-series Consistency

Emissions are estimated by using consistent estimation methods and data sources.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance* (2000) methods. Tier 1 QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. It was pointed out by implementation of QA activity (QAWG) that the upland rice is not contained in the estimation. By taking into account discussions within the Committee for Greenhouse Gas Emission Estimation Methods, the emission from upland rice was estimated. QA/QC activities are summarized in Annex 6.1.

e) Source-specific Recalculations

As emissions from upland rice were estimated for the first time in this submission, the emissions from FY 1990 to FY 2007 were revised.

Because the agriculture sector uses three-year averages, FY2007 emission recalculation results are influenced by FY2008 revisions and updates of activity data for each crop type.

f) Source-specific Planned Improvements

The same emission factor has been used for synthetic and organic fertilizers. Thus, it is a needed to

discuss whether it is possible to obtain separate emission factors for these two types of fertilizer.

6.5.1.2. Organic Fertilizer (Application of Animal Waste) (4.D.1.-)

a) Source/Sink Category Description

This section provides the estimation methods for N_2O emissions by application of organic fertilizer.

b) Methodological Issues

•Estimation Method

Emissions of nitrous oxide associated with the application of organic fertilizer (livestock and other compost and barnyard manure) to agricultural soils have been calculated using the country-specific emission factors, in accordance with Decision Tree of the *Good Practice Guidance (2000)* (Page 4.55, Fig. 4.7).

 $\frac{Calculation of N_2O \text{ emissions from the application of organic fertilizers to agricultural soils}}{Volume of N_2O \text{ emissions from the application of livestock manure (kg-N_2O)} = \sum_{\text{Type of crop}} \{\text{Emission factor by type of crop} (kg-N_2O-N/kg-N) \times Volume of nitrogen applied, by type of crop} (kg N) \} \times 44/28$

•Emission Factors

The same country specific emission factor used for synthetic fertilizer is used.

•Activity Data

Activity data for nitrous oxide emission associated with the application of organic fertilizers to agricultural soils was derived by multiplying the area of cultivation for each type of crop, by the volume of nitrogen applied per unit area for each type of crop (excluding tea). Because of regulations and other factors, fertilizer application amounts for tea change from year to year, same as the synthetic fertilizers. Nonaka (2005) (Reference 45) has found the amounts of nitrogen applied to tea fields (the total of synthetic and organic) in 1993, 1998, and 2002. For these application amounts, the ratio of synthetic fertilizer to organic fertilizer applied to tea according to the 2000 study (Reference 28) was used to estimate the amounts of synthetic and organic fertilizer applied, which were then used in calculations. Time-series data were prepared by interpolating from 1993 to 2002, using the 1993 data for previous years, and using the 2002 data for subsequent years (see Table 6-37). Area of cultivated land by type of crop is same as synthetic fertilizers.

Volume of nitrogen applied, by type of crop (kg-N) = Area of cultivated land by type of crop (ha) × Volume of nitrogen as organic fertilizer applied per unit area, by type of crop (kg-N/10a) ×10

tea)						
Type of crop	Amount of application [kg N/10a]					
Vegetables	23.62					
Rice	3.2					
Fruit	10.90					
Potatoes	7.94					
Pulse	6.24					
Feed crops	10.00					
Sweet potato	8.85					
Wheat	5.70					
Coarse cereal (including Buckwheat)	1.81					
Mulberries	0.00					
Industrial crops	3.96					
Тоbассо	11.41					

Table 6-36 Amount of nitrogen as organic fertilizers application per area by each type of crop (excluding

*the value of paddy rice was substituted for upland rice.

		0
Table 6-37 Amount of nitrogen as	organic tertilizers application	n ner area tor tea
fuble 0 577 finount of introgen us	organie rerunzers appricatio	in per area for tea

Item	Unit	1990	1995	2000	2005	2007	2008	2009
Amount of organic fertilizers application per area (tea)	kg-N/10a	20.77	19.92	17.44	16.24	16.24	16.24	16.24

Data	Source
	Establishment of GHGs reduction model, Incorporated
crop (excluding tea)	foundation, Society for the Study of Agricultural Technology, A
	Report on an Investigation of how to quantify the amount of
	Greenhouse Gases Emissions reduced in 2000F.Y. (Reference 31)
Amount of nitrogen applied per unit area for tea	Total amount: Nonaka (2005) (Referenace 45)

c) Uncertainties and Time-series Consistency

•Uncertainties

An uncertainty assessment was conducted by the same method as in 6.5.1.1. Synthetic Fertilizers. As a result, the uncertainty of the emissions was determined to be 152%. The uncertainty assessment methods are summarized in Annex 7.

•*Time-series Consistency*

Emissions are estimated by using consistent estimation methods and data sources.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance* (2000) methods. Tier 1 QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. It was pointed out by implementation of QA activity (QAWG) that the upland rice is not contained in the estimation. By taking into account discussions within the Committee for Greenhouse Gas Emission Estimation Methods, the emission from upland rice was estimated. QA/QC activities are summarized in Annex 6.1.

e) Source-specific Recalculations

As emissions from upland rice were estimated for the first time in this submission, the emissions from FY 1990 to FY 2007 were revised.

In the agricultural sector, a 3-year average has been used. Thus, cause of revision and update of the

activity data for FY 2008, the emissions for FY 2007 were revised accordingly.

f) Source-specific Planned Improvements

Refer to section 6.5.1.1. Synthetic Fertilizers.

6.5.1.3. N-fixing Crops (4.D.1.-)

a) Source/Sink Category Description

This section provides the estimation methods for N_2O emissions from nitrogen fixed by N-fixing crops.

b) Methodological Issues

•Estimation Method

Emissions are calculated by taking the amount of nitrogen fixed by nitrogen-fixing crops, which is estimated using Japan's observation data, and multiplying by country-specific emission factor.

 $E = EF * F_{BN} * 44/28$

E : N₂O emission associated with N-fixation by N-fixing crops (kg-N2O)

EF : Emission factor (kgN₂O- N/kgN)

 F_{BN} : Amount of nitrogen fixed by N-fixing crops (kgN)

Emission Factors

The N₂O emission factor for emissions from application of synthetic fertilizer, which is set using Japan's measurement results, is set on the basis of emissions from both nitrogen from fertilizer application and the amount of nitrogen fixed by nitrogen-fixing crops. Therefore, it is set as the emission factor of N₂O emissions from nitrogen fixed by N fixing crops. Although there are three kinds of emission factors for synthetic fertilizers, such as for "rice", "tea", and "other crops", (see Table 6-3), the EF of "other crops" (0.0062[kgN₂O-N/kg-N]) is applied in view of the target crops.

Activity Data

The amount of nitrogen in the above-ground part biomass of N fixing crops is considered to be reasonably substituted for the amount of annual nitrogen fixation by the N fixing crops cultivated in one year. The nitrogen content data in the harvest in the crops and a harvest residue of our country in Owa (1996) was used, and the nitrogen amounts fixed by N fixing crops are calculated by the following methods The target crops are broadly classified into "pulse (dried grain) and vegetables", and "feed crops."

> Pulse (dried grain) and Vegetables

Included in calculations for nitrogen-fixing crops are the pulses (dried seeds) soybeans, adzuki beans, kidney beans, and peanuts, and the vegetables string beans, snow peas, broad beans, and green soybeans.

The amount of nitrogen fixed by nitrogen-fixing crops (F_{BN}) was set by transforming Tier 1b Equation 4.26 of GPG (200) and multiplying the crop yield for N-fixing crops ($Crop_{BFi}$) by the amount of nitrogen per crop yield and crop residue, which was determined by Japanese research data.

Chapter 6. Agriculture

$F_{BN} = \sum_{i} \left[Crop_{BFi} \bullet (Frac_{NCRBFi} + Frac_{NRESBFi}) \right]$

F_{BN}	: The amount of nitrogen fixed by N-fixing crops (kgN)
Crop _{BFi}	: Actual crop yield for N-fixing crops i (t)
Frac _{NCRBFi}	: Amount of nitrogen per crop yield for N-fixing crops i (kgN/t)
Frac _{NRESBFi}	: Amount of nitrogen per crop residue for N-fixing crops $i~(\rm kgN/t)$

> Feed crops

In Japan, grass and legume feed crops are sown together. Statistical information enables one to ascertain only the crop yield and planted areas of grass-only feed crops and mixed grass-legume feed crops. Because that makes it impossible to directly find the harvest amount and planted area of legume-only feed crops, for the sake of convenience we used 10% for the proportion of legume feed crops in mixed-sown in accordance with the judgments of experts based on a Japanese study³ and other sources, and estimated the crop yield of legume feed crops.

Japanese research data include those on the nutrient content in the stubble and roots of grass–legume mixed feed crops, and taking into account that calculations for nitrogen-fixing crops in the 2006 IPCC *Guidelines* cover the plowdown amount of aboveground biomass residue and underground biomass, it was decided that calculation of the nitrogen amount fixed by legume feed crops would directly use the amount of nitrogen in stubble and root residue instead of the amount of nitrogen in harvested aboveground biomass, and estimates were made with the following equation, obtained by transforming GPG (2000) Equation 4.27.

$$F_{BN} = \sum_{i} [Crop_{BF} \bullet Frac_{NCBGF}]$$

 F_{BN} : Amount of nitrogen fixed by leguminous feed crops (kgN)

Crop_{BF} : Actual crop yield for leguminous feed crop (t)

Frac_{NCBGF} : Amount of nitrogen contained in the underground part per crop yield for leguminous feed crop (kgN/t)

	e	0 1
Tupe of grop	Amount of fixed nitrogen	Proportion of
Type of crop	per unit crop yield (kgN/t)	dry matter
Soybeans	69.17	1.000
Adzuki beans	40.68	1.000
Kidney beans	50.13	1.000
Peanuts	63.00	1.000
Strings beans	1.98^{*2}	0.302^{*1}
Snow pea	2.65^{*2}	0.302^{*1}
Broad beans	9.57* ¹	0.302^{*1}
Green soybeans	9.57	0.302
Leguminous feed crop	2.74	0.200

Table 6-38 Parameters used in estimating for N-fixing crops

*1 The value for green soybeans is substituted.

*2 Each crop value are calculated by using nitrogen ratio included in harvest for each crop and green soybeans and by using the amount of fixed nitrogen per unit crop yield for green soybeans.

³ Research results of Hokkaido prefectural Agricultural Experiment Stations" Current status and issues of feed crop production in meadow in Hokkaido I. Carrent status of crop yieild and nutrient value" http://www.agri.pref.hokkaido.jp/center/kenkyuseika/gaiyosho/h12gaiyo/20003161.htm

c) Uncertainties and Time-series Consistency

•Uncertainties

 N_2O emissions for nitrogen fixed by N fixing crops were estimated for each crop species. Thus, the uncertainties of N_2O emissions for nitrogen fixed by N fixing crops were also calculated for each crop species and then finally combined as total uncertainties. The uncertainties for the emission factors were calculated by combining the uncertainties of parameters decided by expert judgment and indicated in GPG (2000). The uncertainties for activity data were determined to be 0.27% of standard error for the area of upland field indicated in the Statistics of Cultivated and Planted Area. As a result, the uncertainties for emission for nitrogen fixed by N fixing crops were determined to be 99%.

• Time-series Consistency

Emissions are estimated by using consistent estimation methods and data sources.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)* methods. Tier 1 QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. QA/QC activities are summarized in Annex 6.1.

e) Source-specific Recalculations

In the agricultural sector, a 3-year average has been used. Thus, cause of revision and update of the activity data for FY 2008, the emissions for FY 2007 were revised accordingly.

f) Source-specific Planned Improvements

More detailed work is needed on the percentage of legume feed crops in mixed-sown pastures. Currently there are insufficient data on underground plowdown, which is needed for the transition to calculations conforming to those of the *2006 IPCC Guidelines*. For that reason this will be set aside as a matter for future consideration, along with improving the calculation method for plowdown.

6.5.1.4. Crop Residue (4.D.1.-)

a) Source/Sink Category Description

This section provides the estimation methods for N2O emissions by application of crop residue.

b) Methodological Issues

•Estimation Method

Nitrous oxide emissions associated with the application of crop residues to agricultural soils were calculated by multiplying the default emissions factors given in the Revised 1996 IPCC Guidelines by the nitrogen input through the use of crop residues for soil amendment.

<u>Nitrous oxide emission associated with the use of crop residues for soil amendment (kgN_2O) </u> = Default emission factor [kg-N₂O-N/kg-N] × Nitrogen input through the use of crop residues for soil amendment [kg-N] ×44/28

•Emission Factors

The default emission factor, 0.0125 [kg-N₂O-N/kg-N], shown in the *Revised 1996 IPCC Guidelines* and the *Good Practice Guidelines (2000)* was used.

•Activity Data

[Rice]

For the amount of rice crop residue plowed into soil, the data of amount of emergence by use of rice straw and rice chaff indicated in the survey of MAFF was used. The nitrogen content of this crop was calculated by multiplying by the aforementioned data by nitrogen content (kgN/t) indicated in Japan's country-specific data of nutrient balance for each crop (Owa, 1996).

[Wheat, Barley]

For the amount of crop residue plowed into soil for wheat and barley, ratio of residue plowed into soil for wheat in total residue was calculated from the residue by treatment method area of wheat straw indicated in the survey of MAFF, and then the amount of crop wheat residue plowed into soil was calculated by multiplying it by amount of each residue (= 13.5%). The emission was calculated by multiplying this amount of residue by nitrogen content (kgN/t) indicated in Owa (1996).

[Crops other than rye, (for grain), oats (for grain), Feed Crops, Maize, Sorgo and Tea]

The nitrogen contents for each crop residue plowed into soil were calculated by multiplying nitrogen content included in crop residue per crop yield (kgN/t) (which was basic unit using Japan's country-specific data of nutrient balance for each crop (Owa, 1996)) by annual crop yield by the percentage of crop residue less the percentage burned in the field (0.1, the default value in the *Revised 1996 IPCC Guidelines*).

Wherever any crop has no available data with respect to nitrogen content included in crop residue per crop yield, the value for a similar type of crop was used. Furthermore, the same values were adopted for all fiscal years. For crops cultivated for use as animal feed and fertilizers, the area used for fodder and not being plowed into soil was excluded. On the assumption that field burning is not practiced in Japan, crops which were not included in the calculation for the Field Burning of Crop Residues (4.F) category were excluded from the multiplication by the "percentage less the percentage burned in field."

Amount of nitrogen in crop residue plowed into soil (kg-N) (rice)

=Annual amount of residue plowed into soil $[t] \times Nitrogen$ content included in crop residue per crop yield [kgN/t]

<u>Amount of nitrogen in crop residue plowed into soil (kg-N) (wheat and barley)</u> = Σ_{crop} { Annual crop yield [t] × Proportion crop residue plowed into soil per crop yield [%] × Nitrogen content included in crop residue per crop yield [kgN/t]

Amount of nitrogen in crop residue plowed into soil (kg-N) (crops other than rye, oats, tea, feed crops, maize, sorgo, tea, rice, wheat and barley) $= \sum_{n=1}^{\infty} (Annuclear equation of the source of the source$

= Σ_{crop} { Annual crop yield [t] × Nitrogen content included in crop residue per crop yield [kgN/t] × (1-Proportion burned in field)}

Data	Source
Nitrogen content of non-harvest aboveground	Owa, New Trends in Technology for Efficient Use of Nutrients –
portion by crop	Nutritional Balance of Crops in Japan (1996) (Reference 33)
Percentage burned in field	Revised 1996 IPCC Guidelines
Cultivated area of vegetables	Vegetable Production and Shipment Statistics (MAFF)
Cultivated area of crops other than vegetables	Statistics of Cultivated and Planted Area (MAFF)
Annual amount of residue plowed into soil (rice)	Survey by MAFF
Proportion of crop residue for wheat and barley	Survey by MAFF
plowed into soil per crop yield	

[Feed Crop, Maize and Sorgo]

With regard to pasture grass, corn silage, and sorgo, at present it is impossible to find the harvest amount that was used for plowdown with statistical information alone. Such being the case, the amount of nitrogen in crop residues plowed into the soil was estimated by multiplying the Japan-specific "amount of nitrogen in the aboveground, unharvested portion of crop plants" (kg N/10 a) by the area of land cultivated for each crop type. For corn silage that value was multiplied by the percentage left when subtracting the percentage burned in the field (the default value in the *Revised 1996 IPCC Guidelines*: 0.1).

<u>Amount of nitrogen in crop residue plowed into soil (kg-N)</u> (Feed Crop, Maize and Sorgo) = \sum_{crop} {Amount of nitrogen contained in aboveground unharvested portion per area [kgN/10 a] × Cultivated area [ha] × (1 – Percentage burned in field)} × 10

Data	Source		
Nitrogen content of non-harvest	Owa, New Trends in Technology for Efficient Use of Nutrients		
aboveground portion by crop	Nutritional Balance of Crops in Japan (1996) (Reference 33)		
Percentage burned in field	Revised 1996 IPCC Guidelines		
Cultivated area per crop	Statistics of Cultivated and Planted Area (MAFF)		

[Rye and Oats (for grain)]

In accordance with the default technique described in the *Revised 1996 IPCC Guidelines* and the *Good Practice Guide (2000)*, the amount of nitrogen applied to soil by plowing in crop residues was determined by multiplying the annual production of each type of crop by the default value of each of the percentage of residues in the production of each crop, the average percentage of dry matter in the residues, the percentage less the percentage burned in the field, and the nitrogen content in the residues.

<u>Nitrogen plowed into soil with crop residues (kg-N) (rye and oats)</u> = Annual crop yield (t) × Proportion of residue to crop yield × Average proportion of dry matter in crop residue(t-dm/t) × (1 – Proportion burned in field) × Nitrogen content(t-N/t-dm) × 10^{-3}

The production volumes of rye and oats were calculated by multiplying the planted area by the yield per unit area. The planted area was divided into the area used for grain, for green crops and for others. However, the available statistics were not reported the category of rye for grain, (the survey has been discontinued since 1992 production) and therefore the value of the "total planted area" less the "area planted for green crops" taken from the available statistics was used as the area cultivated for grain expediently, even though the planted area in this report covers the planting for grain only.

						-		
Item	Unit	1990	1995	2000	2005	2007	2008	2009
Rye	ha	50	119	110	120	130	150	170
Oat	ha	4,000	2,517	1,600	800	700	600	500

Source: The data are calculated by using the Statistics of Cultivated and Planted Area (MAFF) (Reference 13)

Crop	Yield per unit area	Note
Rye	424 [kg/10a]	Data determined by specialists based on the results of rye cultivation tests in Japan
Oats	223 [kg/10a]	Data available only up to FY 1994. The 1994 figures were used for all fiscal years prior to 1994 since the data were available for major prefectures only for these years.

Table 6-40 Yields of rye and oats per unit area

Crop	Proportion of residue	Average proportion of dry matter in residue	Nitrogen content	Proportion burned in field
Rye	2.84	0.90	0.0048	0.10
Oats	2.23	0.92	0.0070	0.10
Source	Determined by specialists	Good Practice Guidelines (2000), p. 4.58, Table 4.16		Revised 1996 Guidelines, Vol. 3, p. 4.83

Table 6-41 Proportion of residue to crop production, average proportion of dry matter in crop residues, nitrogen content

[Tea]

For tea, "Leaf fall" and "Autumn pruning" were targeted as the residues which return into soils annually. In addition, as residues return into soil once in a couple of years, "Medium pruning", which prunes the part of 30-50 cm from the ground and carried out once in about five years, was targeted. For the "Medium pruning", it assumed that it carried out by one fifth in every year in all area of tea field, and all of tea field will be renewal in five years. The residues' nitrogen contents were calculated by multiplying by nitrogen contents per unit area of "Leaf fall", "Autumn pruning" and "Medium pruning" by cropland areas. The cropland areas used for this were the data indicated in the *Statistics of Cultivated and Planted Area* by MAFF.

Nitrogen plowed into soil with crop residues (kgN) (Tea)

=(Nitrogen amount included in residue by autumn pruning [kgN/10a]+Nitrogen amount included in residue by leaf fall [kgN/10a]) $\times 10 \times$ Cultivated area of tea [ha] + Nitrogen amount included in the residue by medium pruning [kgN/10a] $\times 10 \times 1/5 \times$ Cultivated area of tea [ha]

Table 6-42 Amount of nitrogen content included in tea residue of branch pruning

Kind of branch pruning		Amount of Nitrogen content (kgN/10a)	Reference
Autumn pruning	Annual	7.7	Hoshina et al.(1982) (Reference 51), Kinoshita et al. (2005) (Reference 52), Tachibana et al. (1996) (Reference 53)
Medium pruning	Once in five years	19.4	Ohta et al. (1996) (Reference 54)
Leaf fall	Annual	11.5	Hoshina et al.(1982) (Reference 51)

c) Uncertainties and Time-series Consistency

•Uncertainties

Because the estimation methods differ from one crop to the other, their uncertainties were calculated for respective crops. Finally, these uncertainties were combined as total uncertainty.

The uncertainties of emission factors for crops other than rye and oats were assessed for each crop by combining the uncertainties for each parameter calculated by expert judgment and given for standard values in the *Good Practice Guidance (2000)*. The uncertainties for emission factors for rye and oats were calculated to combine each parameter determined by expert judgment or standard values in the *Good Practice Guidance (2000)*, and were determined to be 388% for rye and 392% for oats.

The uncertainties for activity data were assessed as 0.34% for paddy rice and 0.27% for other crops by applying the standard errors in the *Statistics of Cultivated and Planted Area*.

As a result, the uncertainty of the emission combined from each crop uncertainty was determined to be 211%. The uncertainty assessment methods are summarized in Annex 7.

•Time-series Consistency

Emissions are estimated by using consistent estimation methods and data sources.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)* methods. Tier 1 QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. QA/QC activities are summarized in Annex 6.1.

e) Source-specific Recalculations

Since estimation methods for nitrogen amount put in soil as crop residue for rice, wheat, barley and tea were revised, the emissions from 1990 to 2007 were revised.

In the agricultural sector, a 3-year average has been used. Thus, cause of revision and update of the activity data for FY 2008, the emissions for FY 2007 were revised accordingly.

f) Source-specific Planned Improvements

It is needed to discuss whether it will be possible to establish country-specific emission factors for Japan.

It is possible that in the case of tea, the data for nitrogen amount in crop residue are not accurate, making it necessary to consider improvements to the calculation method.

6.5.1.5. Plowing of Organic Soil (4.D.1.-)

a) Source/Sink Category Description

In Japan, there are organic soils in Hokkaido. Two types, "muck soil" and "peat soil", are treated as organic soils. In Japan, the creation of farmland on organic soils was mostly completed by the 1970s, and in general farmers till land that has had soil dressing.

b) Methodological Issues

•Estimation Method

Emissions of nitrous oxide from the plowing of organic soil were calculated by multiplying the area of the plowed organic soil of paddy field and upland field by the emission factor in accordance with the *Revised 1996 IPCC Guidelines* and the *Good Practice Guide (2000)*.

<u>Nitrous oxide emission associated with the plowing of organic soil (kg-N₂O)</u> = Emission factor for plowing of organic soil [kg-N₂O/ha] × Area of plowed organic soil [ha] × 44/28

•Emission Factors

For paddy cultivation in organic soils, it is known that N_2O emission in paddy field is lower than the one in upland field. In Japan, Nagata (2006) (Reference 43) observed N_2O emissions for paddy of organic soil in Hokkaido, but the observations included emissions from applied nitrogen. Therefore, country-specific emission factor is determined to be 0.30 [kgN2 O-N/ha/year] by deducting country-specific emission factor of fertilizers indicated in Akiyama (2006) For the upland field of organic soil, some observation results exists (Nagata 2006, Nagata 2009 (Reference 46)), but there is not much difference from the default of temperate region (8[kgN₂O-N/ha/year]) indicated in

GPG(2000) p4.60 Table4.17. Therefore, default value is used for upland field.

•Activity Data

The area of plowed organic soil was established by multiplying the cultivated areas of paddy fields and common upland fields, obtained from the *Statistics of Cultivated and Planted Area* (MAFF), by the percentage of organic soils (peat soil and muck soil) in paddy fields and common upland fields in Japan. The percentage of organic soils was used data made from Takata et al.(2009)

Table 0-45 Teleentage of organic son					
Soil type	~1991	1992	1997	2001	2002~
Paddy field	5.85%	5.85%	6.02%	6.15%	6.15%
Upland field	1.94%	1.94%	2.01%	2.07%	2.07%

Table 6-43 Percentage of organic soil

*1992 data and 2001 data were original data. 1993-2000 data were calculated by using interpolation between 1992 and 2001. 1992 data was used for data before FY1991 and 2001 data was used for data after FY2002.

Source: Calculated from Takata et al.(2009) (Reference 48)

Item	Unit	1990	1995	2000	2005	2007	2008	2009
Area of organic soil (paddy field)	ha	166,491	163,328	161,541	157,194	155,595	154,734	154,119
Area of organic soil (field)	ha	24,735	24,296	24,420	24,281	24,260	24,240	24,198

Table 6-44 Areas of organic soil

c) Uncertainties and Time-series Consistency

•Uncertainties

 N_2O emissions by plowing of organic soil were calculated in two category, paddy field and upland field. Therefore, the uncertainties were also calculated separately, and finally two uncertainties were combined as total uncertainty.

The uncertainties for emission factors were calculated aggregating the uncertainties of each parameter given in the *Good Practice Guidance (2000)* and references or calculated from the data of references. The combined uncertainties for emission factor were determined to be 248% for paddy field and 900% for upland field. For the uncertainty for activity data, 0.14% of the standard error for paddy rice and 0.27% of the standard error for upland field crops given in the *Statistics of Cultivated and Planted Area* were applied. As a result, the uncertainties of the emissions were determined to be 712%. The uncertainty assessment methods are summarized in Annex 7.

•*Time-series Consistency*

Emissions are estimated by using consistent estimation methods and data sources.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance (2000)* methods. Tier 1 QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. QA/QC activities are summarized in Annex 6.1.

e) Source-specific Recalculations

By the revision of the percentage of organic soil, emissions from FY1990 to FY2007 were revised. Because the agriculture sector uses three-year averages, FY2007 emission are recalculated by FY2008 revisions and updates of activity data.

f) Source-specific Planned Improvements

Although the country-specific emission factor for paddy field is used for this report, in order to avoid double counting of N2O emission, issues to be addressed remain; one of them is the exclusion of the influence of the stubble, which remains in the ground surface after harvest, and of the insertion of crop residue in soil such as straw, is not performed. It is necessary to advance further detailed checking so that the more suitable national condition can be reflected to the emission factor, including upland field which use default emission factor. In order to establish more suitable emission factors based on actual measurements including the one for upland field for which the default value is currently used, further review will be necessary.

6.5.1.6. Direct Emissions (CH₄)

Methane-generating bacteria are absolutely anaerobic, and if soil is not maintained in an anaerobic state, methane generation is not possible. Upland soils are normally oxidative and in aerobic condition. Therefore, CH_4 is not produced by these soils. For that reason, direct emission of methane from soil has been reported as "NA".

6.5.2. Pasture, Range and Paddock Manure (4.D.2.)

The method for calculating CH_4 and N_2O emissions from pasture, range, and paddock cattle manure is described in 6.3.1 "Livestock Waste Management: Cattle, Swine and Poultry (4.B.1., 4.B.8., 4.B.9.)" (see 6.3.1). N_2O emissions are counted in 4.D.2.

6.5.3. Indirect Emissions (4.D.3.)

6.5.3.1. Atmospheric Deposition (4.D.3.-)

a) Source/Sink Category Description

This section provides the estimation methods for N_2O indirect emissions caused by atmospheric deposition of nitrogen compounds volatilized as NH_3 and NOx from synthetic fertilizer or domestic livestock manure.

b) Methodological Issues

•Estimation Method

Nitrous oxide emissions associated with atmospheric deposition have been calculated using default emission factors, in accordance with Decision Tree of the *Good Practice Guidance (2000)* (Page 4.69, Fig. 4.8).

Calculation of nitrous oxide emissions associated with atmospheric deposition

Emissions of nitrous oxide from atmospheric deposition [kg N2O]

= Default emission factor [kg N₂O-N/kg NH₃-N+NO_X-N]

 \times Volume of nitrogen volatilized from ammonia and nitrogen oxides from livestock manure and synthetic fertilizers [kg NH₃-N+NO_X-N] \times 44/28

•Emission Factors

The default value given in the Revised 1996 IPCC Guidelines has been used as the emission factor for this source.

Table 6-45 Emission	factor for nitrous	oxide emissions	associated with	atmospheric deposition
				1 1

	Emission Factor
	[kgN ₂ O-N/kg NH ₃ -N & NO _X -N deposited]
Nitrous oxide emissions associated with atmospheric deposition	0.01
Source: Revised 1996 IPCC Guidelines Vol.2 Table 4-18 ((GPG (2000) Table4.18) (Reference 3)

•Activity Data

The amounts of nitrogen (kg) contained in ammonia and nitrogen oxides that volatilize from synthetic fertilizers applied to agricultural soil and livestock manure were calculated for activity data. For the amount of manure-derived nitrogen applied to agricultural soil, the portion of nitrogen content in the livestock manure in Japan which was returned to agricultural soil, calculated in the *4.B. Manure Management* section, was used to maintain consistency in the nitrogen cycle. Also, the portion of human waste which was returned to agricultural soil as fertilizer was added to the activity data reported in this section.

$$A = N_{FERT} * Frac_{GASF} + N_{ANI}$$

= $N_{FERT} * Frac_{GASF} + N_B * Frac_{GASM1} + (N_D + N_{FU}) * Frac_{GASM2}$

A:	Amount of nitrogen that volatilizes as ammonia and nitrogen oxides from synthetic fertilizers,
	livestock manure, and human waste (kg-NH ₃ -N+NO _x -N)
N _{FERT} :	Demand for synthetic nitrogen fertilizers (kg-N)
Frac _{GASF} :	Percentage of volatilization as ammonia and nitrogen oxides from synthetic fertilizers (kg-NH ₃ -N +
N _{ANI} :	$NO_X-N/kg-N$) Amount of nitrogen that volatilizes as ammonia and nitrogen oxides from livestock manure and human waste (kg-NH ₃ -N + NO _X -N/kg-N)
N _B :	Amount of nitrogen included in livestock manure (kg-N)
Frac _{GASM1} :	Percentage of volatilization as ammonia and nitrogen oxides from livestock manure during treatment (kg NH ₃ -N + NO _X -N/kgN)
N _D :	Amount of manure-derived fertilizer applied to agricultural soil (kg-N)
N _{FU} :	Amount of human waste-derived fertilizer applied to agricultural soil (kg-N)
Frac _{GASM2} :	Percentage of volatilization as ammonia and nitrogen oxides from nitrogen contained in livestock manure and human waste applied to agricultural $soils(kg-NH_3-N + NO_X-N/kg-N)$

> Synthetic Fertilizers

Activity data for nitrous oxide emissions associated with atmospheric deposition in the application of synthetic fertilizers was derived by multiplying "demand for nitrogen-based fertilizers" given in the Ministry of Agriculture, Forestry and Fisheries *Yearbook of Fertilizer Statistics (Pocket Edition)* by the default value of $Frac_{GASF}$, the proportion of nitrogen volatilized as ammonia or nitrogen oxides from synthetic fertilizers, given in the *Revised 1996 IPCC Guidelines*.

Table 6-46 Frac_{GASF}: Proportion of nitrogen volatilized as ammonia or nitrogen oxides from synthetic

Tertifizers					
Value	Unit				
0.1	[kg NH ₃ -N + NO _X -N/kg of synthetic fertilizer nitrogen applied]				
Source: <i>Revised 1996 IPCC Guidelines</i> Vol.2 Table 4-17 (Reference 3)					

Livestock manure and human waste

Activity data for nitrous oxide emissions associated with atmospheric deposition occurred by livestock manure applied to farmland was calculated by multiplying the values determined in the *Manure Management (4.B.)* section (excluding the amount dispersed in the atmosphere as nitrous oxide as well as the amount treated by the "Incineration" or "Purification" in the *Manure Management (4.B.)* less the portion not applied to agricultural soils as fertilizer) by the default value for the

"Frac_{GASM}: fraction of livestock nitrogen excretion that volatilizes as NH₃ and NO_X (Table 6-19).

The activity data derived by human waste was defined by the product of the amount of human waste-derived nitrogen calculated with *Waste Treatment in Japan* and Frac_{GASM}.

The amount of nitrogen that eventually converted to NH_3 and NO_2 and volatilized in the process of treating livestock manure was defined by the product of the amount of manure excreted by cattle in a shed and barn and by pastured cattle, and the figures indicated in Table 6-19.

Table 6-47 Frac_{GASM}: Proportion of nitrogen volatilized from livestock manure

as ammonia or nitrogen oxides				
Value	Unit			
0.2	[kg NH ₃ -N + NO _X -N/kg of nitrogen excreted by livestock]			
Source: Revised 1996 Guidelines Vol. 2, Table 4-17 (Reference 3)				

Item	Unit	1990	1995	2000	2005	2007	2008	2009
N applied to agriclutural soil from livestock waste	tN	565,991	541,931	512,239	493,180	494,675	493,601	493,601
N applied to agriclutural soil from human waste	tN	10,394	4,747	2,116	874	609	608	608

Table 6-48 Nitrogen returned to agricultural soil

c) Uncertainties and Time-series Consistency

Uncertainties

 N_2O emissions volatilized from atmospheric deposition were calculated in two categories, nitrogen compounds derived from synthetic fertilizer and from livestock manure (including human waste). Therefore, the uncertainties were also calculated separately, and finally two uncertainties were combined as total uncertainty.

The uncertainties for emission factors were calculated by aggregating the uncertainty of each parameter, estimated by expert judgment or given as the standard values in the *Good Practice Guidance (2000)*. The aggregated uncertainty of emission factor was 107% for the application of synthetic fertilizer, and 71% for the application of livestock manure. For the uncertainties of the activity data for applied synthetic fertilizers, the same values as in 6.5.1.1. [Direct Soil Emission:] Synthetic Fertilizers were applied. For applied livestock manure, the uncertainties of the activity data were calculated from 6.3.1. [Manure Management:] Cattle, Swine, and Poultry. The total emissions uncertainty aggregated from all the uncertainties was 75%. The uncertainty assessment methods are summarized in Annex 7.

•Time-series Consistency

Emissions are estimated by using consistent estimation methods and data sources.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance* (2000) methods. Tier 1 QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. QA/QC activities are summarized in Annex 6.1.

e) Source-specific Recalculations

In responding to the revision of N_2O emission factors in the Manure Management (4.B.), the amount of livestock-origin nitrogen returns into cropland soil was changed; therefore, emissions for this category from FY1990 to FY2007 were revised.

f) Source-specific Planned Improvements

It is needed to discuss the establishment of country-specific emission factors and the ratios of volatile nitrogen compounds in synthetic fertilizers.

6.5.3.2. Nitrogen Leaching and Run-off (4.D.3.-)

a) Source/Sink Category Description

This section provides the estimation methods for N₂O emissions from Nitrogen Leaching and Run-off.

b) Methodological Issues

•Estimation Method

Nitrous oxide emissions associated with leaching and run-off of nitrogen were calculated according to the Decision Tree in the *Good Practice Guide* (2000) (Page 4.69, Fig. 4.8), by multiplying Japan's country-specific emission factors by the amount of nitrogen that leached or ran off.

<u>Nitrous oxide emission associated with nitrogen that leached or ran off (kg-N₂O)</u> = Emission factor associated with nitrogen leaching and runoff [kg-N₂O-N/kg-N] × Nitrogen that leached or ran off [kg-N] × 44/28

•Emission Factors

The nitrous oxide emission from this source was calculated using the Japan-specific emission factor that had been established by various studies. The same value was used for the nitrous oxide emission factor for nitrogen leaching and run-off for all of the fiscal years covered in the report.

T_{-1}	\mathbf{f}_{-}		1 1- '
Table 6-49 Emission	13 ctor for $N_2 U$ emission	s associated with nitrogen	leaching and run-off
Tuble of 17 Linibulon		b ubboolutou with mitoger	fourthing und run on

	Emission factor [kg-N ₂ O-N/kg-N]
Nitrous oxide emission from nitrogen that leaches or runs off	0.0124
-	

Source: Takuji Sawamoto et. al, Evaluation of emission factors for indirect N_2O emission due to nitrogen leaching in agro-ecosystems. (Reference 35)

•Activity Data

Activity data was derived by multiplying the proportion of applied nitrogen subject to leaching and run-off, as given in the *Revised 1996 IPCC Guidelines*, by the amount of nitrogen in livestock manure applied to agricultural soil and synthetic fertilizer derived from atmospheric deposition.

Table 6-50 Frac_{LEACH}: Proportion of nitrogen applied subject to leaching and run-off

Value	Unit			
0.3	[kg N/kg nitrogen of fertilizer or manure]			
 Source: <i>Revised 1996 IPCC Guidelines</i> Vol. 2, Table 4-17 (Reference 3)				

c) Uncertainties and Time-series Consistency

•Uncertainties

N2O emissions for nitrogen leaching and run-off l were calculated in two category, synthetic fertilizer

and livestock manure (including human waste). Therefore, the uncertainties were also calculated separately, and finally two uncertainties were combined as total uncertainty.

The uncertainties for emission factors were calculated aggregating the uncertainties of each parameter, estimated by expert judgments or given for standard values in the *Good Practice Guidance (2000)*. The aggregated uncertainty for emission factor was determined to be 113% for synthetic fertilizers and livestock manure in common. For the uncertainty of activity data, the same method used at "6.5.3.1. Atmospheric Deposition" was applied. As a result, the uncertainty of the emissions was determined to be 97%. The uncertainty assessment methods are summarized in Annex 7.

•Time-series Consistency

Emissions are estimated by using consistent estimation methods and data sources.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance* (2000) methods. Tier 1 QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. QA/QC activities are summarized in Annex 6.1.

e) Source-specific Recalculations

In responding to the revision of N_2O emission factors in the Manure Management (4.B.), the amount of livestock-origin nitrogen returns into cropland soil was changed; therefore, emissions for this category from FY1990 to FY2007 were revised.

f) Source-specific Planned Improvements

Refer to section" 6.5.3.1. Atmospheric Deposition".

6.5.3.3. Indirect Emissions (CH₄) (4.D.3.-)

Direct CH_4 emissions were zero, and indirect CH_4 emissions from crop fields were also taken as zero. Therefore, these sources have been reported as "NA", same as.

Except for atmospheric deposition or nitrogen leaching and run-off, there is no conceivable source of methane emissions from cultivated farmland soil other than direct emissions from soil, animal production, and indirect emissions. Therefore, they have therefore been reported as "NO".

6.5.4. Other (4.D.4)

Because it is not likely that agricultural sources of methane and nitrous oxide emissions exist in Japan other than the direct soil emissions, and indirect emissions, these sources were reported as "NO" as was the case in previous years.

6.6. Prescribed Burning of Savannas (4.E.)

This source is given in the *IPCC Guidelines* as "being for the purpose of managing pastureland in sub-tropical zones". There is no equivalent activity in Japan, and this source has been reported as "NO".

6.7. Field Burning of Agricultural Residues (4.F.)

Incomplete burning of crop residues in field releases methane and nitrous oxide into the atmosphere. Methane and nitrous oxide emissions from this source are calculated and reported in this category.

 CH_4 and N_2O emissions from Field Burning of Agricultural Residues in FY 2008 are 74Gg- CO_2 and 67Gg- CO_2 , comprising 0.01% and 0.01% of total emissions, respectively. The value represents a reduction by 34.7% and 30.8% for CH_4 and N_2O from FY 1990, respectively.

Gas	Item		Unit	1990	1995	2000	2005	2006	2007	2008
		Wheet	Gg-CH4	0.39	0.22	0.29	0.37	0.38	0.38	0.36
		Barley	Gg-CH4	0.13	0.09	0.08	0.07	0.07	0.07	0.07
	4.F.1. Cereals	Maize	Gg-CH4	1.57	1.38	1.23	1.10	1.09	1.11	1.17
	4.P.1. Cereais	Oats	Gg-CH4	0.02	0.02	0.04	0.04	0.04	0.04	0.04
		Rye	Gg-CH4	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Rice	Gg-CH4	2.06	2.27	1.53	1.06	1.04	0.98	0.96
		Peas	Gg-CH4	0.02	0.02	0.01	0.01	0.01	0.01	0.01
CII		Soybeans	Gg-CH4	0.12	0.06	0.12	0.10	0.11	0.12	0.12
CH ₄	4.F.2. Pulses	Adzuki beans	Gg-CH4	0.05	0.04	0.04	0.04	0.04	0.03	0.03
		Kidney beans	Gg-CH4	0.02	0.02	0.01	0.01	0.01	0.01	0.01
		Peanuts	Gg-CH4	0.01	0.01	0.01	0.00	0.00	0.00	0.00
	4.F.3. Tubers and Roots	Potatoes	Gg-CH4	0.22	0.20	0.18	0.17	0.17	0.17	0.17
	4.1.5. Tubers and Roots	Sugarbeat	Gg-CH4	0.04	0.04	0.04	0.04	0.04	0.04	0.04
	4.F.4. Suga	rcane	Gg-CH4	0.75	0.51	0.51	0.42	0.46	0.50	0.53
	T . 1		Gg-CH4	5.4	4.9	4.1	3.4	3.5	3.5	3.5
	Total		Gg-CO2eq	113	102	86	72	73	73	74
		Wheet	Gg-N ₂ O	0.006	0.003	0.004	0.006	0.006	0.006	0.005
		Barley	Gg-N ₂ O	0.008	0.006	0.005	0.004	0.004	0.004	0.004
	4.F.1. Cereals	Maize	Gg-N ₂ O	0.090	0.079	0.071	0.063	0.063	0.064	0.067
		Oats	Gg-N ₂ O	0.001	0.001	0.002	0.002	0.002	0.002	0.002
		Rye	Gg-N ₂ O	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Rice	Gg-N ₂ O	0.056	0.061	0.042	0.029	0.028	0.027	0.026
		Peas	Gg-N2O	0.001	0.001	0.001	0.001	0.001	0.001	0.001
NO		Soybeans	Gg-N ₂ O	0.003	0.001	0.003	0.002	0.003	0.003	0.003
N ₂ O	4.F.2. Pulses	Adzuki beans	Gg-N ₂ O	0.002	0.001	0.001	0.001	0.001	0.001	0.001
		Kidney beans	Gg-N ₂ O	0.001	0.000	0.000	0.000	0.000	0.000	0.000
		Peanuts	Gg-N ₂ O	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	4.F.3. Tubers and Roots	Potatoes	Gg-N ₂ O	0.021	0.019	0.017	0.016	0.016	0.016	0.016
	4.1 .5. 1 does and Roots	Sugarbeat	Gg-N ₂ O	0.003	0.003	0.003	0.003	0.003	0.003	0.003
	4.F.4. Suga	rcane	Gg-N ₂ O	0.123	0.085	0.084	0.070	0.076	0.083	0.088
	T. (- 1		Gg-N ₂ O	0.31	0.26	0.23	0.20	0.20	0.21	0.22
	Total		Gg-CO2eq	97	81	72	61	63	65	67
	Total of all gas	es	Gg-CO2eq	210	183	158	134	135	138	141

Table 6-51 CH₄ and N₂O emissions from field burning of agriculture residues

6.7.1. Rice, Wheat, Barley, Rye, and Oats (4.F.1.)

a) Source/Sink Category Description

This section provides the estimation methods for CH_4 and N_2O emissions from field burning of agricultural residues of rice, wheat, barley, rye, and oats.

b) Methodological Issues

•Estimation Method

Methane and nitrous oxide emissions from field burning of crop residues of rice, wheat, barley, rye, and oats were calculated, using the default technique indicated in the Revised 1996 IPCC Guidelines and the Good Practice Guide (2000), by multiplying the amounts of carbon and nitrogen released by field burning by the methane emission rate and nitrous oxide emission rate, respectively.

Wheat, barley, rye, and oats were cultivated either as grain or green crops. The portions of the green crops which were cultivated for use of the entire aboveground mass for cattle feed were excluded from the calculation of emissions.

Methane emission associated with field burning of agricultural residues ($kgCH_4$) = Methane emission rate (kg CH₄-C/kgC) \times Total carbon released(kgC) \times 16/12

Nitrous oxide emission associated with field burning of agricultural residues(kgN₂O) = Nitrous oxide emission rate (kg N₂O-N/kgN) × total nitrogen released(kgN) × 44/28

• Emission Factors

The default values shown in the Revised 1996 IPCC Guidelines and the Good Practice Guide (2000) were used.

Table 6-52 Emission factors for methane and nitrous oxide emissions associated with

field burning of rice, wheat, barley residues, rye, and oats							
	Value	Unit					
CH ₄	0.005	[kg CH ₄ /kg C]					
N ₂ O	0.007	[kg N ₂ O/kg N]					

Source: Revised IPCC Guidelines Vol.2 Table 4-16 (Reference 3)

•Activity Data

[Crops other than rice]

Activity data was calculated in accordance with the default technique shown in the Revised 1996 *IPCC Guidelines* and the *Good Practice Guide* (2000), by multiplying by the crop yield by "Proportion of residue to crop yield", "Proportion of dry matter in residue", "Proportion burned in field"," Oxidation rate" and "Carbon/nitrogen content of residues".

Total carbon/total nitrogen released by field burning of agricultural residues(kgC, kgN) = Annual crop yield (t) × Proportion of residue to crop yield × Proportion of dry matter in residue (t-dm/t) × Proportion burned in field × Oxidation rate × Carbon/nitrogen content of residues(tC/t-dm, tN/t-dm) $\times 10^3$

[Rice]

For rice, Amount of burning rice straw and rice chaff on crop field is surveyed by MAFF. The residues' nitrogen content was calculated by multiplying by the aforementioned data by nitrogen content (kgN/t) indicated in Japan's country-specific data of nutrient balance for each crop (Owa, 1996). Therefore, emission was calculated by multiplying by the crop yield by "Amount of burning rice straw and rice chaff", "Proportion of dry matter in residue", " Oxidation rate" and "Carbon/nitrogen content of residues".

<u>Total carbon/total nitrogen released by field burning of agricultural residues(kgC, kgN) (Rice)</u> =Amount of burning rice straw and rice chaff [t]×proportion of dry matter in residue [t-dm/t]× Oxidation rate× Carbon/nitrogen content of residues [t C/t-dm, t N/t-dm]×10³

Item	Unit	1990	1995	2000	2005	2007	2008	2009
Rice straw	t	438,197	536,908	429,091	276,619	203,588	203,588	203,588
Rice chaff	t	581,302	528,290	291,260	260,289	249,870	249,870	249,870
Total	t	1,019,499	1,065,198	720,350	536,908	453,458	453,458	453,458

Table 6-53 Amoun	t of burning	rice straw	and rice of	chaff on	crop field
raole o 55 rimoun	te or ourning	Silee bulan	una 1100 v	onan on	crop mena

* Data for 2009 is substituted by data for 2008

Reference: Survey by MAFF

> Annual crop yield

[Wheat (grain), and barley (grain)]

The values reported in the Crop Statistics were used for the yield of wheat, and barley (grain).

- Wheat and barley (green crops)

Because data of the yields of green crop wheat and barley (excluding those for fodder) were not directly available, the annual yields were calculated by multiplying the area planted with wheat for green crops and other purposes, as shown in the *Statistics of Cultivated and Planted Area*, by the yield per unit area established for green crop rye and oats (excluding those for fodder).

- Rye and oats

Because data of the yields of rye and oats were not directly available, the total annual yields were calculated by multiplying the area planted with rye or oats, as indicated based on the *Statistics of Cultivated and Planted Area*, by the yield per unit area and proportionally divided by the yield of wheat and barley (grain).

Tuble 6.5 + Tield of Tye and outs per unit area							
Crop	Yield per unit area	Data Source					
Rye	424	Determined by specialists (based on rye crop tests in Japan)					
Oats	223	MAFF, Crop Statistics (Reference 14)					
Rye and Oats (for green crops)	1,100	Determined by specialists (based on literature)					

Table 6-54 Yield of rye and oats per unit area

> Proportions of residues to crop yield and dry matter in residue, carbon content, proportion burned in field, and oxidation rate.

Table 6-55 shows the parameters for each crop. For wheat, Barley, Rye and Oats, proportion of burned in field was decided as 0.135 by using data of crop area by treating method for wheat straw surveyed by MAFF.

in new, and extension rate							
Сгор	Proportion of residue ^{a)}	Proportion of dry matter in residue ^{a)}	Carbon content ^{a)}	Nitrogen content	Proportion burned in field ^{b)}	Oxidation rate ^{b)}	
Rice		0.85	0.4144	0.0068^{h}		0.90	
Wheat (grain)	1.3	0.85	0.4853	0.0045 ^h	0.135	0.90	
Barley (grain)	1.2	0.85	0.4567	0.016 ^{g,h}	0.135	0.90	
Wheat/barley (green crop)		0.17 ^{c)}	0.48 ^{d)}	0.016 ^g	0.135	0.90	
Rye	2.84 ^{e)}	0.90^{c}	0.4710 ^{f)}	0.0048	0.135	0.90	
Oats	2.23 ^{e)}	0.92^{c}	0.4710 ^{f)}	0.007	0.135	0.90	
Rye (green crop)		0.17 ^{c)}	0.4710 ^{f)}	0.0116	0.135	0.90	
Oats (green crop)		0.17 ^{c)}	0.4710 ^{f)}	0.0169 ^h	0.135	0.90	

Table 6-55 Proportions of residue to crop yield and dry matter in residue, carbon content, proportion burned in field, and oxidation rate

a) *GPG* (2000), p. 4.58, Table 4.16 (Reference 4)

b) Survey by MAFF

c) Determined based on the percentage of dry matter in green crop wheat indicated in the *Standard Table of Feed Composition in Japan* (National Agriculture Research Organization, pub. by Japan Livestock Association)

d) Determined based on the values shown in the GPG (2000) for wheat (grain) and barley (grain) by apportioning for yields

e) Determined based on the results of crop tests for rye and oats in Japan

f) Used the average of the values shown for "wheat" and "barley" in the Good Practice Guide (2000).

g) Values change over the years

h) Owa, New Trends in Technology for Efficient Use of Nutrients – Nutritional Balance of Crops in Japan (1996) (Reference 33)

> Nitrogen content

The specific nitrogen content value was determined for each of rice, wheat, barley, and oats (green crop), based on the results of various studies carried out in Japan. The nitrogen content of green crop wheat/barley was calculated using the average of nitrogen contents in wheat and barley weighted by yield. The default nitrogen content values in the *Good Practice Guide (2000)* were used for rye and oats (grain). The nitrogen content for rye (green crop) was calculated by multiplying Japan's country-specific value for oats (green crop) by the value resulting from "rye (grain) / oats (grain)". For other wheat (grain), the value shown in *Revised 1996 IPCC Guidelines* was used.

c) Uncertainties and Time-series Consistency

Uncertainties

The uncertainty assessment was conducted by each crop for rice, wheat (grain), barley (grain), wheat/barley(green crop), rye, oats, rye (green crop), and oats (green crop). The uncertainties for emission factors were calculated to combine the uncertainty of each parameter determined by expert judgment or given in the *Good Practice Guidance (2000)* as the default values. The uncertainties for activity data applied the standard error in each statistics (the *Crop Statistics* and the *Statistics of Cultivated and Planted Area*) or the value decided by the 2002 Committee for Greenhouse Gas Emission Estimation Methods. The uncertainty assessment results of the emissions by each crop were provided in Annex 7 Table 11. The uncertainty assessment methods are summarized in Annex 7.

•*Time-series Consistency*

Emissions are estimated by using consistent estimation methods and data sources.

d) Source-specific QA/QC and Verification

Tier 1 QC activities have been conducted in accordance with the *Good Practice Guidance* (2000) methods. Tier 1 QC activities focus on the verification of the parameters for activity data and emission factors and the archive of reference materials. Existence of the data of the amount of incineration for rice straw and rice chaff in Japan was implied by implementation of QA activity (QAWG). By taking into account discussions within the Committee for Greenhouse Gas Emission Estimation Methods, estimation method was revised by using the data of the amount of incineration for rice straw and rice chaff in Japan. QA/QC activities are summarized in Annex 6.1.

e) Source-specific Recalculations

In the agricultural sector, a 3-year average has been used. Thus, cause of revision and update of the activity data for FY 2008, the emissions for FY 2007 were revised accordingly.

f) Source-specific Planned Improvements

In responding to the revision of amount of burning rice straw and rice chaff on crop field and proportion burned in field for wheat, barley, rye and oats, emissions from FY1990 to FY2007 were revised.

For the use of the default parameter in the *Revised 1996 IPCC Guidelines* or the *Good Practice Guidance (2000)*, it is needed to discuss whether country-specific parameter can be established for Japan.

6.7.2. Maize, Peas, Soybeans, Adzuki beans, Kidney beans, Peanuts, Potatoes, Sugarbeet & Sugar cane (4.F.1., 4.F.2., 4.F.3., 4.F.4.)

a) Source/Sink Category Description

This section provides the estimation methods for CH_4 and N_2O emissions from field burning of agricultural residues by Maize, Peas, Soybeans, Adzuki beans, Kidney beans, Peanuts, Potatoes, Sugarbeet & Sugar cane.

b) Methodological Issues

•Estimation Method

Methane and nitrous oxide emissions from field burning of crop residues of corn, peas, soy, adzuki beans, kidney beans, peanuts, potatoes and other root crops (sugarbeets), and sugar cane were calculated in accordance with the relevant Decision Tree in the *Good Practice Guide (2000)* (page 4.52, Fig. 4.6), by multiplying the total carbon released, as calculated by the default technique, by the default methane emission rate and nitrous oxide emission rate, respectively.

•Emission Factors

Emission factors similar to field burning of rice, wheat, and barley residues were used (See Table 6-52)

•Activity Data

Activity data was calculated by multiplying the yield of each crop shown in the *Crop Statistics* and the *Vegetable Production and Shipment Statistics* published by MAFF by the parameters shown in the

calculation formula.

Table 6-56 Proportions of residues,	drv matter, carbo	n, and nitrogen relat	ive to crop vield
		,	

Crop	Proportion of	Proportion of	Carbon	Nitrogen
	residues	dry matter	content	content ^b
Corn	1.0	0.86	0.4709	0.0164
Peas	1.5	0.87	0.45 ^a	0.0159
Soy	2.1	0.89	0.45^{a}	0.0065
Adzuki beans	2.1	0.89	0.45 ^a	0.0084
Kidney beans	2.1	0.89	0.45 ^a	0.00745
Peanuts	1.0	0.86	0.45 ^a	0.00745
Potatoes	0.4	0.6 ^c	0.4226	0.0242
Sugarbeets	0.2	0.2	0.4072	0.0192
Sugar cane	1.62	0.83 ^c	0.4235	0.0423

Source: Good Practice Guide (2000), p. 4.58, Table 4.16 (Reference 4)

a. In the absence of default values, the values for dicotyledonous and monocotyledonous plants were used. Murayama, N., et al., *Alimentation of Crops and Fertilizer*, Buneido, p. 26 (Bowen: Trace Elements in Biochemistry, 1966)

- b. Owa, New Trends in Technology for Efficient Use of Nutrients Nutritional Balance of Crops in Japan (1996) (Reference 33)
- c: Revised 1996 IPCC Guidelines, Vol. 2, Table 4-15
- d: Although default values are not available, the median value of the values indicated in the *Revised 1996 IPCC Guidelines*, Vol. 2, p. 4.30 (0.001 0.02) were used.

Table 6-57 Default values of proportion burned in field and oxidation rate

	Value	Unit
Proportion burned in field	0.10	-
Oxidation rate	0.90	-
Source: Revised 1996 IPCC Guideli	ines Vol 3 n 4.83	(Reference 3)

Source: Revised 1996 IPCC Guidelines, Vol. 3, p. 4.83 (Reference 3)

c) Uncertainties and Time-series Consistency

•Uncertainties

The uncertainty assessment was conducted by each crop in Peas, Soybeans, Adzuki beans, Kidney beans, Peanuts, Potatoes, Sugarbeet.

The uncertainties for emission factors were calculated to aggregate the uncertainty of each parameter determined by expert judgment and given for default values in *the Good Practice Guidance (2000)*.

For the uncertainties of the activity data, the value decided by the Committee for Greenhouse Gas Emission Estimation Methods in 2002 was applied. The uncertainty assessment results of the emissions by each crops were provided in Annex 7 Table 11. The uncertainty assessment methods are summarized in Annex 7.

•Time-series Consistency

Emissions are estimated by using consistent estimation methods and data sources.

d) Source-specific QA/QC and Verification

Refer to section" 6.7.1. Rice, Wheat, Barley, Rye, and Oats".

e) Source-specific Recalculations

In the agricultural sector, a 3-year average has been used. Thus, cause of revision and update of the activity data for FY 2007, the emissions for FY 2006 were revised accordingly.

f) Source-specific Planned Improvements

For the use of the default parameter in the *Revised 1996 IPCC Guidelines* or the *Good Practice Guidance (2000)*, it is needed to discuss whether country-specific parameter can be established for Japan.

6.7.3. Dry bean (4.F.2.-)

Dry beans are a type of kidney beans, and the term refers to the mature, husked vegetable. Kidney beans in Japan are eaten before ripening, however, which means there is little of this type of product. Kidney beans are included in Beans (4.F.2.), under 'Other crops' and, therefore, the dry beans have been reported as "IE".

6.7.4. Other (4.F.5.)

It is possible that agricultural waste other than cereals, pulse, root vegetables and sugar canes are burnt in the fields. However, data on actual activity is not available and it is not possible to establish the emission factor. Therefore, these sources have been reported as "NE".

References

- 1. Food and Agriculture Organization of the United Nations, FAOSTAT Database (http://apps.fao.org/page/collections?subset=agriculture)
- IPCC(1995): IPCC 1995 Report :Agricultural Options for Mitigation of Greenhouse Gas Emissions, 747-771
- 3. IPCC, Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, 1997
- 4. IPCC, Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, 2000
- 5. International Rice Research Institute, *World Rice Statistics 1993-94*
- 6. Environmental Agency Committee for the Greenhouse Gases Emissions Estimation Methods, *Review* of Greenhouse Gases Emissions Estimation Methods Part 1, September 2000
- 7. Ministry of the Environment Committee for the Greenhouse Gases Emissions Estimation Methods, *Review of Greenhouse Gases Emissions Estimation Methods Part 3*, August 2002
- 8. Ministry of the Environment Committee for the Greenhouse Gases Emissions Estimation Methods, *Review of Greenhouse Gases Emissions Estimation Methods*, February 2006
- 9. Ministry of the Environment, Waste Management and Recycling Department, report of the research on the state of wide-range movement and cyclical use of wastes (the volume on cyclical use)
- 10. Ministry of the Environment, Waste Management and Recycling Department, Waste Treatment in Japan
- 11. Japan Meteorological Agency, Climate Charts of Japan
- 12. Ministry of Agriculture, Forestry and Fisheries of Japan, Survey on Public ranches farms
- 13. Ministry of Agriculture, Forestry and Fisheries of Japan, Statistics of Cultivated and Planted Area
- 14. Ministry of Agriculture, Forestry and Fisheries of Japan, Crop Statistics
- 15. Ministry of Agriculture, Forestry and Fisheries of Japan, Livestock Statistics
- 16. Ministry of Agriculture, Forestry and Fisheries of Japan, Basic Survey of Ground Strength
- 17. Ministry of Agriculture, Forestry and Fisheries of Japan, Yearbook of Fertilizer Statistics (Pocket Edition)
- 18. Ministry of Agriculture, Forestry and Fisheries of Japan, Vegetable Production and Shipment Statistics
- 19. Ministry of Agriculture, Forestry and Fisheries of Japan, Statistics on Milk and Dairy Products
- 20. Ministry of Agriculture, Forestry and Fisheries of Japan, Statistics of Livestock Production Costs
- 21. Ministry of Agriculture, Forestry and Fisheries of Japan, Summary of Survey on Agriculture of Environmental Conservation Type, Livestock Part.
- 22. Japan Livestock Technology Association, GHGs emissions control in livestock Summary, March 2002
- 23. Japan Livestock Technology Association, GHGs emissions control in livestock Part4, March 1999
- 24. Japan Livestock Technology Association, GHGs emissions control in livestock Part6, March 2001
- 25. Japan Livestock Industry Association, Japanese Feed Standard
- 26. National Institute of Animal Health "Research of the actual situation of pastures in Japan."
- 27. Okinawa prefecture, Livestock Statistics of Okinawa
- 28. Society for the Study of Agricultural Technology, A report on an Investigation of how to quantify the amount of Greenhouse Gases Emissions reduced in 2000 F.Y.
- 29. Mamoru Saito, "Methane emissions from fattening swine and expectant swine", Japan Society of Animal Science, Animal Science Journal 59, pp779-778, 1998
- 30. Shibata, Terada, Kurihara, Nishida and Iwasaki, "Estimation of Methane Production in Ruminants", Animal Sciences and Technology, Vol.64, No.8, August 1993
- 31. Haruo Tsuruta, "Establishment of GHGs reduction model", National Institute for Agro-Environmental

Sciences, Study report of branch for management of resource and ecosystem vol.13 supplementary volume

- 32. Noboru Murayama, et al. "Alimentation of Crops and Fertilizer", Buneido, p26
- Owa, "New Trends in Technology for Efficient Use of Nutrients Nutritional Balance of Crops in Japan" 1996 Sixth Kanto-Tokai Agricultural Study Session on Soil Management Technologies for Agricultural Production in Harmony with Environment; National Agriculture and Bio-oriented Research Organization, 1996
- 34. Makoto Ishibashi,Jyunya Hashiguchi,Morihiro Koga, "Development of technology of reducing GHG on the livestock industry(second report)" the experiment and study of environmental safeguards on the livestock industry, Report of the research institute of livestock(2003) Kumamoto Prefecture Agricultural Research Center, The research institute of livestock
- 35. Takuji Sawamoto, Yasuhiro Nakajima, Masahiro Kasuya, Haruo Tsuruta and Kazuyuki Yagi "Evaluation of emission factors for indirect N₂O emission due to nitrogen leaching in agroecosystems" GEOPHYSICAL RESEARCH LETTERS VOL.32
- Takeshi Osada, Kazutaka Kuroda, Michihiro Yonaga (2000):Determination of nitrous oxide, methane, and ammonia emissions from a swine waste composting process, J Mater Cycles Waste Manage (2000) 2,51-56
- 37. Takashi Osada (2003) :Nitrous Oxide Emission from Purification of Liquid Portion of Swine Wastewater, Greenhouse Gas Control Technologies, J.Gale and Y.Kaya (Eds.)
- 38. Takashi Osada, Yasuyuki Fukumoto, Tadashi Tamura, Makoto Shiraihi, Makoto Ishibashi : Greenhouse gas generation from livestock waste composting,Non-CO2 Greenhouse Gases (NCGG-4),Proceedings of the Fourth International Symposium NCGG-4,105-111 (2005)
- Akiyama, H., Yagi, K., and Yan, X. (2006): Direct N₂O emissions and estimate of N₂O emission factors from Japanese agricultural soils. In program and Abstracts of the International Workshop on Monsoon Asia Agricultural Greenhouse Gas Emissions, March 7-9, 2006, Tsukuba, Japan, pp. 27.
- 40. Akiyama, H., Yagi, K., and Yan, X. (2006): Estimations of emission factors for fertilizer-induced direct N₂O emissions from agricultural soils in Japan: Summary of available data, *Soil Science and Plant Nutrition*, *52*, 774-787.
- 41. Japan Livestock Industry Association, Statistical Document of Livestock Breeding
- 42. Ministry of Agriculture, Forestry and Fisheries, Agricultural Production Bureau, Livestock Industry Department, Livestock Production and Feed Division, *Statistical Document of Horse*
- 43. Osamu Nagata, Roji Samejima (2006): Effect of land use change in Ishikari peatland on greenhouse gas emission
- 44. Mikinori Tsuiki and Yasuo Harada. (1997): A Computer Program for Estimating the Amount of Livestock Wastes. J. JASS, 13(1): 17-23
- 45. Kunihiko Nonaka (2005): Nitrogenous environmental load in tea fields and fertilizer application technology for the reduction of the environmental load, Bulletin of the National Institute of Vegetable and Tea Science, No.100
- 46. Nagata O, Sugito T, Kobayashi S, and Sameshima R. (2009): nitrous oxide emissions following the application of wheat residues and fertilizer under conventional-, reduced-, and zero-tillige systems in central Hokkaido, Japan, *Journal of Aggricultural Meteorolgy*, 65(2), 151-159.
- 47. Project Report of Survey on Prevention of Global Warming in the Agriculture, Forest and Fisheries Sector within the Environment and Biomass Comprehensive Strategy Promotion Project in FY 2008 (Nationwide Survey), Project Title: Discussions on Greenhouse Gas Emissions Estimation Method for Livestock Manure Management by taking Japan's Climate Conditions into account.

- 48. Takata Y, Nakai M and Obara H: Digital soil map of Japanese croplands in 1992, *Japanese Journal of Soil Science and Plant Nutrition*, Vol. 80, No. 5, p.502-505 (2009)]
- 49. Ministry of Agriculture, Forestry and Fisheries of Japan, "Basis Survey of Soil Environment"
- 50. Ministry of Agriculture, Forestry and Fisheries of Japan, "Project for Development of Preventive System for Greenhouse Gas Emissions from Paddy Soils"
- 51. Tsuguo Hoshina, Shuji Kozai, Yoshio Honjo (1982): Decomposition of Tea Organic Matter in Soils and Reassimilation of Nitrogen by Tea Plants, *Tea Research Journal*, 55, p.30-36
- 52. Tadataka Kinoshita, Masaki Tsuji (2005): Nitrogen Balance in "Tencha" Tea Field, *Tea Research Journal*, 100, p.52-54
- Naoaki Tachibana, Toshihisa Ikeda, Katsuhiko Ikeda: Changes in Nitrogen Uptake with Aging and Under Heavy Application of Nitrogen in Tea Plants, *Japanese Journal of Crop Science*, 65, p.8-15 (1996)
- 54. Mitsuru Ohta, et al.(1996): Decomposition of Organic Matter derived from Pruned Branches and Nitrogen Loss in a Renewal Tea Field after First Crop of Tea, *Tea Research Journal (Additional volume)*, 84, p.130-131

Chapter 7. Land Use, Land-Use Change and Forestry (CRF sector5)

7.1. Overview of Sector

The land use, land-use change, and forestry (LULUCF) sector deals with greenhouse gas (GHG) emissions and removals resulting from land use such as forestry activities and land-use change. Japan classifies its national land into 6 categories—Forest land, Cropland, Grassland, Wetlands, Settlements, and Other land—and subdivides each of them into two subcategories by distinguishing them on the basis of whether or not land conversion has been occurred, in accordance with the GPG-LULUCF. It also uses 20 years, a default value in the GPG-LUULCF when distinguishing the land conversion. GHG emissions and removals in this sector consist of carbon stock changes in five carbon pools (aboveground biomass, belowground biomass, deadwood, litter, and soil), direct N₂O emissions from N fertilization, N₂O emissions from drainage of soils, N₂O emissions from disturbance associated with land-use conversion to cropland, CO₂ emissions from agricultural lime application, and non-CO₂ emissions from biomass burning. In this inventory, above- and belowground biomass are referred to collectively as "living biomass", and deadwood and litter collectively as "dead organic matter".

Japan's total land area as of FY 2008 is about 37.8 million ha. The largest portion of the national land is Forest land, which covers about 25.0 million ha. The second-largest portion is Cropland, which covers about 4.01 million ha. In addition, Grassland, Wetlands, Settlements, and Other land cover about 0.91 million ha, 1.33 million ha, 3.70 million ha, and 2.88 million ha, respectively.

Japan's national land is an archipelago consisting of Hokkaido, Honshu, Shikoku, Kyushu and other islands, and lies off the east coast of the Eurasian Continent. The archipelago has the general shape of a crescent and extends from northeast to southwest. Its northernmost point is located at latitude about 45 degrees centigrade N, and its southernmost point is located at latitude about 20 degrees centigrade N. Most of Japan's national land is located in a temperate, humid climate zone. Some islands in the southern part of Japan belong to a subtropical climate zone, and some northern parts are located in a cool-temperate climate zone. The average annual temperature and precipitation in Tokyo, the capital city of Japan located in the temperate, humid climate zone, are 15.9 centigrade and 1,466.7 mm; those in Sapporo, Hokkaido prefecture, located in the cool-temperate climate zone, are 8.5 centigrade and 1,127.6mm; and those in Naha, Okinawa prefecture, located in the subtropical climate zone, are 22.7 centigrade and 2,036.9mm, respectively.¹

The LULUCF sector contains both sources and sinks; however, in Japan, it has been a net sink continuously since FY 1990. Net removals in FY 2008 were 78,808 Gg-CO₂; this accounts for 6.1% of the total national emissions. The net removals in FY 2008 also represent an increase of 24.4% over the FY 1990 value and a decrease of 3.7% over the FY 2007 value.

This chapter is divided into 13 sections. Section 7.2 describes the method of determining land-use

¹ The average annual temperatures and precipitations are the average of those between FY 1971 and 2000. See National Astronomical Observatory, *2010 Chronological Scientific Tables* (Tokyo: Maruzen Inc., 2009) pp.176-177 and pp.188-189. With respect to the degrees of latitude, see Geographical Survey Institute, *Degrees of Latitudes and Longitude of Japan's Northernmost, Southernmost, Easternmost and Westernmost Points* http://www.gsi.go.jp/KOKUJYOHO/center.htm.

categories. Sections 7.3 to 7.8 explain the estimation methods of carbon stock changes in each land-use category. GHG emissions by the LULUCF sector resulting from other than carbon stock changes are described in sections 7.9 to 7.13.

7.2. Method of determining land-use categories

7.2.1. Basic approach

In accordance with 6 land-use categories in the GPG-LULUCF, land is classified on the basis of the definitions in existing statistics and others. As for Forest land and Cropland, subcategories are determined independently for each of them (Forest land: forests with standing trees (intensively managed forests / semi-natural forests) / forests with less standing trees / bamboo; Cropland: rice fields / upland fields / orchard).

"Land remaining Land" and "Land converted to Land" in each land use category are determined based on existing statistics. Land-use categories that cannot be directly determined from the existing statistics are determined by means of estimation measures such as allocation of areas of land conversion by means of the ratio of actual land areas for each land use categories.

The area of Other land, which does not belong to any of the other five land use categories, is determined by subtracting the summed area of the five land-use categories from the total area of the national land.

								(kha)
	Before Conversion	Forest land	Cropland	Grassland	Wetlands	Settlements	Other land	Total
After Conversion								
Forest Land		24,946.8	2.7	0.7	IE	IE	0.1	24,950.3
Cropland		7.0	4,587.6	0.0	0.3	IE	1.5	4,596.4
Grassland		1.0	0.9	924.6	0.2	IE	3.7	930.3
Wetlands		0.3	0.1	0.0	1,319.4	0.0	0.1	1,320.0
Settlements		19.3	21.4	3.2	IE	3,173.2	IE	3,217.0
Other land		4.8	15.3	3.8	IE	IE	2,732.1	2,756.0
Total		24,979.1	4,627.9	932.3	1,320.0	3,173.2	2,737.5	37,770.0

Table 7-1 Land-use Transition Matrix for Japan in FY 1990

Table 7-2 Land-use Transition Matrix for Japan in FY 2008

								(kha)
	Before Conversion	Forest land	Cropland	Grassland	Wetlands	Settlements	Other land	Total
			*					
After Conversion								
Forest Land		24,968.5	0.5	0.1	IE	IE	0.0	24,969.1
Cropland		0.5	4,005.1	0.0	0.5	IE	0.6	4,006.7
Grassland		0.1	0.8	905.8	0.4	IE	0.7	907.8
Wetlands		0.3	0.2	0.0	1,329.2	0.0	0.3	1,330.0
Settlements		5.1	10.9	1.6	IE	3,679.4	IE	3,697.0
Other land		0.7	8.6	3.8	IE	IE	2,866.2	2,879.3
Total		24,975.2	4,026.1	911.4	1,330.1	3,679.4	2,867.8	37,790.0

7.2.2. Method of determining land-use categories and areas

Japan determines land-use categories and areas on the basis of existing statistics. Table 7-3 below shows the method of determining land-use categories and areas in Japan by means of existing

statistics.

Land use	Method of determining land	Method of determining area
category	use category	
Forest	Forests under Forest Law Article 5 and 7.2.	Forest with standing trees (intensively managed forests, semi-natural forests), forests with less standing trees and bamboo [*] in the forests which are included in the regional forests plan according to the <i>Forestry Status Survey</i> [-2004] and the <i>National Forest Resources Database</i> [2005-] (Forestry Agency). ²
Cropland	Rice fields, upland fields and orchard.	Rice fields, upland fields and orchard according to <i>Statistics of Cultivated and Planted Area</i> by the Ministry of Agriculture, Forestry and Fisheries.
Grassland	Pasture land, grazed meadow land and grassland other than pasture land and grazed meadow land ³ .	Pasture land according to <i>Statistics of Cultivated and Planted</i> <i>Area</i> by the Ministry of Agriculture, Forestry and Fisheries, grazed meadow land according to <i>World Census of Agriculture</i> <i>and Forestry</i> and <i>A Move and Conversion of Cropland</i> , also by the Ministry of Agriculture, Forestry and Fisheries, and less-managed grassland other than pasture land and grazed meadow land identified in <i>Land Use Status Survey</i> .
Wetlands	Bodies of water (such as dams), rivers, and waterways.	Bodies of water, rivers, and waterways according to <i>Land Use</i> <i>Status Survey, Survey of Forestry regions</i> , also by the Ministry of Land, Infrastructure, Transport and Tourism.
Settlements	Urban areas that do not constitute Forest land, Cropland, Grassland or Wetlands. Urban green areas are all wooded and planted areas that do not constitute Forest land.	Settlements are roads, residential land, school reservations, park and green areas, road sites, environmental facility sites, golf courses, ski courses and other recreation sites identified in <i>Land Use Status Survey</i> by the Ministry of Land, Infrastructure, Transport and Tourism. The included figures for urban green areas are taken from <i>Urban Parks Status Survey</i> , <i>Road Tree Planting Status Survey, Sewage Treatment Facility</i> <i>Status Survey, Urban Greening Status Survey, Survey on</i> <i>Carbon Dioxide Absorption at Source in River Works,</i> <i>Progress Survey on Tree Planting for Public Rental Housing,</i> also by the Ministry of Land, Infrastructure, Transport and Tourism.
Other land	Any land that does not belong to the above land use categories.	Determined by subtracting the total area belonging to the other land use categories from the total area of national land according to <i>Land Use Status Survey</i> by the Ministry of Land, Infrastructure, Transport and Tourism.

Table 7-3 Method of determining land use categories and areas

Note: Forest with standing trees (intensively managed forests, semi-natural forests), forests with less standing trees and bamboo are defined as below.

² The *Forestry Status Survey* and the *National Forest Resources Database* use the same definitions and survey methods for forests, and these 2 data have time-series consistency.

³ Grassland other than pasture land and grazed meadow land is the land that remains after subtracting grazed meadow land and jurisdictional areas as national forests from "grassland other than forests" in the *World Census of Agriculture and Forestry*. Its present status is mainly wild grassland (including perennial pasture land, degenerated pasture land, and areas abandoned after cultivation and becoming wild).

Forest with standing trees:	Intensively managed forests:			
Forest that does not fall under "Forest with less	Forest land that is subject to artificial regeneration such as			
standing trees" and has the tree crown cover of	tree planting and seeding, and in which no less than 50% of			
standing trees 30% or higher (including young	the volume (or the number) of standing trees are of tree			
stands with the degree of stocking of 3 or	species subject to artificial regeneration			
higher). Even if the tree crown cover of	Semi-natural forests:			
standing trees is less than 30%, forest in which	Forest with standing trees which is not classified as			
the sum of the crown covers of both standing	intensively managed forests			
trees and bamboo is 30% or higher, while				
dominated by standing trees, is also included.				
Forest with less standing trees:				
Forest in which the sum of the tree crown covers of both standing trees and bamboo is less than 30 percent.				
Bamboo:				

Forest that does not fall under "forest with standing trees" and has the tree crown cover of bamboo (excluding bamboo grass) 30% or higher. Even if the tree crown cover of bamboo is less than 30%, forest in which the sum of the crown covers of both standing trees and bamboo is 30% or higher, while dominated by bamboo is also included.

Reference: Forest Agency of Japan, Forest Status Survey (March, 2007)

Areas of Land converted to Forest land are estimated based on data of the areas of afforestation and reforestation under Article 3, paragraph 3, of the Kyoto Protocol, which are determined by utilizing orthophotos at the end of 1989 and recent satellite images, in addition to existing statistics. Areas of Forest land converted to other land-use categories are estimated based on data of the areas of deforestation determined by the same way as afforestation and reforestation, in addition to data of the *World Census of agriculture and Forestry* and the Forestry Agency's records. For detailed information on determining the areas of afforestation, reforestation and deforestation, see section 11.3.2.3 in Annex 11.

7.2.3. Survey methods and due dates of major land area statistics

Table 7-4 shows survey methods and due dates of major land area statistics;

Name of the statistics / census	Survey method	Survey due date	Frequency	Presiding ministry
Forest Status Survey	Complete count survey	March, 31 st	Approximately 5 years	Ministry of Agriculture, Forestry and Fisheries, (Forestry Agency)
National Forest Resources Database	Complete count survey	April, 1 st	Every year	Ministry of Agriculture, Forestry and Fisheries (Forestry Agency)

 Table 7-4
 Survey method and due date of major land area statistics

Name of the statistics / census	Survey method	Survey due date	Frequency	Presiding ministry
Statistics of Cultivated and Planted Area (Survey of cropland area)	Cropland area: Ground measurement survey (sample) Conversion area: Tabular survey (using documents from relevant agency and aerial photograph, etc.)	Cropland area: - July, 15th expansion area and converted area of cropland - July, 15th in the previous year - July, 14 th	Every year	Ministry of Agriculture, Forestry and Fisheries
World Census of Agriculture and Forestry (Survey Of Forestry Regions~2000)	Complete count survey	August, 1 st	Every 10 years	Ministry of Agriculture, Forestry and Fisheries
Land Use Status Survey	Complete count Survey	March, 31 st	Every year	Ministry of Land, Infrastructure, Transport and Tourism
Urban Parks Status Survey	Complete count survey	March, 31 st	Every year	Ministry of Land, Infrastructure, Transport and Tourism
Road Tree Planting Status Survey	Complete count survey	March, 31 st	5 years for the period from FY 1987 to FY 2007, and every year since FY 2008	Ministry of Land, Infrastructure, Transport and Tourism
Sewage Treatment Facility Status Survey	Complete count survey	March, 31 st	Every year	Ministry of Land, Infrastructure, Transport and Tourism
Urban Greening Status Survey	Complete count survey	March, 31 st	Every year	Ministry of Land, Infrastructure, Transport and Tourism
Survey on Carbon Dioxide Absorption at Source in River Works	Complete count survey	March, 31 st	Every year	Ministry of Land, Infrastructure, Transport and Tourism
Progress Survey on Tree Planting for Public Rental Housing	Complete count survey	March, 31 st	Every year	Ministry of Land, Infrastructure, Transport and Tourism

Table 7-4 Survey method and due date of major land area statistics (continue)

7.2.4. Land area estimation methods

Some land areas cannot be directly determined from existing statistics; therefore, they are estimated by means of following methods;

- Interpolation or trend extrapolation
- Allocation of areas of land conversion by means of the ratio of actual land areas for each land

use categories

• Allocation of areas of land conversion by means of the ratio of converted land areas for a certain year

• Interpolation and trend extrapolation

> Method

The areas of Forest land before 2004 were surveyed at intervals of five years, and it was difficult to directly determine areas other than ones in surveyed years. Therefore, un-surveyed areas of Forest land were estimated by interpolation or extrapolation by means of liner expressions based on surveyed years' areas.

Land use category

This estimation method was applied to "5.A. Forest land" (FY 1991-FY 1994, FY 1996-FY 2001 and FY 2003-FY 2004).

• Allocation of areas of land conversion by means of the ratio of actual land area for each land use categories

> Method

Japan estimates land areas converted to other land-use categories, which are difficult to be obtained directly from existing statistics, by applying the ratio of actual land areas for each land-use category. For example, it is difficult to directly obtain areas of "upland field converted to Forest land", "orchard converted to Forest land" and "pasture land converted to Forest land". Therefore, these land areas were estimated by means of the ratio of actual land areas for each land-use category. First, the ratios of each of these land areas were assumed as the same as those of actual land areas of upland field, orchard and pasture land. Second, since an area of "arable land (which included upland field, orchard and pasture land) converted to Forest land" was available from existing statistics, the areas of the lands converted to Forest land areas for each of the land-use categories (upland field, orchard and pasture land) areas for each of the land-use categories (upland field, orchard and pasture land areas for each of the land-use categories (upland field, orchard and pasture land).

Land use category

This estimation method was applied to the following land-use categories:

- 5.A.2. Land (Cropland and Grassland) converted to Forest land
- 5.B.1. Cropland remaining Cropland
- 5.B.2. Land (Forest land, Grassland, Wetlands and Other land) converted to Cropland
- 5.C.1. Grassland remaining Grassland
- 5.C.2. Land (Forest land, Cropland, Wetlands and Other land) converted to Grassland
- 5.E.2. Land (Cropland and Grassland) converted to Settlements
- 5.F.2. Land (Cropland and Grassland) converted to Other land

• Allocation of areas of land conversion by means of the ratio of converted land area for a certain year

> Method

In Japan, it is difficult to directly obtain annual land areas of "Settlements converted to Wetlands". Therefore, these land areas were estimated by applying the ratio of converted land areas for a certain year. First, the annual land ratios of "Settlements converted to Wetlands" to "Land converted to Wetlands" were assumed as the same as the land ratio in FY 1998. Second, since the annual areas of

"Land converted to Wetlands" were available from existing statistics, the annual areas of "Settlements converted to Wetlands" were estimated by multiplying the areas of "Land converted to Wetlands" by the FY 1998 ratio of "Settlements converted to Wetlands".

Land use category

This estimation method was applied to "5.D.2. Land (Cropland, Grassland, Settlements and Other land) converted to Wetlands".

7.3. Forest land (5.A.)

Forests absorb CO_2 from the atmosphere by photosynthesis, fix carbon as organic substances, and store these substances for a given period. In contrast, forests can possibly emit CO_2 due to effects of events such as logging and natural disturbances.

All Japan's forests are managed forests, and they consist of intensively managed forests, semi-natural forests, bamboo, and forests with less standing trees. Japan's forest land area in FY 2008 was about 24.7 million ha—about 66.1% of the total national land area. The net CO₂ removal by this category in FY 2008 was 79,934 Gg-CO₂ (excluding 23.7 Gg-CO₂ of CH₄ and N₂O emissions resulting from biomass burning); this represents an increase of 10.4% over the FY 1990 value, and a decrease of 3.5% over the FY 2007 value.

In this section, Forest land is divided into two subcategories, "Forest land remaining Forest land (5.A.1.) and "Land converted to Forest land (5.A.2.)", and they are described separately in the following subsections.

0			TT !.	1000	1005	2000	2005	2007	2007	2000
Gas	Category	Carbon pool	Unit	1990	1995	2000	2005	2006	2007	2008
CO_2	5.A. Forest land	Total	Gg-CO ₂	-72,427.5	-79,685.0	-83,475.8	-87,513.4	-83,399.3	-82,873.5	-79,934.3
		Living Biomass	Gg-CO ₂	-72,020.6	-79,509.0	-83,359.6	-86,537.6	-81,747.4	-81,333.1	-76,505.5
		Dead Wood	Gg-CO ₂	-340.9	-168.9	-121.3	1,234.9	778.2	826.7	188.1
		Litter	Gg-CO ₂	-147.9	-73.3	-52.6	-619.5	-826.6	-804.5	-720.6
		Soil	Gg-CO ₂	81.8	66.1	57.8	-1,591.3	-1,603.5	-1,562.6	-2,896.2
	5.A.1. Forest land	Total	Gg-CO ₂	-72,020.6	-79,509.0	-83,359.6	-87,433.5	-83,324.6	-82,803.9	-79,869.3
	remaining Forest land	Living Biomass	Gg-CO ₂	-72,020.6	-79,509.0	-83,359.6	-86,537.6	-81,747.4	-81,333.1	-76,505.5
	Ŭ	Dead Wood	Gg-CO ₂	NA,NE	NA,NE	NA,NE	1,326.1	864.5	908.6	265.6
		Litter	Gg-CO ₂	NA,NE	NA,NE	NA,NE	-580.0	-789.1	-769.0	-687.0
		Soil	Gg-CO ₂	NA,NE	NA,NE	NA,NE	-1,642.1	-1,652.6	-1,610.5	-2,942.5
	5.A.2. Land converted to	Total	Gg-CO ₂	-406.9	-176.0	-116.2	-79.9	-74.6	-69.6	-65.0
	Forest land	Living Biomass	Gg-CO ₂	IE	IE	IE	IE	IE	IE	ΙE
		Dead Wood	Gg-CO ₂	-340.9	-168.9	-121.3	-91.1	-86.3	-81.9	-77.6
		Litter	Gg-CO ₂	-147.9	-73.3	-52.6	-39.5	-37.4	-35.5	-33.7
		Soil	Gg-CO ₂	81.8	66.1	57.8	50.8	49.1	47.9	46.2

Table 7-5 Emissions and Removals in Forest land resulting from Carbon Stock Changes

7.3.1. Forest land remaining Forest land (5.A.1.)

a) Source/Sink Category Description

This subcategory deals with carbon stock changes in Forest land remaining Forest land, which has remained forested without conversion for the past 20 years as of FY 2008. The net removal by this subcategory in FY 2008 was 79,869 Gg-CO₂ (excluding 23.7 Gg-CO₂ of CH₄ and N₂O emissions resulting from biomass burning); this represents an increase of 10.9% over the FY 1990 value and a decrease of 3.5% over the FY 2007 value.

Carbon stock changes in living biomass in this subcategory include those in Land converted to Forest land. The reason is that it is difficult to properly divide carbon stock changes in living biomass in all Forest land into those in Forest land remaining Forest land and those in Land converted to Forest land.

Carbon stock changes in dead organic matter and soils are reported from FY 2005 to the latest fiscal year because data for these fiscal years are available. Meanwhile for FY 1990 to FY2004, the carbon stock changes in these fiscal years are not estimated due to lack of data. Therefore, the carbon stock changes from FY1990 to FY 2004 are reported as "NE".

b) Methodological Issues

1) Carbon stock change in Living Biomass in Forest land remaining Forest land

• Estimation Method

In accordance with the decision tree provided in the GPG-LULUCF, carbon stock changes in living biomass in all Forest land are estimated by the Tier 2 stock change method. In this method, a carbon stock change in the living biomass pool is estimated by calculating a difference between the absolute amounts of carbon stocks in the pool at two points of time.

$$\Delta C_{LB} = \sum_{k} \left\{ (C_{t2} - C_{t1}) / (t_2 - t_1) \right\}_{k}$$

 ΔC_{LB} : annual change in carbon stocks in living biomass (tC/yr)

 t_1,t_2 : time points of carbon stock measurement

 $C_{t2} \quad : total \ carbon \ in \ biomass \ calculated \ at \ time \ t_2 \ (tC)$

 $C_{t1} \quad : \text{total carbon in biomass calculated at time } t_1 \ (tC)$

k : type of forest management

The carbon stocks in the living biomass are calculated by multiplying a stand volume of each tree species by a wood density, a biomass expansion factor, a root-to-shoot ratio and a carbon fraction of dry matter. These parameters except the carbon fraction are determined for each tree species.

$$C = \sum_{j} \left\{ [V_j \cdot D_j \cdot BEF_j] \cdot (1 + R_j) \cdot CF \right\}$$

C : carbon stock in living biomass (t-C)

- V : merchantable volume (m³)
- D : wood density (t-dm/m³)
- BEF : biomass expansion factor for conversion of merchantable volume
 - *R* : root-to-shoot ratio
- *CF* : carbon fraction of dry matter (t-C/t-dm)
 - j : tree species

• Parameters

Volume

The Forestry Agency has developed the National Forest Resources Database (NFRDB) in order to estimate GHG emissions/removals from forests. The data in the NFRDB are based on the information on areas, tree species and forest ages, which are contained in the "Forest Registers".

Merchantable volumes are estimated by multiplying areas for each tree species and forest ages stored in the NFRDB by merchantable volumes per area for each tree species and forest ages in yield tables. Base data for the volumes per area are shown in Table 7-6 below. With respect to estimating volumes of Japanese cedar, Hinoki cypress and Japanese larch in private forests, which are major tree species of intensively managed forests in Japan, volumes per area reported in new yield tables, to which the newest survey results are reflected, are applied.

$$V = \sum_{m,j} (A_{m,j} \cdot v)$$

- V : merchantable volume (m³)
- A : area (ha)
- v : merchantable volume per area (m³/ha)
- *m* : age class or forest age
- j : tree species

Table 7-6 Yield tables used to estimate merchantable volume

	Trac	spacias	Yield tables			
	nee	species	Private Forest	National Forest		
Intensively	Conifer	Japanese cedar, Hinoki cypress, Japanese larch	New Yield Tables	Yield tables developed by Regional Forest		
managed forests		Other conifer	V . 11(1)			
Torests	Broad leaf		Yield tables developed	Offices		
Semi-natural forests			by prefectures			

- Yield tables developed by prefectures or Regional Forest Offices, and Forest Register

When forest plans are established for private and national forests (all forest lands are divided into 158 planning areas, and forest plans are established by 1/5 of them [about 30 planning areas] each year), field surveys are implemented in these forests to develop Forest Register which includes data on area, forest age, volume by tree species and so on.

When forest plans are established (private forests: by each prefecture, national forests: by Regional Forest Offices of National Forests), Forest Registers are updated to reflect change in volume due to growth, cutting and disturbances.

In general, volume data described in the Forest Registers are estimated based on land area data and yield tables, which provide stand growth in the case that typical forest practices are implemented for each regions, tree species and site classes (yield tables show relationship between forest age or age class and volume per area).

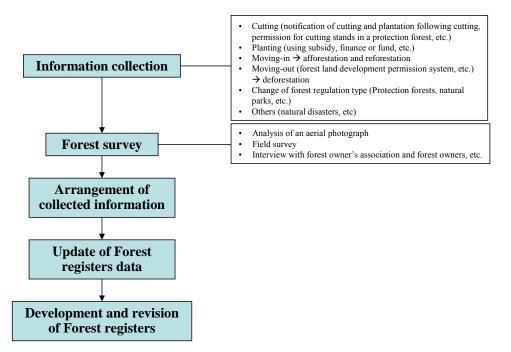
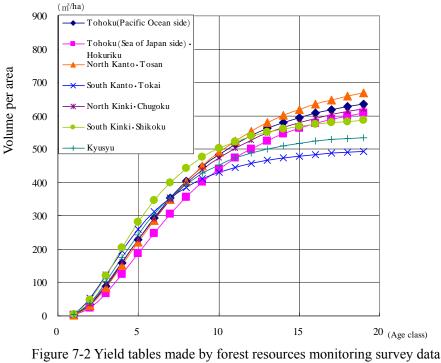



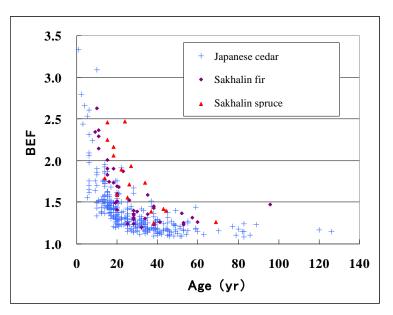
Figure 7-1 Procedures of Forest Registers development

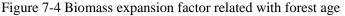
- New Yield Tables(Japanese cedar, Hinoki cypress, Japanese larch)

In 2006, the Forestry and Forest Products Research Institute (FFPRI) developed new yield tables for Japanese cedar, Hinoki cypress and Japanese larch based on the results from field survey over the country. Area for these three tree types cover 82% of intensively managed forests in private forests.

The new yield tables for Japanese cedar were established for 7 regions, Hinoki cypress for 4 regions and Japanese larch for 2 regions.

(Japanese cedar : 7 areas)




Figure 7-3 Yield tables made by forest resources monitoring survey data (Hinoki cypress : 4 areas, Japanese larch : 2 areas)

> Biomass expansion factor and Root-to-shoot ratio

Biomass expansion factor (BEF) and root-to-shoot ratio (R) were set based on the results from biomass survey on dominant tree species and existing research reports which were implemented by the Forestry and Forest Products Research Institute.

BEFs were calculated for two age classes (20 years and below / 21 years and above), because it was identified that BEFs differ between young forests and mature forests.

These Root-to-shoot ratio values were established for each tree species, because root-to-shoot ratio was not correlated with forest age.

Figure 7-5 Root-to-shoot ratio (R), tree species, forest age

In addition, some biomass expansion factors and root-to-shoot ratios were updated based on newly obtained data. For further information, see Table 7-4.

➤ Wood density

Wood density (D) data were set based on the results from biomass survey on dominant tree species and existing research reports which were implemented by the Forestry and Forest Products Research Institute. In addition, some wood densities were updated based on newly obtained data. For further information, see Table 7-7 below.

These D values were established for each tree species, because wood density was not correlated with forest age.

Carbon fraction of dry matter

The default value given in the GPG-LULUCF has been adopted as the carbon fraction of dry matter.

	BEF		-	-	CIE		
		≦20	>20	R	D	CF	Note
	Japanese cedar	1.57	1.23	0.25	0.314		
	Hinoki cypress	1.55	1.24	0.26	0.407		
	Sawara cypress	1.55	1.24	0.26	0.287		
	Japanese red pine	1.63	1.23	0.26	0.451		
	Japanese black pine	1.39	1.36	0.34	0.464		
	Hiba arborvitae	2.38	1.41	0.20	0.412		
	Japanese larch	1.50	1.15	0.29	0.404		
	Momi fir	1.40	1.40	0.40	0.423		
	Sakhaline fir	1.88	1.38	0.21	0.318		
	Japanese hemlock	1.40	1.40	0.40	0.464		
Conifer	Yezo spruce	2.18	1.48	0.23	0.357		
trees	Sakhaline spruce	2.17	1.67	0.21	0.362		
uces	Japanese umbrella pine	1.39	1.23	0.20	0.455		
	Japanese yew	1.39	1.23	0.20	0.454		
	Ginkgo	1.50	1.15	0.20	0.450		
	Exotic conifer trees	1.41	1.41	0.17	0.320		
	Other conifer trees	2.55	1.32	0.34	0.352		Applied to Hokkaido, Tohoku, Tochigi, Gunma, Saitama, Niigata, Toyama, Yamanashi, Nagano, Gifu, Shizuoka
		1.39	1.36	0.34	0.464		Applied to Okinawa
		1.40	1.40	0.40	0.423		Applied to prefectures other than above
	Japanese beech	1.58	1.32	0.26	0.573		
	Oak (evergreen tree)	1.52	1.33	0.26	0.646	0.5	
	Japanese chestnut	1.33	1.18	0.26	0.419		
	Japanese chestnut oak	1.36	1.32	0.26	0.668		
	Oak (deciduous tree)	1.40	1.26	0.26	0.624		
	Japanese popular	1.33	1.18	0.26	0.291		
	Alder	1.33	1.25	0.26	0.454		
	Japanese elm	1.33	1.18	0.26	0.494		
	Japanese zelkova	1.58	1.28	0.26	0.611		
	Cercidiphyllum	1.33	1.18	0.26	0.454		
	Japanese big-leaf	1.33	1.18	0.26	0.386		
Broad leaf	Maple tree	1.33	1.18	0.26	0.519		
trees	Amur cork	1.33	1.18	0.26	0.344		
uees	Linden	1.33	1.18	0.26	0.369		
	Kalopanax	1.33	1.18	0.26	0.398		
	Paulownia	1.33	1.18	0.26	0.234		
	Exotic broad leaf trees	1.41	1.41	0.16	0.660		
	Japanese birch	1.31	1.20	0.26	0.468		
		1.37	1.37	0.26	0.469		Applied to Chiba, Tokyo, Kochi, Fukuoka, Nagasaki, Kagoshima, and Okinawa
	Other broad leaf trees	1.52	1.33	0.26	0.646		Applied to Mie, Wakayama, Oita, Kumamoto, Miyazaki, and
		1.40	1.26	0.26	0.624		Applied to prefectures other than above

 Table 7-7
 BEF, Root-Shoot ratio, wood density for tree species provided in Forest register

BEF: Biomass expansion factor (20 = age class)

R: Root-to-shoot ratio

D: Wood density

CF: Carbon Fraction

• Activity Data (Area)

> Determining the total forest area

Forest area is the sum of areas of intensively managed forests, semi-natural forests, forests with less standing trees and bamboo under the forest planning system, data of which are provided by the

"Forest Status Survey" and National Forest Resource Database (Forestry Agency). Data for FY 1991 through FY 1994, FY 1996 through FY 2001, and FY 2003 through FY 2004 are estimated by interpolation by means of linear expression. In addition, area data of Sakhalin fir, Yezo spruce, Japanese chestnut oak and Oak (deciduous tree) before FY 1990, which do not exist individually, are estimated from "other conifer" and "other broad leaf" area divided by area ratio in FY 1995.

Conifer trees		Broad leaf trees			
Before 2004 After 2005 E		Before 2004	After 2005		
Japanese cedar	Japanese cedar	Japanese chestnut oak	Japanese chestnut oak		
Hinoki cypress	Hinoki cypress	Oak (deciduous tree)	Oak (deciduous tree)		
Pine	Japanese red pine		Japanese beech		
1 1110	Japanese black pine		Oak (evergreen tree)		
Japanese larch	Japanese larch		Japanese chestnut		
Sakhalin fir	Sakhalin fir		Japanese popular		
Yezo spruce	Yezo spruce		Alder		
Tezo spruce	Sakhalin spruce		Japanese elm		
	Sawara cypress		Japanese zelkova		
	Hiba arborvitae		Cercidiphyllum		
	Momi fir	Other broad leaf	Japanese big-leaf		
		Other broad lear	magnolia		
Other conifer	Japanese hemlock		Maple tree		
Ouler conner	Japanese umbrella pine		Amur cork		
	Japanese yew		Japanese lime		
	Ginkgo		Linden		
	Exotic conifer trees		Kalopanax		
	Other needle leaf		Paulownia		
			Exotic broad leaf trees		
			Other broad leaf		

Table 7-8	Classifications in Survey on Status Forest Resources and
	National Forest resource Database

Categorization of "Forest land remaining Forest land" and "Land converted to Forest land" The area of "Forest land remaining Forest land" in a certain year is estimated by subtracting the cumulative total area of "Land converted to Forest land" during the past 20 years from the total area of "Forest land" in the year subject to estimation. In addition, all areas of "Land converted to Forest land" are assumed to be intensively managed forests.

Table 7-9	Area of Forest lan	d remaining Forest land
14010 /)	I nou of i orost fui	ia remaining r orest rand

Category	Unit	1990	1995	2000	2005	2006	2007	2008
Forest land remaining Forest land	kha	24,807.4	24,826.1	24,825.2	24,954.0	24,950.2	24,948.3	24,936.6
Intensively managed forests	kha	10,144.9	10,284.8	10,279.7	10,298.3	10,296.2	10,285.9	10,275.9
Semi-natural forests	kha	13,354.5	13,220.3	13,195.2	13,315.7	13,306.2	13,321.5	13,333.5
Cut-over forests and lesser stocked forest	s kha	1,159.0	1,171.0	1,197.4	1,186.0	1,193.1	1,184.7	1,170.8
Bamboo	kha	149.0	150.0	152.9	154.0	154.7	156.2	156.4

Source: Forest Status Survey (Forest Agency)

2) Carbon Stock Changes in Dead Organic Matter and Soils in Forest land remaining Forest land

• Estimation Method

In accordance with the decision tree provided in the GPG-LULUCF, carbon stock changes in dead wood, litter and soil in Forest land remaining Forest land are estimated by Tier 3 model method. With

respect to estimating emissions from and removals by soils, emissions from organic soils are reported as "IE" because emissions from and removals by mineral and organic soils are estimated in the model in a integrated manner.

Carbon emissions/removals in each pool per unit area are estimated by using CENTURY-jfos model and are multiplied by land area of each forest management type. The sum of the emissions/removals of all forest management types are the annual changes in total carbon stocks in dead wood, litter and soil.

$$\Delta C_{dls} = \sum_{k,m,j} (A_{k,m,j} \times (d_{k,m,j} + l_{k,m,j} + s_{k,m,j}))$$

 $\triangle C_{dls}$: Annual change in carbon stocks in dead wood, litter and soil [t-C/yr]

- A : Area [ha]
- d : Average carbon stock change in dead wood per area [t-C/yr]
- l : Average carbon stock change in litter per area [t-C/yr]
- s : Average carbon stock change in soil per area [t-C/yr]
- k : Type of forest management
- m : Age class or forest age
- j : Tree species

• Parameters

Average carbon stock changes per unit area for dead wood, litter and soils are calculated by CENTURY-jfos model, which was modified from the CENTURY model (Colorado State University) to be applicable to Japanese climate, soil, and vegetation conditions.

> Assumption and Parameters as the Keys for the CENTURY-jfos Model

Amounts of tree growth and stable soil carbon stocks are regarded as being different depending on climatic or locational conditions; therefore, we aggregated data of climatic values and soil carbon stocks for each tree species in each prefecture as shown in Table 7-10. We assumed that forests continually existed and were routinely utilized, and that their soil carbon stocks were in a nearly steady state. Next, we adjusted parameters in the CENTURY-jfos model. First, we adjusted growth parameters of above-ground biomass so that they showed the growth in the yield tables in association with climatic values calculated per prefecture and per tree species. Second, we adjusted parameters so that soil carbon stocks after 60-year cutting age and spinup of 3,000 years fitted those calculated by Morisada et al. (2004) for each of prefectures and tree species (See Table 7-10). The methodologies of adjusting each parameter are in accordance with Sakai et al. (submitted).

Tuning of the CENTURY-jfos Model

The Forestry and Forest Products Research Institute adjusted the CENTURY model in order to apply it to the Japanese forest environment. That is, forests were classified by predominant tree species (Japanese Cedar, Hinoki Cypress, Pine species, Japanese Larch, Sakhaline Fir, Sakhaline Spruce, broad leaf trees, and other conifer trees), and the geographical distribution of the tree species and soil types underneath was identified for each prefecture. Climate conditions to run the model were prepared from the mesh climate data provided by the Meteorological Agency of Japan (Japan Meteorological Agency, 2002). The model was adjusted with parameters on tree growth so that tree growth in the model conformed to yield tables, and it was also tuned so that its output of carbon stocks in soil conformed to actual values based on field surveys for each prefecture and tree species (see table 7-10). The model after these modifications was named as the CENTURY-jfos model. After the tuning, carbon stocks in dead wood, litter and soil, and their stock changes were calculated by the CENTURY-jfos for different types of forest management such as management with thinning or without thinning.

Average annual carbon stock changes per unit area in dead wood, litter and soil are calculated for 1 - 19 age classes (for 100 years) for each type of forest management by means of CENTURY-jfos in order to estimate carbon stock changes in these carbon pools using the same activity data as for living biomass.

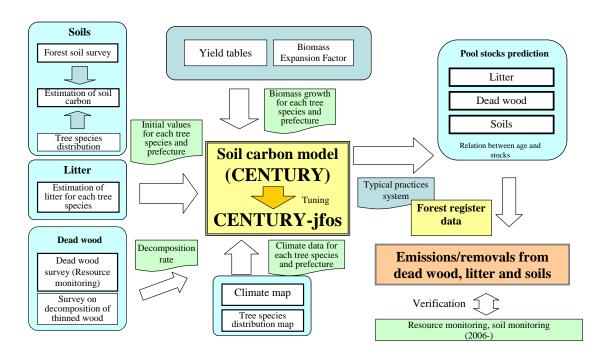


Figure 7-6 Estimation of removals in dead wood, litter and soils

Table 7-10 Standard Soil Carbon Stocks used for the CENTURY-jfos Model

$(Kg-C/m^2)$	[30 cm depth])
--------------	----------------

	Tree Species											
Prefecture	Japanese	Hinoki	Dina anagias	Japanese	Sakhaline Fir	Sakhaline	Broad Leaf	Other				
	Cedar	Cypress	Pine species	Larch	Sakhaline Fir	Spruce	Trees	Conifer				
Hokkaido	98.0	NA	100.6	91.0	88.0	93.7	91.0	89.4				
Aomori	92.1	NA	94.3	83.3	109.1	NA	89.0	89.8				
Iwate	89.5	93.6	92.7	93.9	98.1	NA	91.3	93.3				
Miyagi	86.1	70.8	78.5	90.3	110.9	NA	82.8	80.5				
Akita	81.1	NA	72.4	81.0	108.5	NA	82.6	79.6				
Yamagata	83.2	79.7	68.0	81.0	97.4	NA	74.4	76.9				
Fukushima	84.3	83.7	81.1	89.3	108.6	NA	81.4	85.0				
Ibaraki	84.3	83.4	97.6	NA	NA	NA	91.2	90.8				
Tochigi	83.0	86.1	91.6	100.6	133.4	NA	93.1	96.4				
Gunma	88.7	88.3	93.9	95.1	98.1	NA	86.5	93.9				
Saitama	81.3	82.4	96.2	106.8	NA	NA	85.8	94.7				
Chiba	93.9	85.7	65.6	NA	NA	NA	84.6	76.4				
Tokyo	79.2	81.6	85.7	94.7	NA	NA	63.9	84.3				
Kanagawa	91.9	99.8	89.8	NA	NA	NA	94.9	99.1				
Niigata	83.9	51.3	63.4	86.7	133.0	NA	85.3	86.9				
Toyama	90.3	NA	72.5	88.5	106.0	NA	94.5	100.2				
Ishikawa	82.7	80.2	70.2	NA	133.4	NA	86.6	74.3				
Fukui	88.7	85.8	79.8	NA	NA	NA	90.1	80.6				
Yamanashi	93.0	93.9	98.0	99.3	NA	NA	93.9	95.6				
Nagano	102.1	100.5	96.0	108.4	106.0	NA	97.9	103.3				
Gifu	100.5	94.8	79.1	99.6	107.8	NA	95.8	93.9				
Shizuoka	94.6	96.7	69.1	90.7	NA	NA	90.0	93.7				
Aichi	91.2	85.0	60.1	NA	NA	NA	78.5	77.2				
Mie	92.1	84.4	63.8	97.1	NA	NA	78.7	80.5				
Shiga	83.5	73.0	59.6	NA	NA	NA	79.5	65.8				
Kyoto	74.0	67.4	63.3	NA	NA	NA	66.4	64.6				
Osaka	78.9	74.0	60.9	NA	NA	NA	67.5	66.0				
Hyogo	88.3	71.8	53.0	123.6	NA	NA	63.4	61.9				
Nara	79.6	69.8	65.5	NA	NA	NA	73.4	69.4				
Wakayama	72.1	70.5	58.2	NA	NA	NA	62.8	69.9				
Tottori	73.8	74.9	75.6	121.2	NA	NA	72.3	75.4				
Shimane	69.0	66.6	61.2	77.3	NA	NA	64.6	63.2				
Okayama	80.3	73.7	51.4	121.2	NA	NA	65.2	63.6				
Hiroshima	74.0	71.8	54.0	71.2	NA	NA	65.0	58.7				
Yamaguchi	64.9	60.9	49.3	NA	NA	NA	55.2	54.8				
Tokushima	72.9	63.7	63.6	NA	NA	NA	66.7	63.7				
Kagawa	57.7	61.9	56.6	NA	NA	NA	57.2	57.7				
Ehime	80.1	75.1	63.2	85.4	NA	NA	67.4	74.1				
Kochi	81.4	76.1	73.8			NA		76.2				
Fukuoka	97.3	88.9	77.5	NA	NA	NA	86.5	88.3				
Saga	83.6	83.0	69.1	NA	NA	NA	79.6	82.9				
Nagasaki	82.9	84.5	82.6	NA	NA	NA	78.9	84.5				
Kumamoto	108.7	96.0	79.3	NA	NA	NA	93.5	95.6				
Oita	109.9	100.5	108.3			NA	99.1	101.4				
Miyazaki	106.1	102.0	93.7		NA	NA	98.0	99.6				
Kagoshima	108.4	102.4	75.7	NA	NA	NA	90.8	97.0				
Okinawa	58.5	NA	58.9			NA	58.0	58.5				

• Activity Data (Area)

Forest area data provided by the National Forest Resource Database (NFRDB) were applied to the estimation.

c) Uncertainties and Time-series Consistency

• Uncertainty Assessment

The uncertainties of the parameters and activity data for living biomass were individually assessed on

the basis of field study results, expert judgment, or the default values described in the GPG-LULUCF. The uncertainty estimates for dead organic matter and soil were assessed by calculating the variance of outputs from the CENTURY-jfos model. As a result, the uncertainty estimate was 6% for the entire removal by Forest land remaining Forest land. The methodology used in the uncertainty assessment is described in Annex 7. Uncertainty estimates regarding major parameters in this category are shown in Table 7-11 below.

			Uncertainty Estimates (%)	Country Specific (CS) or Default(D)	Remarks			
Forest land	Intensively Mana Forest	Intensively Managed Forest				CS	Estimated based on uncertainty estimates of land areas in the National	
Area	Semi-natural Forest		5.9	CS	Forest Resources Database. Used 5.9% without distinguishing tree species.			
	Japanese cedar	≤ 20	3.5	CS				
D		> 20	1.1	CS				
Biomass	Hinoki cypress Oak (deciduous tree)	≤ 20	3.2	CS				
Expansion Factor		> 20	1.6	CS	Estimated based on			
1 uotor		≤ 20	8.6	CS	measured values			
		> 20	2.1	CS				
Wood	Japanese cedar		2.5	CS				
Density	Hinoki cypress		1.7	CS				
Density	Oak (deciduous t	Oak (deciduous tree)		CS				
Carbon Fraction of dry matter	All tree species		2.0	D	GPG-LULUCF default value. Used 2.0% without distinguishing tree species.			

 Table 7-11
 Uncertainty estimates regarding major parameters in the Forest land category

• Time-series Consistency

There were no data for forest areas for FY 1991 to FY 1994, FY 1996 to FY 2001, and FY 2003 to FY 2004. Therefore, the time-series consistency was ensured by estimating these forest areas by means of interpolation.

Carbon stock changes in dead organic matter and soil before FY 2004 were not estimated due to lack of data. The estimation method for the carbon stock changes from FY 1990 to FY 2004 is being considered in order to ensure time-series consistency and to submit them in the near future.

Moreover, some biomass expansion factors, root-to-shoot ratios and wood densities were updated based on newly obtained data and have been applied to the estimates since FY 2007. Application of the updated values to the estimates from FY 1990 to FY 2006 needs to be considered in order to ensure time-series consistency.

d) Source-/Sink-specific QA/QC and Verification

Quality control (QC) is implemented in accordance with the Tier 1 approach described by GPG (2000) and the GPG-LULUCF. The Tier 1 approach includes procedures for checking parameters and activity data, and for archiving references. The QA/QC activity procedures are described in Section 6.1 of Annex 6.

e) Source-/Sink-specific Recalculations

• Determination of areas of "Forest land remaining Forest land" and "Land converted to Forest land"

Until the 2009 inventory submission, the area of "Forest land remaining Forest land" in a certain year was estimated by multiplying ratios of land which had not been converted to other land-use categories in each year (= "1- land conversion ratio of each year") during the past 20 years, to the total forest land area of 20 years ago. Moreover, the area of "Land converted to Forest land" in the same year was estimated by subtracting the area of "Forest land remaining Forest land" from the total forest land area in the same year. However, it came to be revealed that this method of determining land areas overestimated the areas of "Land converted to Forest land", as a result of comparative analysis between this method of determining land area and the method of determining the areas of Afforestation and Reforestation (AR areas) under Article 3, paragraph 3, of the Kyoto Protocol. Therefore, the method of determining areas of "Land converted to Forest land" was revised (see the description on activity data in section 7.3.2.b) for detailed information), and the areas of "Forest land" method of determining Forest land" were determined by subtracting the area of "Land converted to Forest land" was revised to Forest land" were determined by subtracting the area of "Land converted to Forest land" was revised (see the description on activity data in section 7.3.2.b) for detailed information), and the areas of "Forest land" method of determining he areas in the same year. As a result of changing the method of determining the land areas, the areas in this subcategory were recalculated.

• Carbon stock changes in living biomass in "Forest land remaining Forest land"

Until the 2009 submission, carbon stock changes in living biomass in intensively managed forests in Forest land remaining Forest land was reported by dividing total carbon stock changes in living biomass in all intensively managed forests by land ratios of Forest land remaining Forest land and Land converted to Forest land. However, the reported carbon stock changes did not show tendency of the carbon stock changes in each subcategory. Therefore, the dividing method used until the 2009 submission was done away with from the 2010 submission, and the carbon stock changes in living biomass in all intensively managed forests were reported in Forest land remaining Forest land. As a result, the reported values were reallocated.

f) Source-/Sink-specific Planned Improvements

• Carbon stock changes in dead organic matter and soil in Forest land remaining Forest land

The carbon stock changes from 1990 to 2004 are not estimated due to lack of data. Presently, the application of the CENTURY-jfos model to the estimation of these carbon stock changes is being examined.

7.3.2. Land converted to Forest land (5.A.2)

a) Source/Sink Category Description

This subcategory deals with the carbon changes in lands converted to Forest land, which were converted from other land-use categories to Forest land within 20 years. The net removal by this subcategory in FY 2008 was 65.0 Gg-CO₂; this represented a decrease of 84.0% over the FY 1990 value and a decrease of 6.6% over the FY 2007 value.

In addition, carbon stock changes in living biomass in this subcategory are reported as "IE" because they are reported in "Forest land remaining Forest land" in a lump. The reason is that it is difficult to properly divide carbon stock changes in living biomass in all Forest land into those in Forest land remaining Forest land and those in Land converted to Forest land.

b) Methodological Issues

1) Carbon stock change in Dead Organic Matter and Soils in Land converted to Forest land

• Estimation Method

Carbon stock changes in dead wood, litter and soils were calculated under the assumption that these carbon stocks change linearly over 20 years from those in land-use categories other than Forest land to those in Forest land. The calculation was implemented by applying average carbon stocks obtained by the CENTURY-jfos model, in which mineral soils and organic soils are integrated. Therefore, emissions from organic soils were reported as "IE".

 $\Delta C_{LF,i} = A_i \times (C_{after} - C_{before,i}) / 20$

- $\Delta C_{LF, i}$: Annual change in carbon stocks in dead wood, litter or soils in Land converted to Forest land [t-C/yr]
 - A : Area being converted to Forest land within the past 20 years [ha]
 - C_{after} : Carbon stocks in the land-use category i after conversion (forests) [t-C/ha]
- $C_{before, i}$: Carbon stocks in a land-use category before conversion [t-C/ha]
 - *i* : Land-use category (Cropland, Grassland, Wetlands, Settlements, or Other land)

• Parameters

Average carbon stocks in dead organic matter before conversion are determined as zero (0) in accordance with the assumption described in section 4.3.2 in volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (the 2006 IPCC Guidelines). Average carbon stocks in dead organic matter in Forest land after conversion are determined as described in Table 7-12 below by applying average values of carbon stocks per area in 20-year-old forests obtained by the CENTURY-jfos model.

Land-use Category			Carbon Stocks [t-C/ha]	Note
Before Conversion	Cropland, Grassland, Wotlanda	Dead Wood	0.00	Assumed as zero (Section 4.3.2 in Volume 4 of the 2006 IPCC Guidelines)
	Wetlands, Settlements, Other land	Litter	0.00	Assumed as zero (Section 4.3.2 in Volume 4 of the 2006 IPCC Guidelines)
After	Forest land	Dead Wood	13.01	Average carbon stocks per area in 20-year-old forests obtained by the CENTURY-jfos model
Conversion	Forest falld	Litter	5.644	Average carbon stocks per area in 20-year-old forests obtained by the CENTURY-jfos model

Table 7-12 Carbon stocks in dead organic matter for each land-use category

Average soil carbon stocks in all land-use categories including Forest land are shown in Table 7-13 below. In addition, average soil carbon stocks in Wetlands, Settlements and Other land are presently under investigation, and will be set again when data become available.

Category	Values used	Note
Forest land	82.954 (t-C/ha)	Value of soil carbon stocks for 0-30 cm depth. Average carbon stocks per area in 20-year-old forests obtained by the CENTURY-jfos model.
Rice field	71.38 (t-C/ha)	Value of soil carbon stocks for 0-30 cm depth.
Upland field	86.97 (t-C/ha)	
Orchard	77.46 (t-C/ha)	Data provided from Dr. Makoto Nakai,
Cropland (average)	76.40 (t-C/ha)	National Institute for Agro-Environmental Sciences (Undisclosed)
Grassland	134.91(t-C/ha)	
Wetlands	_	Under investigation
Settlements	-	Under investigation
Other land	_	Under investigation

> Soil carbon stocks in Rice field, Upland field and Orchard

For the carbon stocks in rice fields, upland fields and orchard soils, the country-specific soil survey data is applied. As soil carbon stocks per unit area vary from one soil group to another (such as andosols, Gray lowland soils and Gley soils), the average soil carbon stocks in rice field, upland field and orchard are calculated by weighted averaging of soil carbon stock data per unit area at 0-30 cm depth by area for each soil group.

Soil Type	Area	Proportion	Carbon Stock / ha	Carbon Stock
	[ha]		[t-C/ha]	[t-C]
Lithosols	*		*	
Sand-Dune Regosols	*		89.04	
Andisols	17,169	0.6%	125.24	2,150,246
Wet Andosols	274,319	9.5%	113.68	31,184,584
Gleyed Andosols	50,760	1.8%	101.74	5,164,322
Cambisols	6,640	0.2%	59.48	394,947
Gray Upland Soils	79,236	2.7%	60.37	4,783,477
Gley Upland Soils	40,227	1.4%	60.71	2,442,181
Red Soils	*		*	
Yellow Soils	144,304	5.0%	63.21	9,121,456
Dark Red Soils	1,770	0.1%	56.26	99,580
Fluvisols	141,813	4.9%	59.71	8,467,654
Gleysols	1,056,571	36.6%	61.59	65,074,208
Gleysols	889,199	30.8%	64.83	57,646,771
Muck Soils	75,944	2.6%	91.89	6,978,494
Histosols	109,465	3.8%	114.95	12,583,002
Total	2,887,417	100.0%		206,090,923
Average			80.19	
Weighted Average			71.38	Applied Value

Table 7-14Soil carbon stocks in rice field

*: This mark means the data that are difficult to obtain with high-accuracy.

Soil Type	Area	Proportion	Carbon Stock / ha	Carbon Stock
	[ha]	-	[t-C/ha]	[t-C]
Lithosols	7,148	0.4%	69.25	494,999
Sand-Dune Regosols	22,297	1.2%	21.49	479,163
Andisols	851,061	46.5%	109.15	92,893,308
Wet Andosols	72,195	3.9%	149.51	10,793,874
Gleyed Andosols	1,850	0.1%	120.98	223,813
Cambisols	287,464	15.7%	65.16	18,731,154
Gray Upland Soils	71,855	3.9%	79.77	5,731,873
Gley Upland Soils	4,324	0.2%	*	
Red Soils	25,243	1.4%	42.23	1,066,012
Yellow Soils	105,641	5.8%	47.13	4,978,860
Dark Red Soils	29,130	1.6%	45.15	1,315,220
Fluvisols	231,051	12.6%	50.05	11,564,103
Gleysols	75,095	4.1%	53.75	4,036,356
Gleysols	13,163	0.7%	65.94	867,968
Muck Soils	1,673	0.1%	78.72	131,699
Histosols	32,316	1.8%	184.91	5,975,552
Total	1,831,506	100.0%		159,283,954
Average			78.88	
Weighted Average			86.97	Applied Value

 Table 7-15
 Soil carbon stocks in upland field

*: This mark means the data that are difficult to obtain with high-accuracy.

Soil Type	Area [ha]	Proportion	Carbon Stock / ha [t-C/ha]	Carbon Stock [t-C]
Lithosols	7,682	1.9%	66.48	510,699
Sand-Dune Regosols	1,897	0.5%	27.77	52,680
Andisols	86,083	21.3%	119.03	10,246,459
Wet Andosols	2,530	0.6%	103.82	262,665
Gleyed Andosols	*		115.08	
Cambisols	148,973	36.9%	68.35	10,182,305
Gray Upland Soils	6,424	1.6%	70.55	453,213
Gley Upland Soils	*		*	
Red Soils	19,937	4.9%	63.68	1,269,588
Yellow Soils	75,973	18.8%	64.48	4,898,739
Dark Red Soils	6,141	1.5%	54.61	335,360
Fluvisols	35,261	8.7%	69.32	2,444,293
Gleysols	10,075	2.5%	57.35	577,801
Gleysols	2,065	0.5%	*	
Muck Soils	135	0.0%	59.44	8,024
Histosols	130	0.0%	*	
Total	403,306	100.0%		31,241,826
Average			72.30	,
Weighted Average			77.46	Applied Value

Table 7-16Soil carbon stocks in Orchard

*: This mark means the data that are difficult to obtain with high-accuracy.

Soil carbon stocks in Grassland

As is the case with the soil carbon stocks in rice field, upland field and orchard, data from the country-specific soil survey data is applied for the carbon stocks in Grassland soils. Although it is difficult to obtain area data by soil types for Grassland, it could be viewed that the area by soil types and the numbers of samples by soil types have a high correlation; therefore, it is calculated by weighted averaging of soil carbon stock data by the number of samples for each soil group.

Soil Type	Area	Proportion	Carbon Stock / ha	Carbon Stock
	[ha]	-	[t-C/ha]	[t-C]
Lithosols	*		*	
Sand-Dune Regosols	140	0.6%	79.28	11,099
Andisols	11,364	48.8%	152.19	1,729,487
Wet Andosols	459	2.0%	207.40	95,197
Gleyed Andosols	*		*	
Cambisols	4,071	17.5%	101.27	412,270
Gray Upland Soils	2,008	8.6%	126.44	253,892
Gley Upland Soils	228	1.0%	110.51	25,196
Red Soils	*		*	
Yellow Soils	796	3.4%	74.36	59,191
Dark Red Soils	695	3.0%	54.55	37,912
Fluvisols	2,658	11.4%	107.69	286,240
Gleysols	215	0.9%	78.76	16,933
Gleysols	*		*	
Muck Soils	*		*	
Histosols	663	2.8%	325.18	215,594
Total	23,297	100.0%		3,143,012
Average			128.88	
Weighted Average			134.91	Applied Value

Table 7-17 Soil carbon stocks in Grassland

*: This mark means the data that are difficult to obtain with high-accuracy.

> Transition duration

Default value (20 years) given in the GPG-LULUCF is used. It is assumed that soil organic carbon before 20 years is the same as values for FY 1990.

• Activity Data (Area)

> Total areas of Land converted to Forest land

The areas of land converted to Forest land within 20 years are calculated by summing annually converted areas during the past 20 years. It is presumed that the areas of Land converted to Forest land include areas of afforestation and reforestation (AR areas) under Article 3, paragraph 3, forest land restored from degraded land by natural succession, and land whose land-use categories are changed to "Forest land" due to other reasons. It is tentatively regarded that the areas of Land converted to Forest land are similar with the AR areas, and the areas are determined in accordance with the concept of "overlap" described as a recalculation approach in page 7-19 in GPG (2000), by using the AR areas and areas of Cropland and pasture land converted to Forest land reported in the *Statistics of Cultivated and Planted Area*. In concrete terms, the AR areas are identified in detail by utilizing orthophotos at the end of 1989 and recent satellite images, but they are provided only from the FY 2006 values. Therefore, the areas of Land converted to Forest land are estimated by setting an adjustment factor from the ratio between the AR areas since FY 2006 and areas of forested Cropland provided by the *Statistics of Cultivated and Planted Area*, and multiplying the areas of forested Cropland since FY 1990 (accumulated areas during the past 20 years) by the adjustment factor. For further information on determining AR areas, see section 11.3.2.3 in Annex 11 in this NIR.

> Areas of Cropland and Grassland converted to Forest Land

The areas of Cropland converted to Forest land are determined by utilizing areas of Cropland converted to Forest land reported in the *Statistics of Cultivated and Planted Area*. As its subcategories, areas of Cropland converted to Forest land are categorized to rice field converted to Forest land, upland fields converted to Forest land and orchards converted to Forest land. Areas of rice fields

converted to Forest land are determined by utilizing areas of rice fields converted to forests provided by the *Statistics of Cultivated and Planted Area*. Areas of upland fields and orchards converted to Forest land are estimated by dividing areas of arable land converted to forests, which are also provided by the *Statistics of Cultivated and Planted Area*, by means of the existing area ratios of upland fields, orchards and pasture land.

The areas of Grassland converted to Forest land are calculated by summing areas of pasture land converted to forests reported in the *Statistics of Cultivated and Planted Area* and those of grazed meadow converted to forests reported in *A Move and Conversion of Cropland*.

> Areas of Other land converted to Forest land

The areas of Wetlands, Settlements, and Other land converted to Forest land are not able to be obtained directly from statistics. Therefore, they are estimated by subtracting the summed areas of "Cropland converted to Forest land" and "Grassland converted to Forest land" from the total area of "Land converted to Forest land", and the areas of Wetlands, Settlements, and Other land converted to Forest land are reported collectively in "Other land converted to Forest land".

In addition, it should be noted that the areas presented in the CRF "Table 5.A SECTORAL BACKGROUND DATA FOR LAND USE, LAND-USE CHANGE AND FORESTRY—Forest land" are not the converted area in FY 2008 but the sum of annually converted areas during the past 20 years. For the land area converted to Forest land, see Table 7-18 below.

Category	Unit	1990	1995	2000	2005	2006	2007	2008
Land converted to Forest land	kha	142.9	70.8	50.9	38.2	36.2	34.3	32.5
Cropland converted to Forest land	kha	121.9	57.7	40.6	30.0	28.3	26.8	25.3
Rice field	kha	53.8	23.7	15.9	11.0	10.4	9.6	9.0
Upland field	kha	46.8	23.7	17.7	14.0	13.3	12.8	12.2
Orchard	kha	21.4	10.3	6.9	4.9	4.6	4.4	4.1
Grassland converted to Forest land	kha	19.3	11.6	9.0	7.3	7.0	6.7	6.4
Wetlands converted to Forest land	kha	IE	IE	IE	IE	IE	IE	IE
Settlements converted to Forest land	kha	IE	IE	IE	IE	IE	IE	IE
Other land converted to Forest land	kha	1.7	1.5	1.2	0.9	0.9	0.8	0.8

Table 7-18 Land converted to Forest land within the past 20 years

(Reference): Forestry Status Survey, National Forest Resources Database (Forestry Agency)

c) Uncertainties and Time-series Consistency

• Uncertainty Assessment

The uncertainties of the parameters and activity data for living biomass, dead organic matter, and soil were individually assessed on the basis of field study results, expert judgment, or the default values described in the GPG-LULUCF. As a result, the uncertainty estimate was 91% for the entire removal by land converted to Forest land. The methodology used in the uncertainty assessment is described in Annex 7. In addition, concrete uncertainty estimates for individual parameters in this category will be illustrated in future submissions after investigation is completed.

• Time-series Consistency

Time-series consistency for this subcategory is ensured.

d) Source-/Sink-specific QA/QC and Verification

Quality control (QC) is implemented in accordance with the Tier 1 approach described by GPG (2000)

and the GPG-LULUCF. The Tier 1 approach includes procedures for checking parameters and activity data, and for archiving references. The QA/QC activity procedures are described in Section 6.1 of Annex 6.

e) Source-/Sink-specific Recalculations

• Areas of "Land converted to Forest land"

As described in section 7.3.1.e), the method of determining areas of "Land converted to Forest land" in a certain fiscal year was revised; therefore, the areas were recalculated for all the time series.

• Carbon stock changes in living biomass in "Land converted to Forest land"

Until the 2009 inventory submission, carbon stock changes in living biomass in Land converted to Forest land were estimated by multiplying the carbon stock changes in living biomass in all Forest land by the ratio of Land converted to Forest land to all Forest land. However, the carbon stock changes estimated by this method may be different from actual ones. Moreover, a method of estimating the carbon stock changes in Land converted to Forest land separately from those in Forest land remaining Forest land is presently being considered. Therefore, the carbon stock changes in living biomass in Land converted to Forest land are tentatively included to those in intensively managed forests in Forest land remaining Forest land remaining Forest land and reported as "IE".

• Carbon stock changes in dead organic matter and soils in "Land converted to Forest land"

Until the 2009 submission, carbon stock changes in dead organic matter and soil in Land converted to Forest land were estimated by multiplying the carbon stock changes in all Forest land by the ratio of Land converted to Forest land to all Forest land. From the 2010 submission, the carbon stock changes in Land converted to Forest land were estimated and reported separately from those in Forest land remaining Forest land.

f) Source-/Sink-specific Planned Improvements

• Carbon Stock Changes in Soils in Cropland and Grassland converted to Forest Land

Areas converted to Forest land from upland fields, orchards and pasture land are estimated by multiplying the total areas converted from Cropland to Forest land by each area ratio of upland fields, orchards and pasture land. However, this estimation method may not represent the true status of these areas. Hence, the validity of the estimation method is presently being reviewed.

• Carbon Stock Changes in Soils in Land converted to Forest Land

Reporting carbon stock changes in soils in Land converted to Forest land presently continues to be examined with respect to set values and setting methods of carbon stock changes in land before conversion.

• Carbon Stock Changes in Living Biomass in Land converted to Forest Land

There remain technical issues in separation of carbon stock changes in living biomass in Forest land into those in Forest land remaining Forest land and those in Land converted to Forest land. These issues will be examined in the future.

7.4. Cropland (5.B)

Cropland is the land that produces annual and perennial crops; it includes temporarily fallow land. Cropland in Japan's inventory consists of rice fields, upland fields and orchards.

In FY 2008, Japan's Cropland area was about 4.01 million ha, which is equivalent to about 10.6% of the national land. The area of organic soil in the Cropland is about 0.18 million ha. The emissions from this category in FY 2007 were 223 Gg-CO₂ (excluding 7.4 Gg-CO₂ eq. of N₂O emissions resulting from disturbance associated with land-use conversion to Cropland and 306 Gg-CO₂ of CO₂ emissions resulting from lime application to agricultural soils), which was a 91.3% decrease over the FY 1990 value and a 8.0% decrease over the FY 2007 value.

This section divides cropland into two subcategories, "Cropland remaining Cropland (5.B.1.)" and "Land converted to Cropland (5.B.2.)", and describes them separately in the following subsections.

Gas	Category	Carbon pool	Unit	1990	1995	2000	2005	2006	2007	2008
CO_2	5.B. Cropland	Total	Gg-CO ₂	2,579.1	806.4	339.7	199.0	256.7	242.6	223.3
	<u>^</u>	Living Biomass	Gg-CO ₂	1,347.5	298.6	103.9	79.9	129.3	136.0	129.7
		Dead Wood	Gg-CO ₂	418.4	86.3	28.1	20.1	32.6	32.9	29.3
		Litter	Gg-CO ₂	183.7	37.9	12.3	8.8	14.4	14.5	14.2
		Soil	Gg-CO ₂	629.5	383.6	195.4	90.3	80.4	59.2	50.2
	5.B.1. Cropland	Total	Gg-CO ₂	NA,NE	NA,NE	NA,NE	NA,NE	NA,NE	NA,NE	NA,NE
	remaining Cropland	Living Biomass	Gg-CO ₂	NA	NA	NA	NA	NA	NA	NA
		Dead Wood	Gg-CO ₂	NA	NA	NA	NA	NA	NA	NA
		Litter	Gg-CO ₂	NA	NA	NA	NA	NA	NA	NA
		Soil	Gg-CO ₂	NE	NE	NE	NE	NE	NE	NE
	5.B.2. Land converted to	Total	Gg-CO ₂	2,579.1	806.4	339.7	199.0	256.7	242.6	223.3
	Cropland	Living Biomass	Gg-CO ₂	1,347.5	298.6	103.9	79.9	129.3	136.0	129.7
		Dead Wood	Gg-CO ₂	418.4	86.3	28.1	20.1	32.6	32.9	29.3
		Litter	Gg-CO ₂	183.7	37.9	12.3	8.8	14.4	14.5	14.2
		Soil	Gg-CO ₂	629.5	383.6	195.4	90.3	80.4	59.2	50.2

Table 7-19 Emissions and Removals in Cropland resulting from Carbon Stock Changes

7.4.1. Cropland remaining Cropland (5.B.1)

a) Source/Sink Category Description

This subcategory deals with carbon stock changes in the Cropland, which has remained as Cropland during the past 20 years.

With respect to living biomass, the carbon stock change in perennial tree crops (fruit trees) is the subject of estimation according to the GPG-LULUCF. However, in Japan, tree growth is limited by trimming in order to have high productivity by keeping the tree height low, and managed and improved the tree shape by pruning lateral branches. Therefore, carbon accumulation because of the tree growth can not expected, and the annual carbon fixing volume of perennial tree crops in all orchards is stated as "NA."

Carbon stock changes in dead organic matter are estimated as zero (0) by applying Tier 1 method, which assumes the carbon stocks are not changed, according to section 3.3.1.2.1 in the GPG-LULUCF. Thus, the carbon stock changes are reported as "NA".

Carbon stock changes in and CO2 emissions from soils are presently not estimated due to lack of data

for estimation. Hence, this carbon pool is reported as "NE".

	•		0 1		•	•		
Category	Unit	1990	1995	2000	2005	2006	2007	2008
Cropland remaining Cropland	kha	4,120.5	4,097.8	4,029.4	3,969.2	3,960.6	3,953.9	3,947.1

Table 7-20 Areas of Cropland remaining Cropland within the past 20 years

b) Source-/Sink-specific Recalculations

• Carbon Stock Changes in Dead Organic Matter in Cropland remaining Cropland

Carbon stock changes in dead organic matter in Cropland remaining Cropland were reported as "NE" until the 2009 submission. From the 2010 submission, this reporting was changed from "NE" to "NA" in accordance with the Tier 1 method in section 3.3.1.2.1 of the GPG-LULUCF as stated above.

• Carbon Stock Changes in Soils in Cropland remaining Cropland

Carbon stock changes in soils in Cropland remaining Cropland were assumed not to have been changed during the past 20 years regardless of any changes in management practices and reported as "NA" according to Tier 1 given in the GPG-LULUCF until the 2009 submission. However, this assumption may lose touch with actual condition. Thus, reporting the carbon stock changes in soil was changed from "NA" to "NE".

• Areas of Organic Soils in Cropland remaining Cropland

Areas of organic soils had been regarded as being included in those of mineral soils and reported as "IE" until the 2009 submission. However, the areas were obtained as a result of investing data. Thus, the areas came to be reported from the 2010 submission. CO₂ emissions resulting from plowing of organic soil were reported as "NE" because estimation methods for the emissions were under examination. Meanwhile, areas of organic soils in all Cropland are reported in the "Cropland remaining Cropland" category in a lump, because actual condition of the respective areas of organic soils in "Cropland remaining Cropland" and in "Land converted to Cropland" is not sufficiently investigated. This reporting does not affect classification of land areas on Cropland remaining Cropland.

c) Source-/Sink-specific Planned Improvements

• Carbon Stock Changes in Soils in Cropland remaining Cropland

Research and data collection activities for estimating carbon stock changes in soil in Japan' cropland have been in progress. Japan is planning to report the carbon stock changes in its future submission when their estimation and reporting become possible.

• CO₂Emissions from Cultivated Organic Soils in Cropland

Actual conditions of CO_2 emissions resulting from plowing or organic soils in Cropland are presently under investigation. Japan is planning to report the carbon stock changes in its future submission when their estimation and reporting become possible after the investigation is completed.

7.4.2. Land converted to Cropland (5.B.2)

a) Source/Sink Category Description

This subcategory deals with the carbon stock changes, which occurred in the lands that were converted from other land use categories to Cropland, within the past 20 years. The CO_2 emissions

from this subcategory in FY 2008 were 223 Gg-CO₂ (excluding 7.4 Gg-CO₂ of N₂O emissions resulting from disturbance associated with land-use conversion to Cropland and 306 Gg-CO₂ of CO₂ emissions resulting from lime application to agricultural soils); this represents a decrease of 91.3% over the FY 1990 value and an decrease of 8.0% over the FY 2007 value.

With respect to living biomass, its carbon stock change as a result of land use conversion from other land use to Cropland is estimated. This process includes both temporary loss and subsequent gain of living biomass in the land before and after conversion.

With respect to dead organic matter, Japan introduced the Century-jfos model for the FY 2005 estimation, and it became possible to estimate carbon stocks in dead organic matter in Forest land. Therefore, carbon stock changes in the dead organic matter in Cropland converted from Forest land have been estimated and reported since the 2007 submission. Carbon stock changes in Cropland converted from land-use categories other than Forest land are not estimated because suitable carbon stocks for the land-use categories before conversion are not available.

With respect to soil, its carbon stock change as a result of land use conversion from other land use to Cropland is estimated. Carbon stock changes in organic soils are reported as "NE" due to lack of data for estimation.

b) Methodological Issues

1) Carbon stock change in Living Biomass in Land converted to Cropland

• Estimation Method

The Tier 2 method is applied to the case of Forest land converted to Cropland. The Tier 1 method is used for the case of land uses other than Forest land converted to Cropland. Provisional and default values of the amount of biomass accumulation are used for the Tier 1 method.

$$\Delta C = \Delta C_{Losses} + \Delta C_{Gains}$$

$$\Delta C_{Losses} = \sum_{i} \left\{ A_{i} \times (B_{after} - B_{before,i}) \times CF \right\}$$

 $\Delta C_{Gains} = A_{orchard} \times B_{orchard} \times CF$

 ΔC : carbon stock change in Cropland converted from other land use i within a year (tC/yr) ΔC_{Losses} : carbon stock change upon land use conversion from other land use i to Cropland within a year (tC/yr) ΔC_{Gains} : carbon stock change associated with biomass growth in converted Cropland within a year (tC/yr) A_i : area of land converted from other land i to Cropland within a year (ha) : weight of living biomass (dry matter basis) immediately after land use conversion to Bafter Cropland (t-dm/ha), default value = 0: weight of living biomass (dry matter basis) in land use i before land use conversion B_{before,i} (t-dm/ha) CF: carbon fraction of dry matter (tC/t-dm) : area of land converted from other land i to orchard within a year (ha) Aorchard : weight of living biomass (dry matter basis) in Land converted to orchard within a year Borchard (t-dm/ha) i : land use (Forest land, Grassland, Wetlands, Settlements, Other land)

Note: Carbon stock change in living biomass in orchard is assumed to be completed within a year when land conversion is taken place (no further change is expected in following years).

• Parameters

The values shown in Table 7-16 are used for the estimation of biomass stock changes upon land use conversion and subsequent changes in biomass stock because of biomass growth in the converted land.

Land use category			Biomass stocks [t-dm/ha]	Note
Before conversion	Forest land	133.17land of deforestation paragraph 3, of the Kyot are provided from the Resources Database. In a before 2004 are extrapol trend from 2005 to the lat (Reference values) 		Calculated by utilizing biomass stocks in land of deforestation under Article 3, paragraph 3, of the Kyoto Protocol, which are provided from the National Forest Resources Database. In addition, the values before 2004 are extrapolated by means of trend from 2005 to the latest year. (Reference values) FY 1990: 105.30 t-dm/ha FY 2005: 129.02 t-dm/ha FY 2007: 131.70 t-dm/ha
	Grassland			<i>GPG-LULUCF</i> Table 3.4.2 and Table 3.4.3 (warm temperate wet)
	Wetlands, S and Other la		0.00	Assume that biomass stocks are "0".
Immediately after conversion	Cropland		0.00	Assume that biomass stocks immediately after conversion are "0".
After conversion	Cropland	rice field	0.00	Assume that biomass stocks are "0".
		upland field	0.00	Assume that biomass stocks are "0".
		orchard	30.63	Calculate by multiplying average age and growth rate which are given in Daiyu Ito <i>et</i> <i>al</i> " <i>Estimating the Annual Carbon Balance</i> <i>in Warm-Temperature Deciduous Orchards</i> <i>in Japan</i> "

Table 7-21	Biomass	stock	data	for	each	land	use	category

Carbon Fraction of Dry Matter

0.5 (tC/t-dm) (GPG-LULUCF, default value)

Activity Data (Area)

Annually converted areas to Cropland are used for estimating carbon stock changes in living biomass in Land converted to Cropland.

The areas of Forest land converted to Cropland, Grassland, Settlements and Other land are estimated by multiplying the areas, which are calculated by subtracting the area of Forest land converted to Wetlands from total areas converted from Forest land, by land ratios of Forest land converted to Cropland, Grassland, Settlements and Other land, respectively.

The total areas converted from Forest land were determined based on areas provided by the *World Census of Agriculture and Forestry*, the Forestry Agency's records, and D areas under Article 3,

paragraph 3, of the Kyoto Protocol. In concrete terms, the D areas are identified in detail by utilizing orthophotos at the end of 1989 and recent satellite images, but they are provided only from the FY 1990 values. Therefore, the total areas converted from Forest land are estimated by setting an adjustment factor from the ratio between the D areas since FY 1990 and areas converted from forests provided by the *World Census of Agriculture and Forestry* and the Forestry Agency's records, and multiplying the areas converted from forests since FY 1970 by the adjustment factor. For further information on determining D areas, see section 11.3.2.3 in Annex 11 in this NIR.

The respective ratios of Forest land converted to other land-use categories except Wetlands are estimated from areas of private forests converted to other land-use categories resulting from Forest land development, based on the Forestry Agency's records, and the ratios are regarded as the same for national forests.

Areas of land converted from land-use categories other than Forest land to Cropland are determined by applying expansion area values provided by the *Statistics of Cultivated and Planted Area*. The converted areas are divided into rice fields, upland fields, orchards, and pasture land proportionately by means of the current area ratios. The areas of rice fields, upland fields, and orchards are allocated to Cropland, while that of pasture land is allocated to Grassland.

It should be noted that the area presented in the CRF "Table 5.B SECTORAL BACKGROUND DATA FOR LAND USE, LAND-USE CHANGE AND FORESTRY—Cropland" is not the converted area in FY 2008 but the sum of annually converted areas during the past 20 years.

Category	Unit	1990	1995	2000	2005	2006	2007	2008
Land converted to Cropland	kha	8.8	5.6	4.5	2.4	5.0	2.4	1.6
Forest land converted to Cropland	kha	7.0	1.4	0.5	0.3	0.5	0.6	0.5
Rice field	kha	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Upland field	kha	7.0	1.4	0.5	0.3	0.5	0.5	0.5
Orchard	kha	IE						
Grassland converted to Cropland	kha	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wetlands converted to Cropland	kha	0.3	0.0	0.1	0.0	0.0	0.0	0.5
Settlements converted to Cropland	kha	IE						
Other land converted to Cropland	kha	1.5	4.1	3.9	2.1	4.5	1.9	0.6
Rice field	kha	0.2	1.1	1.3	0.3	1.7	0.6	0.1
Upland field	kha	1.3	3.0	2.6	1.8	2.7	1.3	0.5
Orchard	kha	IE						

Table 7-22Area of land converted to Cropland (single year)

2) Carbon Stock Change in Dead Organic Matter in Land converted to Cropland

• Estimation Method

Carbon stock changes in dead organic matter in Forest land converted to Cropland are estimated by applying Tier 2 estimation method. Other subcategories, such as Grassland converted to Cropland, are reported as "NE" due to lack of appropriate parameters. In addition, all carbon stocks in dead organic matter in the subcategory are assumed oxidized and emitted as CO₂ within the year of conversion in accordance with the description in section 3.4.2.2.1 in the GPG-LULUCF.

$$\Delta C_{FC} = \sum \left((C_{after,i} - C_{before,i}) \times A \right)$$

 ΔC_{FC} : Carbon stock changes in dead organic matter in Forest land converted to Cropland (t-C/yr)

Cafter,i : Carbon stock in dead wood or litter after conversion (t-C/ha) Note: carbon

stocks after conversion are assumed as "0" (zero).

- $C_{before,i}$: Carbon stock in dead wood or litter before conversion (t-C/ha)
 - *A* : Area of Forest land converted to Cropland within the year of conversion (ha)
 - i : type of dead organic matter (dead wood or litter)

• Parameters

Average carbon stocks in dead wood and litter in Forest land before conversion are shown in Table 7-23 below. The average carbon stocks in these categories from FY1990 to FY2004 are not estimated; therefore those in FY2005 are substituted for them. In addition, the stocks of dead organic matter are estimated under the assumption that they come to be zero immediately after conversion, and are not accumulated after conversion.

			0	
			Carbon Stocks	
L	Land-use Category		[t-C/ha]	Note
			(FY 2008)	
Before	Forest land	Dead Wood	15.05	Calculated from carbon stocks in dead wood in all forests. (Reference values) FY 1990: 16.35 t-dm/ha FY 2006: 16.35 t-dm/ha FY 2007: 15.96 t-dm/ha
Conversion	Torest faild	Litter	7.28	Calculated from carbon stocks in litter in all forests. (Reference values) FY 1990: 7.18 t-dm/ha FY 2006: 7.18 t-dm/ha FY 2007: 7.03 t-dm/ha

Table 7-23 Carbon stocks in dead organic matter in Forest land before conversion

• Activity Data (Area)

Annually converted areas to Cropland are used for estimating carbon stock changes in dead organic matter in Land converted to Cropland.

3) Carbon Stock Change in Soils in Land converted to Cropland

• Estimation Method

Carbon stock changes in soils were calculated by applying Tier 2 estimation method in accordance with the estimation method for "Land converted to Cropland" (GPG-LULUCF, page 3-89).

$$\Delta C_i = A_i \times (C_{after,i} - C_{before,i}) / 20$$

- ΔC_i : Annual change in carbon stocks in dead wood, litter or soils in Land converted to Cropland [t-C/yr]
 - A_i : Area being converted to Cropland land within the past 20 years [ha]

 $C_{after, i}$: Carbon stocks in the land-use category i after conversion (Cropland) [t-C/ha]

 $C_{before, i}$: Carbon stocks in a land-use category before conversion [t-C/ha]

i : Land-use category (Forest land, Grassland, Wetlands, Settlements, or Other land)

• Parameters

Data of average carbon stocks in soils before and after conversion listed in Table 7-24 below are applied.

Table 7-24Soil carbon stocks								
Category	Values used	Note						
Forest land (Before Conversion)	84.21 (t-C/ha) (FY 2008)	Value of soil carbon stocks for 0-30 cm depth. National average value calculated by the CENTURY-jfos model. In addition, the values in FY 2006 is applied to the values before 2005. (Reference values) FY 1990: 85.74 tC/ha FY 2006: 85.74 tC/ha FY 2007: 84.21 tC/ha						
Rice field	71.38 (t-C/ha)	Value of soil carbon stocks for 0-30 cm depth.						
Upland field	86.97 (t-C/ha)							
Orchard	77.46 (t-C/ha)	Data provided from Dr. Makoto Nakai,						
Cropland (average)	76.40 (t-C/ha)	National Institute for Agro-Environmental						
Grassland 134.91(t-C/ha)		Sciences (Undisclosed)						
Wetlands	-	Under investigation						
Settlements	-	Under investigation						
Other land	-	Under investigation						

Activity Data (Area)

Areas of Land converted to Cropland during the past 20 years are assumed as summed areas of annually converted land to Cropland during the past 20 years. The assumed areas are applied to estimation of the carbon stock changes in soils in Land converted to Cropland. The areas are shown in Table 7-25 below.

Category	Unit	1990	1995	2000	2005	2006	2007	2008
Land converted to Cropland	kha	475.9	279.5	155.9	92.2	83.0	72.1	59.6
Forest land converted to Cropland	kha	272.2	180.4	106.0	46.1	39.6	33.9	27.9
Rice field	kha	272.2	180.4	106.0	46.1	39.6	33.9	27.9
Upland field	kha	IE	IE	IE	IE	IE	IE	IE
Orchard	kha	IE	IE	IE	IE	IE	IE	IE
Grassland converted to Cropland	kha	11.2	5.7	1.0	0.9	0.9	0.9	0.8
Wetlands converted to Cropland	kha	11.4	3.4	1.7	1.0	0.9	0.8	1.0
Settlements converted to Cropland	kha	IE	IE	IE	IE	IE	IE	IE
Other land converted to Cropland	kha	181.1	90.0	47.2	44.2	41.6	36.5	29.8
Rice field	kha	25.9	13.8	9.4	8.3	9.4	9.5	9.1
Upland field	kha	155.2	76.2	37.9	35.9	32.2	27.0	20.7
Orchard	kha	IE	IE	IE	IE	IE	IE	IE

Table 7-25 Area of land converted to Cropland within the past 20 years

c) Uncertainties and Time-series Consistency

• Uncertainty Assessment

Uncertainties of the parameters and the activity data for living biomass, dead organic matter, and soil were individually assessed on the basis of field study results, expert judgment, or the default values described in the GPG-LULUCF. The uncertainty was estimated as 25% for the entire removal from the land converted to Cropland. More detailed information on the uncertainty assessment is described in Annex 7. Uncertainty estimates of some major parameters, which were used for the uncertainty

assessment for this category, are shown in Table 7-19 as an example.

			Country Specific (CS) or Default (D)	
Cropland Area	Rice Field	0.15	CS	Original uncertainty of
_	Upland Field	0.27	CS	statistics

 Table 7-26 Uncertainty estimates regarding major parameters in the category of Cropland category

• Time-series Consistency

Time-series consistency for this subcategory is ensured.

d) Source-/Sink-specific QA/QC and Verification

Quality control (QC) is implemented in accordance with the Tier 1 approach described in GPG (2000) and the GPG-LULUCF. The Tier 1 approach includes procedures for checking parameters and activity data, and for archiving references. More detailed information on the QA/QC activity procedures is described in Section 6.1 of Annex 6.

e) Source-/Sink-specific Recalculations

• Areas of Forest land converted to Cropland

Until the 2009 submission, areas of "Forest land converted to Cropland" in a certain fiscal year had been determined based on total land areas converted from forests calculated by utilizing the *World Census of Agriculture and Forestry* and statistics based on the records provided by the Forestry Agency of Japan, but parts of data were estimated by means of extrapolation and other methods. Meanwhile, deforestation areas (D areas) under Article 3, paragraph 3, of the Kyoto Protocol since FY 1990 are determined in more detail (for further information, see annex 11). Therefore, the method of determining the total areas converted from forests was changed as described in the part of activity data in section 7.4.2.b).1), and areas of Forest land converted to Cropland were recalculated.

• Biomass Stocks before Conversion in Forest land converted to Cropland

Carbon stock losses resulting from conversion in Forest land converted to Cropland had been estimated by multiplying its converted areas in a certain year by biomass stocks per area in all forests. Because average biomass stocks before deforestation in D areas seemed to better represent actual conditions of conversion from forests, the biomass stocks used in the estimation were changed to those before deforestation in D areas, and the carbon stock losses were recalculated.

• Carbon Stock Changes in Dead Organic Matter in Forest land converted to Cropland

Carbon stock changes in dead organic matter in Forest land converted to Cropland had been estimated under the same assumption for soil that the carbon stocks were changed linearly over 20 years, but the estimation method was revised to that mentioned in section 3.3.2.2.1 of the GPG-LULUCF that the carbon stocks were oxidized immediately after land conversion. Carbon stocks per area in dead wood and litter in forests before conversion were also revised because forest areas were revised. As a result, the carbon stock changes were recalculated.

• Carbon Stock Changes in Soil in Forest land converted to Cropland

Carbon stocks per area in soil in forests before conversion were revised because forest areas were revised. As a result, the carbon stock changes in soil in Forest land converted to Cropland were recalculated.

f) Source-/Sink-specific Planned Improvements

• Estimation Method of the Area converted from Forest Land to Cropland

The area of Forest land converted to Cropland was estimated by multiplying the summed area converted to Cropland and Grassland by the ratio of Cropland to the summed area. However, this estimation method may not represent the true status of these areas. Therefore, validity of the estimates is being reviewed, and the estimation method is being reexamined.

• Method of Obtaining Data of the Area converted from Grassland to Cropland

Data on the area of land converted from grassland to Cropland cannot be obtained from currently available statistics, so the carbon stock changes in the areas have not been estimated. Therefore, the methods of obtaining the following area data need to be investigated.

- from pasture land to upland field
- from pasture land to orchard
- · from grazing meadow to rice field
- from grazing meadow to upland field
- · from grazing meadow to orchard
- Estimation Method of Soil Carbon Stock Change upon Land Use Conversion from Other Land to Cropland

Consideration for the estimation method will be implemented when new data and information are obtained.

7.5. Grassland (5.C)

Grassland is generally covered with perennial pasture and is used mainly for harvesting fodder or grazing.

In FY 2007, Japan's grassland area was about 0.91 million ha, which is equivalent to about 2.4% of the national land. The area of organic soil in the Grassland is about 0.04 million ha. The net CO_2 removals from this category in FY 2008 were 744 Gg-CO₂ (excluding 306 Gg-CO₂ of CO₂ emissions resulting from lime application to agricultural soils), which was a 32.1% increase over the FY 1990 value and a 10.3% increase over the FY 2007 value.

This section divides grassland into two subcategories, "Grassland remaining Grassland (5.C.1.)" and "Land converted to Grassland (5.C.2.)", and describes them separately in the following subsections.

Gas	Category	Carbon pool	Unit	1990	1995	2000	2005	2006	2007	2008
CO_2	5.C. Grassland	Total	Gg-CO ₂	-563.2	-516.7	-580.0	-668.0	-682.2	-674.1	-743.7
		Living Biomass	Gg-CO ₂	-7.8	-41.0	-43.4	-54.0	-50.7	-49.8	-49.3
		Dead Wood	Gg-CO ₂	58.9	13.0	4.3	3.1	5.1	5.1	4.5
		Litter	Gg-CO ₂	25.8	5.7	1.9	1.4	2.2	2.2	2.2
		Soil	Gg-CO ₂	-640.1	-494.5	-542.9	-618.5	-638.7	-631.7	-701.2
	5.C.1. Grassland	Total	Gg-CO ₂	NA,NE						
	remaining Grassland	Living Biomass	Gg-CO ₂	NA,NE						
	Ũ	Dead Wood	Gg-CO ₂	NA,NE						
		Litter	Gg-CO ₂	NA,NE						
		Soil	Gg-CO ₂	NA,NE						
	5.C.2. Land converted to	Total	Gg-CO ₂	-563.2	-516.7	-580.0	-668.0	-682.2	-674.1	-743.7
	Grassland	Living Biomass	Gg-CO ₂	-7.8	-41.0	-43.4	-54.0	-50.7	-49.8	-49.3
		Dead Wood	Gg-CO ₂	58.9	13.0	4.3	3.1	5.1	5.1	4.5
		Litter	Gg-CO ₂	25.8	5.7	1.9	1.4	2.2	2.2	2.2
		Soil	Gg-CO ₂	-640.1	-494.5	-542.9	-618.5	-638.7	-631.7	-701.2

Table 7-27 Emissions and Removals in Grassland resulting from Carbon Stock Changes

7.5.1. Grassland remaining Grassland (5.C.1)

a) Source/Sink Category Description

This category reports carbon stock changes in Grassland remaining Grassland during the past 20 years, by dividing three subcategories: "pasture land", "grazed meadow" and "wild land".

With respect to living biomass, carbon stock changes in pasture land and grazed meadow are assumed to be in a steady state and reported as "NA" in accordance with the Tier 1 estimation method in section 3.4.1.1.1.1 in the GPG-LULUCF. Carbon stock changes in living biomass in wild land are reported as "NE" because status of carbon pools in wild land is under survey.

Carbon stock changes in dead organic matter in pasture land and grazed meadow are estimated as zero (0) by applying Tier 1 method in section 3.4.1.2.1 in the GPG-LULUCF, which assumes the carbon stocks are not changed. Thus, the carbon stock changes are reported as "NA". Carbon stock changes in dead organic matter in wild land are reported as "NE" because status of carbon pools in wild land is under survey.

With respect to soil, carbon stock changes in soil in pasture land are presently not estimated because information on carbon stocks and management state in the pasture land is not collected sufficiently for estimating the carbon stock changes. Hence, this carbon pool is reported as "NE". On the other hand, grazed meadows are non-degraded and sustainably managed grassland, but without significant management improvements. Therefore, the default value of carbon stock change factor for "Nominally managed (non-degraded)" in table 3.4.5 of the GPG-LULUCF, which is "1.0", is applied to the grazed meadows. In this case, soil carbon stocks are not changed over time; therefore, the soil carbon stock changes in grazed meadows are reported as "NA". Carbon stock changes in soil in wild land are reported as "NE" because actual condition of the carbon stock changes is not clear. CO_2 emissions from organic soils are reported as "NE"

	Category	Unit	1990	1995	2000	2005	2006	2007	2008
Grassland re	emaining Grassland	kha	646.5	748.9	758.3	756.6	754.8	760.9	751.4
Past	ture land	kha	449.3	530.6	528.9	519.6	517.7	521.2	514.2
Graz	zed meadow	kha	9.5	9.4	8.0	6.4	6.1	5.8	5.4
Wild	d land	kha	187.6	208.8	221.5	230.7	231.1	233.9	231.7

 Table 7-28
 Areas of Grassland remaining Grassland within the past 20 years

b) Source-/Sink-specific Planned Improvements

• Carbon Stock Changes in Mineral Soils in Grassland remaining Grassland

Carbon stock changes in mineral soils in this category are presently not estimated. However, research projects on soil carbon stocks in pasture land have been progressed. Therefore, Japan is planning to report the carbon stock changes when they become able to be estimated in the future.

• CO₂ Emissions from Cultivated Organic Soils in Grassland

With respect to CO_2 emissions from organic soils in Grassland, CO2 emissions from organic soils are being examined in a cross-cutting manner through the LULUCF sector, including the emissions in Cropland.

7.5.2. Land converted to Grassland (5.C.2)

a) Source/Sink Category Description

This subcategory deals with the carbon stock changes, which occurred in the lands that were converted from other land use categories to grassland, within the past 20 years. The net CO_2 removal from this subcategory in FY 2008 was 744 Gg- CO_2 (excluding 306 Gg- CO_2 of CO_2 emissions resulting from lime application to agricultural soils); this represents an increase of 32.1% over the FY 1990 value and an increase of 10.3% over the FY 2007 value.

With respect to living biomass, its carbon stock changes as a result of land use conversion from other land use to Grassland are estimated. The carbon stock changes include both temporary loss and subsequent gain of living biomass in the land before and after conversion.

With respect to dead organic matter, Japan introduced the Century-jfos model for the FY 2005 estimation, and it became possible to estimate carbon stocks in dead organic matter in Forest land. Therefore, carbon stock changes in the dead organic matter in grassland converted from Forest land have been estimated and reported since FY 2005.

Carbon stock changes in soils as a result of land use conversion from other land use to grassland are estimated. All soils are temporarily regarded as mineral soils because actual condition of organic soils is presently being assessed.

b) Methodological Issues

1) Carbon stock change in Living biomass in Land converted to Grassland

• Estimation Method

The Tier 2 method is applied to the cases of Forest land and Cropland (rice fields) converted to Grassland (pasture lands). The Tier 1 method is used for land uses other than Forest land and

Cropland (rice fields) converted to grassland (pasture lands).

The biomass growth after land-use conversion is assumed to reach a steady state at a constant rate over subsequent five years after conversion. Therefore, the annual biomass stock change in the living biomass in the grassland is the sum of biomass stock changes over the last five years.

$$\Delta C = \Delta C_{Losses} + \Delta C_{Gains}$$
$$\Delta C_{Losses} = \sum_{i} \left\{ A_{i} \times (B_{after} - B_{before,i}) \times CF \right\}$$

 $\Delta C_{\textit{Gains}} = A_{\textit{grassland}} \times B_{\textit{grassland}} \times CF$

- ΔC : carbon stock change in Grassland converted from other land use i within a year (tC/yr)
- ΔC_{Losses} : carbon stock change upon land use conversion from other land use i to Grassland within a year (tC/yr)
- ΔC_{Gains} : carbon stock change associated with biomass growth in converted Grassland within a year (tC/yr)
 - A_i : area of land converted from other land i to Grassland within the past 5 years (ha)
 - B_{after} : weight of living biomass (dry matter basis) immediately after land use conversion to Grassland (t-dm/ha), default value = 0
- $B_{before,i}$: weight of living biomass (dry matter basis) in land use i before land use conversion (t-dm/ha)
 - *CF* : carbon fraction of dry matter (tC/t-dm)
- $A_{orchard}$: area of land converted from other land i to orchard within a year (ha)
- $B_{orchard}$: weight of living biomass (dry matter basis) in converted orchard within a year (t-dm/ha)
 - i : land use (Forest land, Cropland, Wetlands, Settlements, Other land)
 Note: Carbon stock change in living biomass in Grassland is assumed to be completed within first 5 years after land conversion is taken place (no further change is expected in 5 years).

• Parameters

. ~

. ~

Biomass stock in each Land Use Category

The values shown in Table 7-29 are used for the estimation of biomass stock changes upon land use conversion and subsequent changes in biomass stock because of biomass growth in converted land.

Lai	nd use categor	у	Biomass stocks [t-dm/ha]	Note			
Before conversion	Forest land		133.17 (the FY 2008 value)	Calculated by utilizing biomass stocks in land of deforestation under Article 3, paragraph 3, of the Kyoto Protocol, which are provided from the National Forest Resources Database. In addition, the values before 2004 are extrapolated by means of trend from 2005 to the latest year. (Reference values) FY 1990: 105.30 t-dm/ha FY 2005: 129.02 t-dm/ha FY 2007: 131.70 t-dm/ha			
	Cropland	rice field	0.00	Assume that biomass stocks are "0".			
		upland field	0.00	Assume that biomass stocks are "0".			
		orchard	30.63	Calculate by multiplying average age and growth rate which are given in Daiyu Ito <i>et</i> <i>al</i> " <i>Estimating the Annual Carbon Balance</i> <i>in Warm-Temperature Deciduous Orchards</i> <i>in Japan</i> "			
	Wetlands, Settlements and Other land		0.00	Assume that biomass stocks are "0".			
Immediately after conversion	Grassland		0.00	Assume that biomass stocks immediately after conversion are "0".			
After conversion	Grassland		2.70	One-fifth of the default value given in <i>GPG-LULUCF</i> Table 3.4.2 and Table 3.4.3 (warm temperate wet)			

Table 7-29	Biomass stock data for each land use category
------------	---

> Carbon Fraction of Dry Matter

0.5 (tC/t-dm) (GPG-LULUCF, default value)

• Activity Data (Area)

In the information sources (statistics) indicated below, Grassland is treated as a part of Cropland. Therefore, the procedure to obtain the area for the Grassland converted from other land use categories is as follows:

Areas of Forest land converted to Grassland are estimated by multiplying the area, which is calculated by subtracting the area of Forest land converted to Wetlands from total land areas converted from Forest land, by the land ratio of Forest land converted to Grassland. The land ratio is estimated from areas of private forests converted to other land-use categories provided by statistics based on the Forestry Agency records, and the ratio for private forests is assumed as the same as that for national forests. For further information on determining the total land areas converted from Forest land, see the part on activity data in section 7.4.2.b).1).

The area of land that has been converted from the land other than Forest land to Grassland is determined by referring to the expansion area values stated in *the Statistics of Cultivated and Planted Area*. The converted areas found in those information sources are divided proportionately into rice fields, upland fields, orchards, and pasture land based on the current area ratios. Then the pasture land was allocated to grassland.

It should be noted that the area presented in the CRF "Table 5.C SECTORAL BACKGROUND DATA FOR LAND USE, LAND-USE CHANGE AND FORESTRY—Grassland" is not the converted area in FY 2008 but the sum of annually converted areas during the past 20 years.

Category	Unit	1990	1995	2000	2005	2006	2007	2008
Land converted to Grassland	kha	39.9	17.4	12.0	13.4	14.3	14.3	14.0
Forest land converted to Grassland	kha	4.9	1.8	0.7	0.3	0.3	0.3	0.4
Cropland converted to Grassland	kha	6.5	3.4	4.5	6.2	6.7	6.7	6.4
Wetlands converted to Grassland	kha	0.5	0.1	0.1	0.0	0.0	0.0	0.4
Settlements converted to Grassland	kha	IE						
Other land converted to Grassland	kha	27.9	12.0	6.8	69	73	73	6.8

Table 7-30 Area of Land converted to Grassland within the past 5 years

2) Carbon Stock Change in Dead organic Matter and Soils in Land converted to Grassland

• Estimation Method

> Carbon Stock Changes in Dead Organic Matter

In this category, carbon stock changes in dead organic matter in Forest land converted to Grassland are estimated. Tier 2 estimation method is applied to the subcategory. Other subcategories, such as Cropland converted to Grassland, are reported as "NE" due to lack of appropriate parameters. In addition, all carbon stocks in dead organic matter in the subcategory are assumed oxidized and emitted as CO_2 within the year of conversion.

$$\Delta C_{FG} = \sum \left((C_{after,i} - C_{before,i}) \times A \right)$$

 ΔC_{FG} : Carbon stock changes in dead organic matter in Forest land converted to Grassland (t-C/yr)

 $C_{after,i}$: Carbon stock in dead wood or litter after conversion (t-C/ha) Note: carbon stocks after conversion are assumed as "0" (zero).

 $C_{before,i}$: Carbon stock in dead wood or litter before conversion (t-C/ha)

A : Area of Forest land converted to Grassland within the year of conversion (ha)

i : type of dead organic matter (dead wood or litter)

Carbon Stock Changes in Soils

Carbon stock changes in soils were calculated under the assumption that these carbon stocks have changed linearly from those in land-use categories other than grassland to those in grassland land during the past 20 years. In addition, organic soils are reported as "NE".

$$\Delta C_i = A_i \times (C_{after,i} - C_{before,i}) / 20$$

- ΔC_i : Annual change in carbon stocks in dead wood, litter or soils in Land converted to Grassland [t-C/yr]
 - A_i : Area being converted to Grassland within the past 20 years [ha]
- Cafter, i : Carbon stocks in the land-use category i after conversion (Grassland) [t-C/ha]
- $C_{before, i}$: Carbon stocks in a land-use category before conversion [t-C/ha]

i : Land-use category (Forest land, Cropland, Wetlands, Settlements, or Other land)

• Parameters

> Carbon Stocks in Dead Organic Matter

Average carbon stocks in dead wood and litter in Forest land before conversion are shown in Table 7-23. The average carbon stocks in these categories from FY1990 to FY2004 are not estimated;

therefore those in FY2005 are substituted for them. In addition, the stocks of dead organic matter are estimated under the assumption that they come to be zero immediately after conversion, and are not accumulated after conversion.

Carbon Stocks in Soils

Data listed in Table 7-10 are applied as average carbon stocks before and after conversion.

• Activity Data (Area)

Areas of Land converted to Grassland during the past 20 years are assumed as summed values during the past 20 years of annually converted areas from other land-use categories to Grassland. In addition, all the areas are regarded as mineral soils. The areas are shown in Table 7-31 below.

 Table 7-31
 Area of Land converted to Grassland within the past 20 years

Category	Unit	1990	1995	2000	2005	2006	2007	2008
Land converted to Grassland	kha	283.9	183.6	166.1	161.7	159.9	150.1	156.5
Forest land converted to Grassland	kha	33.7	25.7	23.0	15.0	13.9	12.7	12.8
Cropland converted to Grassland	kha	27.7	21.5	27.6	40.5	43.1	43.3	48.4
Wetlands converted to Grassland	kha	1.6	1.4	1.6	1.4	1.3	1.2	2.2
Settlements converted to Grassland	kha	IE						
Other land converted to Grassland	kha	220.9	134.9	113.9	104.9	101.5	93.0	93.1

c) Uncertainties and Time-series Consistency

• Uncertainty Assessment

Uncertainties of the parameters and the activity data for living biomass, dead organic matter, and soil were individually assessed on the basis of field study results, expert judgment, or the default values described in the GPG-LULUCF. The uncertainty was estimated as 42% for the entire removal from the land converted to grassland. More detailed information on the uncertainty assessment is described in Annex 7. In addition, concrete uncertainty estimates for individual parameters in this category will be illustrated in future submissions after investigation is completed.

• Time-series Consistency

Time-series consistency for this subcategory is ensured.

d) Source-/Sink-specific QA/QC and Verification

Quality control (QC) is implemented in accordance with the Tier 1 approach described in GPG (2000) and the GPG-LULUCF. The Tier 1 approach includes procedures for checking parameters and activity data, and for archiving references. More detailed information on the QA/QC activity procedures is described in Section 6.1 of Annex 6.

e) Source-/Sink-specific Recalculations

• Areas of Forest Land converted to Grassland

As described in section 7.4.2.e), the method of determining areas of Forest land converted to other land-use categories was changed; hence, areas of Forest land converted to Grassland were recalculated.

• Biomass Stocks before Conversion in Forest land converted to Grassland

Carbon stock losses resulting from conversion in Forest land converted to Grassland had been estimated by multiplying its converted areas in a certain year by biomass stocks per area in all forests. Because average biomass stocks before deforestation in D areas seemed to better represent actual conditions of conversion from forests, the biomass stocks used in the estimation were changed to those before deforestation in D areas, and the carbon stock losses were recalculated.

• Carbon Stock Changes in Dead Organic Matter in Forest land converted to Grassland

Carbon stock changes in dead organic matter in Forest land converted to Grassland had been estimated under the same assumption for soil that the carbon stocks were changed linearly over 20 years, but the estimation method was revised to that mentioned in section 3.4.2.2.1 of the GPG-LULUCF that the carbon stocks were assumed oxidized immediately after land conversion. Carbon stocks per area in dead wood and litter in forests before conversion were also revised because forest areas were revised. As a result, the carbon stock changes were recalculated.

• Carbon Stock Changes in Soil in Forest land converted to Grassland

Carbon stocks per area in soil in forests before conversion were revised because forest areas were revised. As a result, the carbon stock changes in soil in Forest land converted to Grassland were recalculated.

f) Source-/Sink-specific Planned Improvements

• Method of Obtaining Data of the Areas converted from Other Land-use Categories to Grassland

The method used to obtain data on the area converted to Grassland needs to be improved. For example, currently, the area of lands converted from Forest land to Grassland is estimated by multiplying the summed areas converted to Cropland and Grassland by the ratio of grazing land to the summed area. However, this estimation method may not represent the actual status of these areas. Therefore, the validity of the estimation method needs to be reviewed, and, if necessary, a new method of obtaining the area data should be considered.

• Method of Obtaining Data of the Area converted from Cropland to Grassland

Data on the area of land converted from Cropland to Grassland cannot be obtained from current statistics, so the carbon stock changes in the areas have not been estimated. Therefore, the methods used to obtain the following area data need to be investigated.

- from upland field to pasture land
- from orchard to pasture land
- from rice field to grazing meadow
- from upland field to grazing meadow
- from orchard to grazing meadow
- Estimation Method of Soil Carbon Stock Change upon Land Use Conversion from Other Land to Cropland

Consideration for the estimation method will be implemented when new data and information are obtained.

• Method of Obtaining Data and Revising Estimation Methodologies for Living Biomass Stock in the "Grassland other than Pasture Land and grazed Meadow Land"

It was pointed out by experts that the living biomass stock of the "grassland other than pasture land and grazed meadow land", which was newly re-distributed to from Other land to Grassland this year, is not necessarily identical to the one of "pasture land and grazed meadow land", which were originally classified in Grassland. Therefore, it is necessary to obtain data, which reflect living biomass stock in the former, and to revise the estimation method for that accordingly.

7.6. Wetlands (5.D)

Wetlands are the land that are covered with or soaked in water throughout the year. They do not fall under the categories of Forest land, Cropland, grassland, or Settlements. The GPG-LULUCF divides Wetlands into two large groups: peat land and flooded land.

In FY 2008, Japan's wetland area was about 1.33 million ha, which is equivalent to about 3.5% of the national land. The CO_2 emissions from this category in FY 2008 were 92.1 Gg-CO₂, which was a 2.7% increase over the FY 1990 value and a 31.8% decrease over the FY 2007 value.

This section divides Wetlands into two subcategories, "Wetlands remaining Wetlands (5.D.1.)" and "Land converted to Wetlands (5.D.2.)", and describes them separately in the following subsections.

Gas	Category	Carbon pool	Unit	1990	1995	2000	2005	2006	2007	2008
CO_2	5.D. Wetlands	Total	Gg-CO ₂	89.6	286.2	353.4	62.0	78.3	134.9	92.1
		Living Biomass	Gg-CO ₂	62.6	203.5	255.1	45.6	58.8	100.4	69.4
		Dead Wood	Gg-CO ₂	18.8	57.5	68.3	11.4	13.5	24.0	15.3
		Litter	Gg-CO ₂	8.3	25.2	30.0	5.0	6.0	10.6	7.4
		Soil	Gg-CO ₂	NA,NE,NO						
	5.D.1. Wetlands	Total	Gg-CO ₂	NA,NE,NO						
	remaining Wetlands	Living Biomass	Gg-CO ₂	NE,NO						
	Ũ	Dead Wood	Gg-CO ₂	NO,NE						
		Litter	Gg-CO ₂	NO,NE						
		Soil	Gg-CO ₂	NO,NA						
	5.D.2. Land converted to	Total	Gg-CO ₂	89.6	286.2	353.4	62.0	78.3	134.9	92.1
	Wetlands	Living Biomass	Gg-CO ₂	62.6	203.5	255.1	45.6	58.8	100.4	69.4
		Dead Wood	Gg-CO ₂	18.8	57.5	68.3	11.4	13.5	24.0	15.3
		Litter	Gg-CO ₂	8.3	25.2	30.0	5.0	6.0	10.6	7.4
		Soil	Gg-CO ₂	NE						

Table 7-32 Emissions and Removals in Wetlands resulting from Carbon Stock Changes

7.6.1. Wetlands remaining Wetlands (5.D.1)

a) Source/Sink Category Description

This subcategory deals with carbon stock changes in the Wetlands, which have remained as Wetlands during the past 20 years.

Carbon stock changes in organic soils that are managed for peat extraction are reported as "NO", since the peat extraction is not carried out in Japan. (Default value for Japan is not provided in the GPG-LULUCF p.3.282 Table 3A3.3).

Flooded land remaining flooded land is not calculated at the present time as this will be treated in an appendix, and reported as "NE".

Table 7-33	Areas of Wetlands remaining Wetlands within the past 20 years

Category	Unit	1990	1995	2000	2005	2006	2007	2008
Wetlands remaining Wetlands	kha	1,234.1	1,254.2	1,284.1	1,296.7	1,287.2	1,296.2	1,297.0
Organic soils managed for peat extraction	kha	NO						
Flooded land	kha	1,234.1	1,254.2	1,284.1	1,296.7	1,287.2	1,296.2	1,297.0

7.6.2. Land converted to Wetlands (5.D.2)

a) Source/Sink Category Description

This subcategory deals with the carbon stock changes, which occurred in the land that was converted from other land use categories to Wetlands, particularly to flooded land (i.e., dams), within the past 20 years. The emissions from this subcategory in FY 2007 were 92 Gg-CO₂; this represents an increase of 2.7% over the FY 1990 value and a decrease of 31.8% over the FY 2006 value.

With respect to living biomass, its carbon stock change as a result of land use conversion from other land use to Wetlands is estimated. This process includes both temporary loss and subsequent gain of living biomass in the land before and after conversion.

With respect to dead organic matter, Japan introduced the Century-jfos model for the FY 2005 estimation, and it became possible to estimate carbon stocks in dead organic matter in Forest land. Therefore, carbon stock changes in the dead organic matter in grassland converted from Forest land have been estimated and reported since FY 2005.

Carbon stock changes in soils in Land converted to Wetlands are not estimated due to lack of data. Therefore, the carbon stock changes in the carbon pool are reported as "NE".

b) Methodological Issues

1) Carbon stock change in Living biomass in Land converted to Wetlands

• Estimation Method

The Tier 2 method is applied.

$$\Delta C = \Delta C_{Losses} + \Delta C_{Gains}$$
$$\Delta C_{Losses} = \sum_{i} \left\{ A_{i} \times (B_{after} - B_{before,i}) \times CF \right\}$$

 ΔC : carbon stock change in Wetlands converted from other land use i within a year (tC/yr)

- ΔC_{Losses} : carbon stock change upon land use conversion from other land use i to Wetlands within a year (tC/yr)
- ΔC_{Gains} : carbon stock change associated with biomass growth in converted Wetlands within a year (tC/yr)
 - A_i : area of land converted from other land i to Wetlands within a year (ha)
 - B_{after} : weight of living biomass (dry matter basis) immediately after land use conversion to Wetlands (t-dm/ha), default value = 0
- $B_{before,i}$: weight of living biomass (dry matter basis) in land use i before land use conversion (t-dm/ha)
 - *CF* : carbon fraction of dry matter (tC/t-dm)
 - i : land use (Forest land, Cropland, Grassland, Settlements, Other land)
 Note: Carbon stock change in living biomass associated with biomass growth in
 Wetlands (dam) is assumed to be zero.

• Parameters

> Biomass stock in each Land Use Category

The values shown in Table 7-34 below are used for the estimation of biomass stock changes resulting

from land-use conversion and subsequent changes in biomass stock due to biomass growth in converted land.

La	ind use catego	ry	Biomass stocks [t-dm/ha]	Note		
Before conversion	Forest land		133.17 (the FY 2008 value)	Calculated by utilizing biomass stocks in land of deforestation under Article 3, paragraph 3, of the Kyoto Protocol, which are provided from the National Forest Resources Database. In addition, the values before 2004 are extrapolated by means of trend from 2005 to the latest year. (Reference values) FY 1990: 105.30 t-dm/ha FY 2005: 129.02 t-dm/ha FY 2007: 131.70 t-dm/ha		
	Cropland	rice field	0.00	Assume that biomass stocks are "0".		
		upland field	0.00	Assume that biomass stocks are "0".		
		orchard	30.63	Calculate by multiplying average age and growth rate which are given in Daiyu Ito <i>et al</i> " <i>Estimating the Annual</i> <i>Carbon Balance in Warm-Temperature</i> <i>Deciduous Orchards in Japan</i> "		
	Grassland		13.50	<i>GPG-LULUCF</i> Table 3.4.2 and Table 3.4.3 (warm temperate wet)		
	Settlements	and Other land	0.00	Assume that biomass stocks are "0".		
Immediately after conversion	after Wetlands			Assume that biomass stocks immediately after conversion are "0".		

Table 7-34 Biomass stock data for each land use category

> Carbon Fraction of dry matter

0.5 (tC/t-dm) (GPG-LULUCF, default value)

• Activity Data (Area)

The increases in the area of water bodies in each year were calculated based on the variation of existing submerged area over time. The variation data is indicated in the *Dam Yearbook*, which is compiled and published by the Japan Dam Foundation. Since the data of the area of water bodies indicated in *the Dam Yearbook* also include natural lakes, the change in the area of water body, which is not as a result of land use conversion, was excluded.

Concerning the area for each land use category (Forest land, Cropland, etc.) prior to the land use conversion, the ratios of land that was converted from Cropland (and grassland) or Settlements to dams are estimated based on the numbers of submerged dwellings and the area of submerged Cropland for certain large-scale dams. The area that was converted from Forest land to dams was compared with the estimated values that are from *the World Census of Agriculture and Forestry* and statistics based on the Forestry Agency records. In the case of inconsistencies, for example if the area of Forest land converted in that year is larger than the total area converted to dams, priority is given to the value for the area of converted Forest land, and adjusted within the range of the cumulative total dam conversion area since FY 1990 (because the year of dam completion is not necessarily the same

as the actual time of conversion).

As for the other categories, the area of converted Cropland is divided proportionately into Cropland and grassland according to the current area ratios of land use categories. After deducting the areas converted from Forest land, Cropland, grassland, and Settlements from the total dam conversion area, the remainder is considered to be the area converted from other land use categories.

It should be noted that the area presented in the CRF "Table 5.D SECTORAL BACKGROUND DATA FOR LAND USE, LAND-USE CHANGE AND FORESTRY – Wetlands" is not the converted area in FY 2008 but the sum of annually converted areas during the past 20 years.

					(8-	<i>j</i> = <i>j</i>		
Category	Unit	1990	1995	2000	2005	2006	2007	2008
and converted to Wetlands	kha	0.56	1.33	1.58	0.66	2.81	0.70	0.84
Forest land converted to Wetlands	kha	0.31	0.96	1.14	0.19	0.23	0.41	0.28
Cropland converted to Wetlands	kha	0.12	0.27	0.36	0.16	0.64	0.16	0.19
Rice field	kha	0.03	0.07	0.24	0.14	0.41	0.09	0.12
Upland field	kha	0.06	0.15	0.10	0.02	0.18	0.05	0.06
Orchard	kha	0.02	0.05	0.03	0.00	0.05	0.01	0.02
Wetlands converted to Wetlands	kha	0.03	0.08	0.05	0.01	0.10	0.03	0.03
Settlements converted to Wetlands	kha	0.01	0.02	0.02	0.01	0.04	0.01	0.01
Other land converted to Wetlands	kha	0.09	0.00	0.00	0.28	1.81	0.10	0.33

 Table 7-35
 Area of Land converted to Wetlands (single year)

2) Carbon Stock Change in Dead Organic Matter in Land converted to Wetlands

• Estimation Method

> Carbon stock changes in dead organic matter

Carbon stock changes in dead organic matter in Forest land converted to Wetlands are estimated by applying Tier 1 estimation method described in section 2.3.2.2 in Volume 4 of the 2006 IPCC Guidelines. In addition, all carbon stocks in dead organic matter in Forest land converted to Wetlands are assumed oxidized and emitted as CO_2 within the year of conversion.

$$\Delta C_{FW} = \sum \left((C_{after,i} - C_{before,i}) \times A \right)$$

 ΔC_{FO} : Carbon stock changes in dead organic matter in Forest land converted to Wetlands (t-C/yr)

 $C_{after,i}$: Carbon stock in dead wood or litter after conversion (t-C/ha) Note: carbon stocks after conversion are assumed as "0" (zero).

 $C_{before,i}$: Carbon stock in dead wood or litter before conversion (t-C/ha)

A : Area of Forest land converted to Wetlands within the year of conversion (ha)

i : type of dead organic matter (dead wood or litter)

• Parameters

Carbon Stocks in Dead Organic Matter

Average carbon stocks in dead wood and litter in Forest land before conversion are shown in Table 7-23. The average carbon stocks in these categories from FY1990 to FY2004 are not estimated; therefore those in FY2005 are substituted for them. In addition, the stocks of dead organic matter are estimated under the assumption that they come to be zero immediately after conversion, and are not accumulated after conversion.

Activity Data (Area)

The area of land that was converted to Wetlands during the past 20 years is determined by subtracting the estimated area that was not converted during the past 20 years from the total area of Wetlands in

those years. The areas are shown in Table 7-36 below.

							L	J	
	Category	Unit	1990	1995	2000	2005	2006	2007	2008
Land co	onverted to Wetlands	kha	85.9	65.8	65.9	43.3	62.8	33.8	33.0
	Forest land converted to Wetlands	kha	57.3	41.2	41.5	23.9	31.0	17.4	16.8
	Cropland converted to Wetlands		19.1	14.1	14.1	9.4	13.7	7.4	7.2
	Rice field	kha	7.0	4.8	5.4	4.2	6.5	3.6	3.7
	Upland field	kha	8.3	6.6	6.3	3.8	5.4	2.8	2.7
	Orchard	kha	3.7	2.8	2.4	1.3	1.8	0.9	0.9
	Grassland converted to Wetlands Settlements converted to Wetlands		3.6	3.2	3.2	2.0	2.8	1.5	1.4
			1.1	0.8	0.8	0.6	0.8	0.4	0.4
	Other land converted to Wetlands	kha	4.9	6.5	6.2	7.5	14.4	7.1	7.1

 Table 7-36
 Area of Land converted to Wetlands within the past 20 years

c) Uncertainties and Time-series Consistency

• Uncertainty Assessment

Uncertainties of the parameters and the activity data for living biomass, dead organic matter, and soil were individually assessed on the basis of field study results, expert judgment, or the default values described in the GPG-LULUCF. The uncertainty was estimated as 26% for the entire emission from the land converted to Wetlands. More detailed information on the uncertainty assessment is described in Annex 7. In addition, concrete uncertainty estimates for individual parameters in this category will be illustrated in future submissions after investigation is completed.

• Time-series Consistency

Time-series consistency for this subcategory is ensured.

d) Source-/Sink-specific QA/QC and Verification

Quality control (QC) is implemented in accordance with the Tier 1 approach described in the GPG (2000) and the GPG-LULUCF. The Tier 1 approach includes procedures for checking parameters and activity data, and for archiving references. More detailed information on the QA/QC activity procedures is described in Section 6.1 of Annex 6.

e) Source-/Sink-specific Recalculations

• Biomass Stocks before Conversion in Forest land converted to Wetlands

Carbon stock losses resulting from conversion in Forest land converted to Wetlands had been estimated by multiplying its converted areas in a certain year by biomass stocks per area in all forests. Because average biomass stocks before deforestation in D areas seemed to better represent actual conditions of conversion from forests, the biomass stocks used in the estimation were changed to those before deforestation in D areas, and the carbon stock losses were recalculated.

• Carbon Stock Changes in Dead Organic Matter in Forest land converted to Wetlands

Carbon stock changes in dead organic matter in Forest land converted to Wetlands had been estimated under the same assumption for soil that the carbon stocks were changed linearly over 20 years, but the estimation method was revised to that in section 2.3.2.2 in the 2006 IPCC Guidelines, which was that the carbon stocks were assumed oxidized immediately after land conversion. Therefore, the carbon stock changes were recalculated.

f) Source-/Sink-specific Planned Improvements

• Validity of the Assumption used in the Method of Estimating the Area of Wetlands

Under the present estimation method, Wetlands are assumed to consist of as "water surfaces", "rivers" and "canals", as defined in the national land-use classification, and its whole area is estimated by summing the areas covered by these three features However, this estimation method may fail to

cover the whole wetland area. The validity of the assumption used in the estimation method is now under revision.

• Method of Obtaining Data of the Area of Storage Reservoirs

Moreover, storage reservoirs (excluding dams) can be considered as artificial flooded land, but the area that they cover are not included in the area of flooded land. Therefore, a method used to obtain data on the area covered by the reservoirs needs to be considered.

• Estimation Method of Soil Carbon Stock Change upon Land Use Conversion from Other Land to Wetlands

Consideration for the estimation method will be implemented when new data and information are obtained.

7.7. Settlements (5.E)

Settlements are all developed land, including transportation infrastructure and human habitats, and preclude lands that have been placed in other land-use categories. In Settlements, trees existing in urban green areas such as urban parks and special greenery conservation zones absorb carbon.

In FY 2008, Japan's settlement area was about 3.70 million ha, equivalent to about 9.8% of the national land. The net CO_2 emissions by this category in FY 2008 were 831 Gg- CO_2 , which was decreased 82.4% over the 1990 value, and increased 260.0% over the 2007 value. The biggest driver for increase of 260.0% over the previous year is that the single-year converted area from Forest land to Settlements in FY 2008 was increased 57.0% comparing to the area in FY 2007, and the emission resulting from the carbon stock loss in living biomass in Forest land converted to Settlements in FY 2008 was increased 63.5% over the 2007 value.

This section divides Settlements into two subcategories, "Settlements remaining Settlements (5.E.1.)" and "Land converted to Settlements (5.E.2.)", and describes them separately in the following subsections.

Carbon pools estimated in Settlements are living biomass and dead organic matter. Soil carbon stock changes in Settlements are not estimated because their estimation methods are not described in the GPG-LULUCF. Nonetheless, the soil carbon stock changes will be estimated, if necessary, when data are obtained from researches.

With respect to activity data, Tier 1a and Tier 1b of the GPG-LULUCF assume that removals derived from biomass growth are equal to emissions derived from biomass loss where the average tree age in a green area is older than 20 years. Therefore, carbon stock changes in urban green areas more than 20 years after establishment are regarded as zero and not estimated. Moreover, urban green areas included in the activity data are divided into two categories; one is urban green facilities established as urban parks and others, and the other is special greenery conservation zones on which conservation measures are applied and permanent protection is ensured.

- <Urban green areas>
- Urban Green Facilities (urban parks, green areas in road, green areas on port, green areas around sewage treatment facility green areas by greenery promoting system for private green space, green

areas along river and erosion control site, green areas around government buildings and green areas around public rental housing, which are within 20 years after establishment),

• Special Greenery Conservation Zones, which are within 20 years after designation.

Gas	Category	Carbon pool	Unit	1990	1995	2000	2005	2006	2007	2008
CO_2	5.E. Settlements	Total	Gg-CO ₂	4,725.9	3,357.1	1,469.1	737.7	448.8	230.7	830.5
		Living Biomass	Gg-CO ₂	3,081.7	2,182.1	857.8	337.3	127.2	-22.5	434.6
		Dead Wood	Gg-CO ₂	1,155.7	829.8	438.0	291.2	235.7	188.7	279.3
		Litter	Gg-CO ₂	488.4	345.3	173.3	109.2	85.9	64.5	116.7
		Soil	Gg-CO ₂	IE,NE	IE,NE	IE,NE	IE,NE	IE,NE	IE,NE	IE,NE
	5.E.1. Settlements remaining	Total	Gg-CO ₂	-636.3	-689.4	-719.5	-751.1	-757.0	-764.1	-770.9
	Settlements	Living Biomass	Gg-CO ₂	-623.6	-676.0	-705.7	-736.8	-742.6	-749.5	-756.2
		Dead Wood	Gg-CO ₂	IE,NE	IE,NE	IE,NE	IE,NE	IE,NE	IE,NE	IE,NE
		Litter	Gg-CO ₂	-12.7	-13.5	-13.8	-14.3	-14.4	-14.6	-14.7
		Soil	Gg-CO ₂	NE	NE	NE	NE	NE	NE	NE
	5.E.2. Land converted to	Total	Gg-CO ₂	5,362.2	4,046.5	2,188.6	1,488.8	1,205.8	994.8	1,601.4
	Settlements	Living Biomass	Gg-CO ₂	3,705.3	2,858.1	1,563.4	1,074.1	869.8	727.0	1,190.8
		Dead Wood	Gg-CO ₂	1,155.7	829.8	438.0	291.2	235.7	188.7	279.3
		Litter	Gg-CO ₂	501.1	358.7	187.2	123.5	100.3	79.1	131.4
		Soil	Gg-CO ₂	IE,NE	IE,NE	IE,NE	IE,NE	IE,NE	IE,NE	IE,NE

Table 7-37 Emissions and Removals in Settlements resulting from Carbon Stock Changes

7.7.1. Settlements remaining Settlements (5.E.1)

a) Source/Sink Category Description

This subcategory deals with carbon stock changes in living biomass and dead organic matters in urban green areas (special greenery conservation zones, urban parks, green areas in road, green areas on port, green areas around sewage treatment facility green areas by greenery promoting system for private green space, green areas along river and erosion control site, green areas around government buildings and green areas around public rental housing) in Settlements remaining Settlements, which has remained Settlements without conversion during the past 20 years. This subcategory is divided into three subparts: "Special Greenery Conservation Zones", "Urban Green Facilities" and "Other". In these subparts, carbon stock changes in the Special Greenery Conservation Zones and the Urban Green Facilities are estimated. In addition, carbon stock changes reported in "Revegetation" activities under Article 3, paragraph 3, of the Kyoto Protocol correspond to those in the Urban Green Facilities constructed in and after 1990⁴, and Special Greenery Conservation Zones are not included in areas of the Revegetation activities. In the CRF tables, "Special Greenery Conservation Zones" are described as "Urban Green Areas not subject to RV", "Urban Green Facilities" as "Urban Green Areas subject to RV", and "Other" as "Other than Urban Green Areas", respectively. Carbon stock changes that are possibly included in the subpart "Other", such as trees in gardens in personal residences, are reported as "NE" because their activity data are not available. Moreover, with respect to dead organic matter, only carbon stock changes in litter in urban parks and green areas on port are reported due to availability of parameters. The net removal by this subcategory in FY 2008 was 771 Gg-CO₂; this represents an increase of 21.2% over the FY 1990 value and an increase of 0.9 % over the FY 2007 value.

⁴ Special Greenery Conservation Zones are not included in Revegetation because they do not meet its definition. In addition, Urban Green Facilities include a little land area corresponding to Wetland remaining Wetland, such as green areas along river and erosion control site.

b) Methodological Issues

1) Carbon Stock Changes in Living Biomass in Settlements remaining Settlements

• Estimation Method

Due to the differences of characteristics of urban green areas, Tier 1a method is used for special greenery conservation zones that are communal green areas, and Tier 1b is used for urban green facilities that are urban parks, green areas in road, green areas on port, green areas around sewage treatment facility, green areas by greenery promoting system for private green space, green areas along river and erosion control site, green areas around government buildings, green areas around public rental housing.

> Tier 1a: Special Greenery Conservation Zones

$$\Delta C_{SSaLB} = \Delta C_{LBaG} - \Delta C_{LBaL}$$

 $\Delta C_{LBaG} = A \times PW \times BI$

- ΔC_{SSaLB} : changes in carbon stocks in living biomass in special greenery conservation zones (t-C/yr)
- ΔC_{LBaG} : gains in carbon stocks due to growth in living biomass in special greenery conservation zones (t-C/yr)
- ΔC_{LBaL} : losses in carbon stocks due to losses in living biomass in special greenery conservation zones (t-C/yr) note: assumed as "0" (zero) in accordance with the GPG-LULUCF
 - A: area of special greenery conservation zones less than or equal to 20 years since designation (ha)
 - *PW* : forested area rate (forested area rate per park area) note: assumed as 100%
 - *BI* : growth per crown cover area (t-C/ha crown cover/yr)
- Tier 1b: Urban green facilities (urban parks, green areas on road, green areas on port, green areas around sewage treatment facility green areas by greenery promoting system for private green space, green areas along river and erosion control site, green areas around government buildings, green areas around public rental housing)

$$\Delta C_{SSbLB} = \sum (\Delta C_{LBbGi} - \Delta C_{LBbLi})$$
$$\Delta C_{LBbGi} = \Delta B_{LBbG}$$
$$\Delta B_{LBbGi} = \sum NT_{i,j} * C_{Ratei,j}$$

ΔC_{SSbLB}	: changes in carbon stocks in living biomass in urban green areas other
	than special greenery conservation zones (t-C/yr)

- ΔC_{LBbG} : gains in carbon stocks due to growth in living biomass in urban green areas other than special greenery conservation zones (t-C/yr)
- ΔC_{LBbL} : losses in carbon stocks due to losses in living biomass in urban green areas other than special greenery conservation zones (t-C/yr) Note: assumed as "0" (zero) in accordance with the GPG-LULUCF
- ΔB_{LBbG} : Annual biomass growth in urban green areas other than special greenery conservation zones (t-C/yr)
 - C_{Rate} : Annual biomass growth per tree (t-C/tree/yr)
 - *NT* : Number of trees
 - i: Land type (urban parks, green areas in road, green areas on port, green areas around sewage treatment facility, green areas by greenery

promoting system for private green space, green areas along river and erosion control site, green areas around government buildings, or green areas around public rental housing)

j: Tree species

• Parameters

• Tier 1a: Annual biomass growth rate per crown cover area (special greenery conservation areas)

The annual biomass growth rate of trees per crown cover area in special greenery conservation zones is taken as 2.9 [t-C/ha crown cover/yr], the default value indicated in the GPG-LULUCF (p. 3.297).

• Tier 1b: Annual biomass growth rate per tree (urban green facilities)

The following parameters are taken as the annual biomass growth rates per tree in urban green areas other than special greenery conservation zones.

		-	
Land use	category	Annual biomass growth per tree [t-C/tree/yr]	Remarks
Urban green Hokkaido 0.0097 areas in	Combined default values shown in table 3A.4.1 in		
Settlements remaining Settlements	Areas other than Hokkaido	0.0091	page 3.297 in the GPG-LULUCF by the distribution ratio of tree types in sampled urban parks.

 Table 7-38
 Annual biomass growth rate per tree in urban green areas

• Activity Data

The areas of "Settlements remaining Settlements" in a certain year reported in CRF tables are estimated by subtracting the cumulative total area of "Land converted to Settlements" during the past 20 years to a year subject to estimation from the total area of "Settlements" in the year subject to estimation. Moreover, in the CRF tables, the areas of "Settlements remaining Settlements" are reported by dividing three subparts: "Special Greenery Conservation Zones", "Urban Green Facilities" and "Other". Within these subparts, carbon stock changes in trees less than or equal to 20-year growth in Special Greenery Conservation Zones and Urban Green Facilities are estimated.

Japan assumes trees less than or equal to 20-year growth as those growing in urban green areas less than or equal to 20 years since establishment or designation. With respect to tier 1a, tree crown areas in the Special Greenery Conservation Zones (estimated by multiplying areas of the Zones less than or equal to 20 years since designation by percentages of planted tree areas) are applied as activity data. Tier 1b applies the number of tall trees planted in the Urban Green Facilities as activity data.

Table 7-39 Areas of Settlements remaining Settlements within the past 20 years

Category	Unit	1990	1995	2000	2005	2006	2007	2008
Settlements remaining Settlements	kha	2,348.6	2,603.5	2,795.2	2,986.5	3,018.6	3,071.0	3,115.0
Urban green facilities	kha	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Special greenery conservation zones	kha	1.9	3.6	4.8	5.5	5.5	5.6	5.6
Other	kha	2,346.6	2,599.7	2,790.4	2,980.9	3,013.1	3,065.3	3,109.3

> Tier 1a: Tree crown areas (special greenery conservation zones)

To determine the amount of activity regarding changes in the amount stored in trees in special greenery conservation zones, the area of special greenery conservation zones determined by the Ministry of Land, Infrastructure, Transport and Tourism is multiplied by the tree crown area rate, which is assumed to be 100%.

Table 7-40 Areas of special greenery conservation zones less than or

	1	4	20		•	1 .	
- ec	mar	τO		veare	SINCE	design	nation
u	Juai	ιU	20	years	SILLCC	ucorg	nation

Category		Unit	1990	1995	2000	2005	2006	2007	2008
Tota	1	kha	1.9	3.6	4.8	5.5	5.5	5.6	5.6
	Green space conservation zones	kha	0.6	0.9	1.4	2.0	2.0	2.1	2.1
	Suburban green space conservation zones	kha	1.2	2.7	3.4	3.5	3.5	3.5	3.5

> Tier 1b: Number of tall trees (urban green facilities)

Numbers of tall trees in urban green areas mentioned above are calculated according to the same methods used for revegetation activities under Article 3, paragraph 4, of the Kyoto Protocol. Brief descriptions of the calculation methods for each urban green area are stated below. In addition, detailed description of these calculation methods are stated in the "Activity Data" item in section 3.1.1.4.a) in the "Report on Japan's Supplementary Information on LULUCF activities under Article3, Paragraphs 3 and 4 of the Kyoto Protocol".

- Urban parks, green areas on port, green areas around sewage treatment facility, green areas along river and erosion control site, green areas around government buildings, and green areas around public rental housing

Numbers of tall trees in these subcategory are calculated by (1) calculating the areas falling under this category by multiplying each whole area by the area ratio of land conversion for the whole country, and then (2) calculating the numbers of tall trees in the calculated areas by multiplying each of the areas by the number of tall trees per area. The numbers of tall trees per area for each subcategory are shown in the table below.

		Number of tall trees per area			
Item	Unit	Hokkaido	Areas other than Hokkaido		
urban parks	tree/ha	340.1	203.3		
green areas on port	tree/ha	340.1	203.3		
green areas around sewage treatment facility	tree/ha	129.8	429.2		
green areas along river and erosion control site	tree/ha	1,470.8	339.0		
green areas around government buildings	tree/ha	112.1	112.1		
green areas around public rental housing	tree/ha	262.4	262.4		

Table 7-41Number of tall trees per area

- Green areas in road

Activity data (the number of tall trees) in "Remaining green area on road" is calculated by the following procedures.

1. Calculate the number of tall trees planted during 20 years after establishing green areas in road by using data from the "Road Tree Planting Status Survey" which had been implemented in

FY 1987, FY 1992, FY 2007, FY 2008 and FY 2009,

- 2. Multiply the number of tall trees calculated in Step 1 by the ratio of the number of tall trees planted on the road which planted area is less than 500 m^2 ,
- 3. Multiply the number of tall trees calculated in Step 2 by the area ratio of land remaining Settlements.

The values of Step 3 become the number of tall trees that are activity data on green areas in road.

- Green areas by greenery promoting system for private green space

Activity data (the numbers of tall trees) are available for each facility. Therefore, total number of tall trees is used as activity data.

2) Carbon Stock Changes in Dead Organic Matters in Settlements remaining Settlements

This category estimates carbon stock changes in litter in urban parks and green areas on port. Carbon stock changes in dead wood result in "IE" because they are included in carbon stock changes in living biomass. Carbon stock changes in litter in the subcategories other than urban parks and green areas on port are not estimated due to the difficulty of obtaining their activity data.

• Estimation Method

A country-specific method is applied for this estimation because a method for carbon stock changes in litter in Settlements is not provided in the GPG-LULUCF. The estimation method is described below.

$$\Delta C_{SSLit} = \sum (A_i \times L_{it,i})$$

 ΔC_{SSLit} : Carbon stock changes in litter in Settlements remaining Settlements (t-C/yr)

- *A* : Area of urban parks and green areas on port in Settlements remaining Settlements (ha)
- L_{it} : Carbon stock change per area in urban parks or green areas on port (t-C/ha/yr)
- i : Land type (urban parks or green areas on port)

Parameters

For litter, Japan estimates carbon stock changes only in branches and leaves dropped naturally from tall trees. Carbon stock changes in litter per urban park area is calculated by using annual accumulation of litter per a tall tree (Hokkaido: 0.0006 [t-C/tree/yr], other prefectures: 0.0009 [t-C/tree/yr]) based on results of field survey in urban parks, and the number of tall trees per area and ratio of litter moved to off-site due to management including cleaning (54.4%). As a result of calculation, carbon stock changes in litter per urban park area are 0.0984 [t-C/ha/yr] for Hokkaido and 0.0830 [t-C/ha/yr] for other prefectures. In addition, carbon fraction in litter is assumed to be 0.05 [t-C/t-dm] which is a default value provided in the GPG-LULUCF.

• Activity Data

Activity data on this category are the same as those on living biomass in urban parks and green areas on port.

c) Uncertainties and Time-series Consistency

• Uncertainty Assessment

The default values shown in the GPG-LULUCF page 3.297 were applied to the annual carbon stock changes for trees in urban parks and special greenery conservation zones. The uncertainty estimates for the emission and removal factors were determined by using the decision tree, to be \pm 50% through application of the standard value shown in the GPG-LULUCF page 3.298.

Moreover, the uncertainty estimates for living biomass in special greenery conservation zones applies expert judgment according to the decision tree for activity data in the GPG-LULUCF. These estimates were determined as 10% for the number of tall trees and existing trees and the areas of existing special greenery conservation zones, 17% for wooded areas, and 20% for forested area rate. Meanwhile, the uncertainty estimates for activity data and parameters on urban parks, green areas in road, green areas on port, green areas around sewage treatment facility green areas by greenery promoting system for private green space, green areas along river and erosion control site, green areas around government buildings and green areas around public rental housing are 67% and 48%, respectively.

As a result, the uncertainty estimate was 76% for the entire removal by Settlements remaining Settlements. The methodology of uncertainty assessment was described in Annex 7. In addition, concrete uncertainty estimates for individual parameters in this category will be illustrated in future submissions after investigation is completed.

• Time-series Consistency

Time-series consistency for this subcategory is ensured.

d) Source-/Sink-specific QA/QC and Verification

Quality control (QC) is implemented in accordance with the Tier 1 approach described by GPG (2000) and the GPG-LULUCF. The Tier 1 approach includes procedures for checking parameters and activity data, and for archiving references. The QA/QC activity procedures are described in Section 6.1 of Annex 6.

e) Source-/Sink-specific Recalculations

• Determination of areas of "Settlements remaining Settlements" and "Land converted to Settlements"

Until the 2009 inventory submission, the area of "Settlements remaining Settlements" in a certain fiscal year was estimated by multiplying ratios of land, where had not been converted to other land-use categories in each year (= "1- land conversion ratio of each year") during the past 20 years, to the total Settlements area of 20 years ago. On the other hand, the area of "Land converted to Settlements" in a certain fiscal year was estimated by subtracting the area of "Settlements remaining Settlements" from the total Settlements area in the same fiscal year. However, under this estimation method, the areas of "Settlements" remaining Settlements" were underestimated, while those of "Land converted to Settlements" were overestimated. Therefore, the method of determining areas of "Settlements remaining Settlements" described in section 7.7.1.b) was applied, and the areas were recalculated.

f) Source-/Sink-specific Planned Improvements

• Growth Rate of Living Biomass per Unit of Greening Area in Special Greenery Conservation Zones

The default values in the GPG-LULUCF were applied to the biomass growth rate per unit of greening area in special greenery conservation zones. However, the growth rate needs to be further examined, and a parameter that can be finally applied as the growth rate should be determined. Therefore, Japan is considering the characteristics of greening activity and will seek a parameter that most suits the

actual situation.

• Carbon Stock Changes in Soil

The carbon stock changes in soil are currently reported as "NE". Consideration for the estimation method will be implemented when new data and information are obtained.

• Validity of the Assumption used in the Method of Estimating the Area of Settlements

The present estimation method assumes settlement areas as "roads" and "human habitats" in the land use categorization. However, the validity of the assumption is under re-examination.

7.7.2. Land converted to Settlements (5.E.2)

a) Source/Sink Category Description

Land conversion to Settlements results in carbon stock changes in the living biomass, dead organic matter, and soil in the land areas subject to the conversion. This subcategory deals with the carbon stock changes in lands converted to Settlements, which were converted from other land-use categories to Settlements within the past 20 years. With respect to dead organic matter, Japan introduced the Century-jfos model from the FY 2005 estimation, and it became possible to estimate carbon stock changes of dead organic matter in Forest land. Therefore, carbon stock changes in dead organic matter in Settlements converted from Forest land have been estimated and reported since FY 2005. The net CO₂ emissions by this subcategory in FY 2008 were 1,601 Gg-CO₂; this represents a decrease of 70.1% over the FY 1990 value and an increase of 61.0% over the FY 2007 value.

b) Methodological Issues

1) Carbon stock change in Living Biomass in Land converted to Settlements

• Estimation Method

Carbon stock changes in living biomass under the land converted to Settlements are estimated by calculating the carbon stock changes before and after conversion and adding annual carbon stock changes in land converted to urban green facilities. The Carbon stock changes in living biomass before and after conversion are estimated by applying the equation of section 3.6.2 in the GPG-LULUCF (multiplying the land area converted from each land use to Settlements by the difference between the values of biomass stock before and after conversion, and by the carbon fraction). Biomass stocks in land converted to urban green areas are increased because due to growth of trees planted after conversion. Hence, carbon stock changes in living biomass in land converted to urban green facilities are estimated by making carbon stock changes before and after conversion plus annual carbon stock changes after conversion that are estimated by applying Tier 1b method in section 3A.4.1.1.1 in the GPG-LULUCF.

$$\Delta C_{LSLB} = \sum (A_I \times (CR_a - CR_{b,I}) \times CF) + \sum (\Delta C_{LS(UG)Gi} - \Delta C_{LS(UG)Li})$$

$$\Delta C_{LS(UG)G} = \Delta B_{LS(UG)G}$$

$$\Delta B_{LS(UG)G} = \sum NT_j \times C_{Ratej}$$

 ΔC_{LSLB} : carbon stock changes in living biomass in land converted to Settlements (t-C/yr)

 A_I : area of land converted annually to Settlements from land use type *i* (ha/yr)

 CR_a : carbon reserves immediately following conversion to Settlements (t-dm/ha),

default =	0
ueraun –	U.

- $CR_{b,I}$: carbon reserves in land use type *i* immediately before conversion to Settlements (t-dm/ha)
 - *CF* : carbon fraction of dry matter (t-C/t-dm)
 - *I* : type of land before conversion
- $\Delta C_{LS(UG)Gi}$: annual carbon stock gain in living biomass in land converted to urban green areas due to growth in living biomass (t-C/yr)
- $\Delta C_{LS(UG)Li}$: annual carbon stock loss in living biomass due to loss of living biomass (t-C/yr) Note: the averaged ages of estimated trees are less than or equal to 20 years old; therefore, the loss are assumed as "0" (zero) in accordance with the GPG-LULUCF
- $\Delta B_{LS(UG)G}$: annual biomass growth in land converted to urban green areas (t-C/yr)
 - C_{Rate} : annual biomass growth per tree (t-C/tree/yr)
 - NT : number of trees
 - *i* : type of urban green areas after conversion (urban parks, green areas on road, green areas on port, green areas around sewage treatment facility green areas by greenery promoting system for private green space, green areas along river and erosion control site, green areas around government buildings, or green areas around public rental housing)
 - j : tree species

• Parameters

Biomass stocks for each land use category

Table 7-42 shows the biomass stocks before and after conversion. Carbon stock losses due to loss of living biomass are assumed as "0" (zero) in accordance with the GPG-LULUCF, because trees subject to estimation are all less than or equal to 20 years old. Table 7-43 shows the annual biomass growth of trees in land converted to urban green areas.

Biomass stock data for each fand use category								
La	Land use category			Note				
Before			133.17 (the FY 2008 value)	Calculated by utilizing biomass stocks in land of deforestation under Article 3, paragraph 3, of the Kyoto Protocol, which are provided from the National Forest Resources Database. In addition, the values before 2004 are extrapolated by means of trend from 2005 to the latest year. (Reference values) FY 1990: 105.30 t-dm/ha FY 2005: 129.02 t-dm/ha FY 2007: 131.70 t-dm/ha				
conversion		rice field	0.00	assumed as "0" (zero)				
		upland field	0.00	assumed as "0" (zero)				
	Cropland	orchard	30.63	Calculate by multiplying average age and growth rate which are given in Daiyu Ito <i>et al</i> " <i>Estimating</i> <i>the Annual Carbon Balance in Warm-Temperature</i> <i>Deciduous Orchards in Japan</i> "				
	Grassland	Grassland		<i>GPG-LULUCF</i> Table 3.4.2 and Table 3.4.3 (warm temperate wet)				
	Wetlands an	d Other land	0.00	Assume that biomass stocks are "0".				
Immediately after conversion	Settlements		0.00	Assume that biomass stocks immediately after conversion are "0".				

Table 7-42	Biomass	stock	data [.]	for	each	land	use	category
100107-42	Diomass	STOCK	uata .	IOI	cach	ianu	use	category

Land use	category	Annual biomass growth per tree [t-C/tree/yr]	Remarks
Land	Hokkaido	0.0097	Combined default values shown in table 3A.4.1 in
converted to urban green areas	Areas other than Hokkaido	0.0091	page 3.297 in the GPG-LULUCF by the distribution ratio of tree types in sampled urban parks.

 Table 7-43
 Annual biomass growth of trees in land converted to urban green areas

> Carbon fraction of dry matter

0.5 (tC/t-dm) (default value, GPG-LULUCF)

• Activity Data

Land Areas converted to Settlements

With respect to area of land converted to Settlements, only the areas converted to Settlements from Forest land, Cropland and Grassland are determined. Since no data is available on the area converted to Settlements from Wetlands or other land use categories, no figures are reported in those land use categories. Instead, they are reported as "IE" and recorded under "Other land remaining Other land." It should be noted that the area presented in the CRF "Table 5.E SECTORAL BACKGROUND DATA FOR LAND USE, LAND-USE CHANGE AND FORESTRY—Settlements" are not the converted area in FY 2008 but the sum of annually converted areas during the past 20 years.

- Conversion from Forest land

Areas of Forest land converted to Settlements are estimated by multiplying the area, which is calculated by subtracting the area of Forest land converted to Wetlands from total land areas converted from Forest land, by the land ratio of Forest land converted to Settlements. The land ratio is estimated from areas of private forests converted to other land-use categories provided by statistics based on the Forestry Agency records, and the ratio for private forests is assumed as the same as that for national forests. For further information on determining the total land areas converted from Forest land, see the part on activity data in section 7.4.2.b).1).

- Conversion from Cropland

For former rice fields, upland fields, and orchards (according to "Area Statistics for Cultivated and Commercially Planted Land"), the areas of land converted to factories, roads, housing, and forest roads are used.

• Conversion from Grassland

For former pasture land and grazed meadow land constituting moved or converted Cropland which is converted to Settlements (according to "Area Statistics for Cultivated and Commercially Planted Land"), the areas of land converted to factories, roads, housing, and forest roads are used.

Category	Unit	1990	1995	2000	2005	2006	2007	2008
Land converted to Settlements	kha	43.8	36.5	24.0	15.4	15.3	15.0	17.6
Forest land converted to Settlements	kha	19.3	13.8	7.3	4.9	4.0	3.2	5.1
Cropland converted to Settlements	kha	21.4	19.5	14.5	9.2	9.8	10.2	10.9
Rice field converted to Settlements	kha	13.0	12.1	9.5	6.0	6.4	6.5	7.1
Upland field converted to Settlemer	kha	6.1	5.6	3.8	2.5	2.7	2.9	3.0
Orchard converted to Settlements	kha	2.3	1.8	1.1	0.7	0.7	0.8	0.8
Grassland converted to Settlements	kha	3.2	3.1	2.2	1.4	1.5	1.6	1.6
Wetlands converted to Settlements	kha	IE						
Other land converted to settlements	kha	IE						

 Table 7-44
 Area of Land converted to Settlements (single year)

> Area and number of trees in land converted to urban green areas

Areas of land converted to urban green areas are calculated by multiplying the whole areas of each urban green area (urban parks, green areas on road, green areas on port, green areas around sewage treatment facility green areas by greenery promoting system for private green space, green areas along river and erosion control site, green areas around government buildings, or green areas around public rental housing) by area ratio of land conversion for the whole country. Numbers of trees are calculated by multiplying each urban green area converted from other land-use categories by number of trees per area. Detailed information regarding these activity data are provided in the "activity data" item in section 3.1.1.4 e) in the "Report on Japan's Supplementary Information on LULUCF activities under Article 3, Paragraphs 3 and 4 of the Kyoto Protocol".

2) Carbon stock change in Dead organic Matter in Land converted to Settlements

This category estimates carbon stock changes in dead wood and litter in Settlements converted from Forest land, and those in litter in land converted to urban parks and green areas on port.

With respect to dead wood, only the carbon stock changes in Settlements converted from Forest land are estimated. Tier 2 method is applied to the estimation in accordance with the method for "conversion from other land use to Cropland" in the GPG-LULUCF. Carbon stock changes in dead wood in Land converted to urban green facilities are reported as "IE" because they are included in those in their living biomass.

In regard to litter, the carbon stock changes in Settlements converted from Forest land and land converted to urban parks and green areas on port are estimated. Tier 2 method is applied to estimation of the carbon stock changes in Settlements converted from Forest land in accordance with the method for "conversion from other land use to Cropland" in the GPG-LULUCF. Carbon stock changes in litter in land converted to urban parks and green areas on port are estimated by applying Japan's country-specific estimation method due to lack of an estimation method in the GPG-LULUCF. Carbon stock changes in litter in land converted to urban green areas other than urban parks and green areas on port are not estimated due to the difficulty of obtaining their activity data.

Estimation Method

$$\Delta C_{LS} = \Delta C_{FS} + \Delta C_{LSLit}$$

- ΔC_{FS} : Carbon stock changes in dead organic matter in Settlements converted from Forest land (t-C/yr)
- ΔC_{LSLit} : Carbon stock changes in litter in urban parks and green areas on port converted from land use categories other than Forest land (t-C/yr)

> Carbon stock changes in dead organic matter in Settlements converted from Forest land

Carbon stock changes in dead organic matter in Forest land converted to Settlements are estimated by applying Tier 1 estimation method described in section 2.3.2.2 in Volume 4 of the 2006 IPCC Guidelines. In addition, all carbon stocks in dead organic matter in the subcategory are assumed oxidized and emitted as CO_2 within the year of conversion.

$$\Delta C_{FS} = \sum \left(\left(C_{after,i} - C_{before,i} \right) \times A \right)$$

 ΔC_{FS} : Carbon stock changes in dead organic matter in Forest land converted to Settlements (t-C/yr)

 $C_{after,i}$: Carbon stock in dead wood or litter after conversion (t-C/ha) Note: carbon stocks after conversion are assumed as "0" (zero).

 $C_{before,i}$: Carbon stock in dead wood or litter before conversion (t-C/ha)

- A : Area of Forest land converted to Settlements in a year subject to estimation (ha)
 - *i* : type of dead organic matter (dead wood or litter)

> Carbon stock changes in litter in Land converted to urban parks and green areas on port

$$\Delta C_{LSLit} = \sum (A_i \times (C_{AfterLit,i} - C_{BeforeLit,I}) + A_i \times Lit_i)$$

 ΔC_{LSLit} :Carbon stock changes in litter in urban parks and green areas on port converted from land use categories other than Forest land (t-C/yr)

- A: Area of urban parks or green areas on port converted from land use categories other than Forest land for one past year (ha)
- $C_{AfterLit}$: Carbon stock in litter after conversion (t-C/ha)
- $C_{BeforeLit}$: Carbon stock in litter before conversion (t-C/ha)
 - *Lit* : Annual carbon stock changes per area in litter in urban parks or green areas on port converted from land use categories other than Forest land (t-C/ha/yr)
 - *I* : Land-use type before conversion
 - i : Land-use type after conversion (urban parks or green areas on port)

• Parameters

> Carbon stocks in dead organic matter in Forest land converted to Settlements

Average carbon stocks in dead wood and litter in Forest land before conversion are shown in Table 7-23. The average carbon stocks in these categories from FY1990 to FY2004 are not estimated; therefore the carbon stocks in FY2005 are substituted for them. In addition, the stocks of dead organic matter are estimated under the assumption that they come to be zero immediately after conversion, and are not accumulated after conversion.

> Carbon stocks in litter in urban parks and green areas on port converted from land use categories other than Forest land

When urban parks and green areas on port are converted from land use categories other than Forest land, litter stocked before conversion is not moved to off-site because ground before conversion, including litter, are continuously used after conversion or covered with additional soils brought externally. Hence, litter stocked before conversion does not decrease after conversion. In addition, litter stocks scarcely increased immediately after conversion because newly planted trees do not immediately produce litter. Due to these facts, carbon stock changes before and after conversion are regarded as "0" (zero). Litter stocks accumulated in a year after conversion are calculated by the same method used for urban parks and green areas on port in Settlements remaining Settlements due to the research result that the litter stocks are accumulated as same as those in Settlements remaining Settlements by natural drop of fallen leaves and branches from trees in land converted to the urban parks and green areas.

• Activity Data (Area)

> Carbon stocks in dead organic matter in Forest land converted to Settlements

The area of land that was converted from Forest land to Settlements during the past 20 years is determined by aggregating areas converted from Forest land to Settlements during the past 20 years. For the areas, see Table 7-45 below.

	Category		Unit	1990	1995	2000	2005	2006	2007	2008
Land	Land converted to Settlements		kha	868.4	773.5	731.8	650.5	628.4	606.0	582.0
	Fores	st land converted to Settlements	kha	288.5	307.3	299.6	261.3	247.5	232.1	215.6
	Cropland converted to Settlements		kha	520.6	409.1	376.8	338.8	331.5	325.3	318.8
		Rice field converted to Settlements	kha	320.9	252.1	236.6	215.2	211.3	207.8	204.6
		Upland field converted to Settlemer	kha	137.2	110.5	101.8	91.9	89.8	88.2	86.1
		Orchard converted to Settlements	kha	62.4	46.5	38.5	31.6	30.4	29.3	28.1
	Gras	sland converted to Settlements	kha	59.3	57.2	55.4	50.5	49.4	48.7	47.6
	Wetlands converted to Settlements		kha	IE						
	Other land converted to settlements		kha	IE						

Table 7-45 Area of Land converted to Settlements within the past 20 years

Carbon stock changes in litter in Land converted to urban parks and green areas on port

Areas of land converted to urban green areas are calculated as same as the carbon stock changes in living biomass in land converted to urban green areas. The calculation is to multiply the whole areas of urban parks and green areas on port by area ratio of land conversion for the whole country, respectively. Detailed information regarding these areas is provided in the "activity data" item in section 3.1.1.4 e) in the "Report on Japan's Supplementary Information on LULUCF activities under Article 3, Paragraphs 3 and 4 of the Kyoto Protocol".

c) Uncertainties and Time-series Consistency

• Uncertainty Assessment

The uncertainties of the parameters and activity data for living biomass and dead organic matter were individually assessed on the basis of field study results, expert judgment, or the default values described in the GPG-LULUCF. The uncertainty estimate was 9% for the entire emission from land converted to Settlements. The methodology used in the uncertainty assessment is described in Annex 7. In addition, concrete uncertainty estimates for individual parameters in this category will be illustrated in future submissions after investigation is completed.

• Time-series consistency

Time-series consistency for this subcategory is ensured.

d) Source-/Sink-specific QA/QC and Verification

Quality control (QC) is implemented in accordance with the Tier 1 approach described by GPG (2000) and the GPG-LULUCF. The Tier 1 approach includes procedures for checking parameters and activity data, and for archiving references. The QA/QC activity procedures are described in Section 6.1 of Annex 6.

e) Source-/Sink-specific Recalculations

• Areas of Land converted to Settlements

As described in section 7.7.1.e), the method of determining areas of "Land converted to Settlements" in a certain year was revised. Areas of Forest land converted to Settlements in a certain year were also changed because the method of estimating the areas was revised as described in "Activity Data" in section 7.7.2.b)1) due to the reason mentioned in section 7.4.2.e). Moreover, areas of Land converted to Settlements during the past 20 years because there are very few cases in Japan that Land converted to Settlements is converted again to other land-use categories. As a result of these revisions of determining the land areas, the areas of Land converted to Settlements were recalculated.

• Biomass Stocks before Conversion in Forest land converted to Settlements

Carbon stock losses resulting from conversion in Forest land converted to Settlements had been estimated by multiplying its converted areas in a certain year by biomass stocks per area in all forests. Because average biomass stocks before deforestation in D areas seemed to better represent actual conditions of conversion from forests, the biomass stocks used in the estimation were changed to those before deforestation in D areas, and the carbon stock losses were recalculated.

• Carbon Stock Changes in Dead Organic Matter in Forest land converted to Settlements

Carbon stock changes in dead organic matter in Forest land converted to Settlements had been estimated under the same assumption for soil that the carbon stocks were changed linearly over 20 years. However, this method of estimating the carbon stock changes were revised in accordance with the Tier 1 method in section 2.3.2.2 in Volume 4 of the 2006 IPCC Guidelines that the carbon stocks were assumed oxidized immediately after land conversion, and the carbon stock changes were recalculated.

f) Source-/Sink-specific Planned Improvements

• Carbon Stock Changes in Soil

The carbon stock changes in soil are currently reported as "NE". Consideration for the estimation method will be implemented when new data and information are obtained.

• Validity of the Assumption used in the Method of Estimating the Area of Settlements

Furthermore, the areas of Forest land converted to Settlements are presently assumed as "roads", "human habitats", "school reservations", "park and green areas", "road sites", "environmental facility sites", "defense facility sites", "golf courses", "ski courses" and "other recreation sites" in the national land-use categorization; however, this assumption may fail to cover all the areas. Therefore, the validity of the assumption needs to be re-examined.

7.8. Other land (5.F)

Other land consists of land areas that are not included in the other five land-use categories. As concrete examples of Other land, the GPG-LULUCF indicates bare land, rock, ice, and unmanaged land areas. In FY 2008, Japan's Other land area was about 2.88 million ha, which is equivalent to about 7.6% of the national land and disaggregated as shown in Table 7-46 below.

Category	Unit	1992
Other land	kha	2,807.2
Defence Facility Site	kha	137.0
Cultivation Abandonment Area	kha	217.0
Coast	kha	46.0
Northern Territories	kha	504.0
Other	kha	1,903.2

Table 7-46Land included in the Other Land Category (the 1992 values)

The CO_2 emissions from this category in FY 2008 were 388 Gg- CO_2 , which was a 75.6% decrease over the FY 1990 value and a 51.6% decrease over the FY 2007 value.

This section divides Other land into two subcategories, "Other land remaining Other land (5.F.1.)" and

"Land converted to Other land (5.F.2.)", and describes them separately in the following subsections.

Gas	Category	Carbon pool	Unit	1990	1995	2000	2005	2006	2007	2008
CO_2	5.F. Other land	Total	Gg-CO ₂	1,585.5	1,511.0	1,261.2	804.8	1,172.8	799.9	387.5
		Living Biomass	Gg-CO ₂	1,173.7	1,168.2	1,009.1	641.8	912.4	638.8	328.2
		Dead Wood	Gg-CO ₂	286.2	238.3	175.2	113.2	180.5	111.9	40.0
		Litter	Gg-CO ₂	125.6	104.6	76.9	49.7	80.0	49.3	19.4
		Soil		IE,NE	IE,NE	IE,NE	IE,NE	IE,NE	IE,NE	IE,NE
	5.F.1. Other land	Total	Gg-CO ₂							
	remaining Other land	Living Biomass	Gg-CO ₂							
	0	Dead Wood	Gg-CO ₂							
		Litter	Gg-CO ₂							
		Soil	Gg-CO ₂							
	5.F.2. Land converted to	Total	Gg-CO ₂	1,585.5	1,511.0	1,261.2	804.8	1,172.8	799.9	387.5
	Other land	Living Biomass	Gg-CO ₂	1,173.7	1,168.2	1,009.1	641.8	912.4	638.8	328.2
		Dead Wood	Gg-CO ₂	286.2	238.3	175.2	113.2	180.5	111.9	40.0
		Litter	Gg-CO ₂	125.6	104.6	76.9	49.7	80.0	49.3	19.4
		Soil	Gg-CO ₂	IE,NE	IE,NE	IE,NE	IE,NE	IE,NE	IE,NE	IE,NE

7.8.1. Other land remaining Other land (5.F.1)

a) Source/Sink Category Description

This subcategory deals with carbon stock changes in the Other land remaining Other land during the past 20 years. The land area of this subcategory are determined by subtracting the summed areas of the other five land-use categories from the total national land area shown in *the Land Use Status Survey* compiled by the Ministry of Land, Infrastructure, Transport, and Tourism. In concrete terms, the land area of this category includes defense facility sites, cultivation abandonment areas, coasts, and northern territories. However, carbon stock changes in this subcategory are not considered in accordance with the GPG-LULUCF.

Table 7-48 Areas of Other land remaining Other land within the past 20 years

Category	Unit	1990	1995	2000	2005	2006	2007	2008
Other land remaining Other land	kha	2,165.7	2,362.1	2,417.9	2,319.3	2,332.2	2,351.8	2,378.1

b) Source-/Sink-specific Planned Improvements

• Method of Defining Land Areas

7.6% of the nation's land is categorized as "Other land remaining Other land", but validity of the categorization is presently under examination in a cross-cutting manner through the LULUCF sector.

• Carbon Stock Changes in Living Biomass of Other land remaining Other land

The carbon stock changes in the living biomass of "Other land remaining Other land" are assumed to be zero, but this assumption may differ from the actual situation. Therefore, the land-use types in the "Other land" category will be investigated, and the validity of the assumption will be re-examined. If there are some land-use types that contain living biomass, reclassification of land-use categories will be examined.

7.8.2. Land converted to Other land (5.F.2)

a) Source/Sink Category Description

This subcategory deals with carbon stock changes in the land converted to Other land within the past 20 years. The land area of this subcategory includes land converted for soil and stone mining, land damaged by natural disasters, and land in which cultivation is abandoned. The CO_2 emissions from this subcategory in FY 2008 were 388 Gg-CO₂; this represents a decrease of 75.6% over the FY 1990 value and a decrease of 51.6% over the FY 2007 value.

With respect to living biomass, its carbon stock change as a result of land use conversion from other land use to Other land is estimated. This process includes both temporary loss and subsequent gain of living biomass in the land before and after conversion.

With respect to dead organic matter, Japan introduced the Century-jfos model for the FY 2005 estimation, and it became possible to estimate carbon stocks in dead organic matter in Forest land. Therefore, carbon stock changes in the dead organic matter in Other land converted from Forest land have been estimated and reported since FY 2005.

Carbon stock changes in soils in Land converted to Other land are not estimated due to lack of data. Therefore, the carbon stock changes in the carbon pool are reported as "NE".

b) Methodological Issues

1) Carbon stock change in Living Biomass in Land converted to Other land

• Estimation Method

The Tier 2 method is applied.

 $\Delta C = \Delta C_{Losses} + \Delta C_{Gains}$

$$\Delta C_{Losses} = \sum_{i} \left\{ A_{i} \times (B_{after} - B_{before,i}) \times CF \right\}$$

- ΔC : carbon stock change in Other land converted from other land use i within a year (tC/yr)
- ΔC_{Losses} : carbon stock change upon land use conversion from other land use i to Other land within a year (tC/yr)
- ΔC_{Gains} : carbon stock change associated with biomass growth in converted Other land within a year (tC/yr)
 - A_i : area of land converted from other land i to Other land within a year (ha)

 B_{after} : weight of living biomass (dry matter basis) immediately after land use conversion to Other land (t-dm/ha), default value = 0

- $B_{before,i}$: weight of living biomass (dry matter basis) in land use i before land use conversion (t-dm/ha)
 - *CF* : carbon fraction of dry matter (tC/t-dm)
 - i and use (Forest land, Cropland, Grassland, Wetlands, Settlements)
 Note: Carbon stock change in living biomass associated with biomass growth in Other land is assumed to be zero.

• Parameters

Biomass stock in each Land Use Category

The values shown in Table 7-49 are used for the estimation of biomass stock changes upon land use conversion and subsequent changes in biomass stock because of biomass growth in converted land.

La	and use categor	У	Biomass stocks [t-dm/ha]	Note
Before	Forest land		133.17 (the FY 2008 value)	Calculated by utilizing biomass stocks in land of deforestation under Article 3, paragraph 3, of the Kyoto Protocol, which are provided from the National Forest Resources Database. In addition, the values before 2004 are extrapolated by means of trend from 2005 to the latest year. (Reference values) FY 1990: 105.30 t-dm/ha FY 2005: 129.02 t-dm/ha FY 2007: 131.70 t-dm/ha
conversion		rice field	0.00	Assume that biomass stocks are "0".
		upland field	0.00	Assume that biomass stocks are "0".
	Cropland	orchard	30.63	Calculate by multiplying average age and growth rate which are given in Daiyu Ito <i>et</i> <i>al</i> " <i>Estimating the Annual Carbon Balance</i> <i>in Warm-Temperature Deciduous Orchards</i> <i>in Japan</i> "
	Grassland		13.50	<i>GPG-LULUCF</i> Table 3.4.2 and Table 3.4.3 (warm temperate wet)
	Wetlands an	d Settlements	0.00	Assume that biomass stocks are "0".
Immediately after conversion	Other land		0.00	Assume that biomass stocks immediately after conversion are "0".

Table 7-49	Biomass	stock	data	for each	land	use cat	egory

> Carbon Fraction of dry matter

0.5 (tC/t-dm) (GPG-LULUCF, default value)

• Activity Data (Area)

Only the areas converted from Forest land and Cropland to Other land are determined. Since no data was available on the area converted from Wetlands and Settlements to Other land, estimations for those land use categories were not possible. Therefore, they were reported as "IE" and reported under "Other land remaining Other land." It should be noted that the areas presented in the CRF "Table 5.F SECTORAL BACKGROUND DATA FOR LAND USE, LAND-USE CHANGE AND FORESTRY – Other land" are not the converted area in FY 2008 but the sum of annually converted areas during the past 20 years.

Conversion from Forest Land

Area of land that have been converted from Forest land to Other land are estimated by multiplying the area, which is calculated by subtracting the area of Forest land converted to Wetlands from total area converted from Forest land, by the land ratio of Forest land converted to Other land The land ratio is estimated from areas of private forests converted to other land-use categories provided by statistics based on the Forestry Agency records, and the ratio for private forests is assumed as the same as that for national forests. For further information on determining the total land areas converted from Forest

land, see the part on activity data in section 7.4.2.b).1).

> Conversion from Cropland

For former rice fields, upland fields, and orchards, the area classified as "other, natural disaster damage" is used according to *the Area Statistics for Cultivated and Commercially Planted Land*.

Conversion from Grassland

For former pasture land and grazed meadow land, the area of former pasture land classified as "other, natural disaster damage" (according to *the Area Statistics for Cultivated and Commercially Planted Land*) and the area of former grazed meadow land which is classified as "other, classification unknown" (*the Moving and Conversion of Cropland*) are used.

	Table 7-30	Alea OI			Julei lallo	u (single	year)		
	Category	Unit	1990	1995	2000	2005	2006	2007	2008
Land co	onverted to Other land	kha	23.9	29.8	28.6	19.8	17.2	15.2	13.1
	Forest land converted to Other land	kha	4.8	4.0	2.9	1.9	3.0	1.9	0.7
	Cropland converted to Other land	kha	15.3	20.0	16.8	13.0	9.2	8.9	8.6
	Rice field	kha	4.9	5.7	5.9	7.0	3.1	3.4	3.9
	Upland field	kha	7.5	10.8	8.4	4.7	4.7	4.3	3.7
	Orchard	kha	2.8	3.6	2.5	1.3	1.3	1.2	1.0
	Grassland converted to Other land	kha	3.8	5.8	9.0	4.9	5.0	4.5	3.8
	Wetlands converted to Other land	kha	IE	IE	IE	IE	IE	IE	IE

IE

IE

IE

IE

IE

IF

 Table 7-50
 Area of land converted to Other land (single year)

2) Carbon Stock Change in Dead Organic Matter in Land converted to Other land

kha

IE

• Estimation Method

Settlements converted to Other land

La

Carbon stock changes in dead organic matter in Forest land converted to Other land are estimated by assuming that all carbon stocks in the dead organic matter are oxidized and emitted as CO_2 within the year of conversion in accordance with the Tier 1 estimation method described in section 2.3.2.2 in Volume 4 of the 2006 IPCC Guidelines.

$$\Delta C_{FO} = \sum \left((C_{after,i} - C_{before,i}) \times A \right)$$

 ΔC_{FO} : Carbon stock changes in dead organic matter in Forest land converted to Other land (t-C/yr)

 $C_{after,i}$: Carbon stock in dead wood or litter after conversion (t-C/ha) Note: carbon stocks after conversion are assumed as "0" (zero).

 $C_{before,i}$: Carbon stock in dead wood or litter before conversion (t-C/ha)

- A : Area of Forest land converted to Other land within the year of conversion (ha)
- *i* : type of dead organic matter (dead wood or litter)

• Parameters

> Carbon stocks in dead organic matter in Other land converted from Forest land

Average carbon stocks in dead wood and litter in Forest land before conversion are shown in Table 7-23. The average carbon stocks in these categories from FY1990 to FY2004 are not estimated; therefore those in FY2005 are substituted for them. In addition, the stocks of dead organic matter are estimated under the assumption that they come to be zero immediately after conversion, and are not accumulated after conversion.

• Activity Data (Area)

The values of annually converted area from each land use category to Other land during the past 20

years are summed up to obtained the total area that is converted to Other land during the same time period.

					-	•		
Category	Unit	1990	1995	2000	2005	2006	2007	2008
Land converted to Other land	kha	590.3	514.3	509.4	521.8	517.2	517.2 511.6 501.2	
Forest land converted to Other land	kha	103.5	103.7	97.8	81.1	78.7	75.6	71.5
Cropland converted to Other land	kha	419.4	336.9	313.5	320.7	316.4	312.4	306.0
Rice field	kha	181.1	119.9	103.7	106.4	104.7	103.9	103.7
Upland field	kha	164.1	153.1	153.6	160.2	158.9	157.1	153.0
Orchard	kha	74.2	63.9	56.2	54.0	52.8	51.4	49.4
Grassland converted to Other land	kha	67.3	73.7	98.1	120.0	122.1	123.6	123.6
Wetlands converted to Other land	kha	IE	IE	IE	IE	IE	IE	IE
Settlements converted to Other land	kha	IE	IE	IE	IE	IE	IE	IE

Table 7-51Area of Land converted to Other land within the past 20 years

c) Uncertainties and Time-series Consistency

• Uncertainty Assessment

Uncertainties of the parameters and the activity data for living biomass and dead organic matter, were individually assessed on the basis of field study results, expert judgment, or the default values described in the GPG-LULUCF. The uncertainty was estimated as 28% for the entire emission from the land converted to Other land. More detailed information on the uncertainty assessment is described in Annex 7. In addition, concrete uncertainty estimates for individual parameters in this category will be illustrated in future submissions after investigation is completed.

• Time-series Consistency

Time-series consistency for this subcategory is ensured.

d) Source-/Sink-specific QA/QC and Verification

Quality control (QC) is implemented in accordance with the Tier 1 approach described in the GPG (2000) and the GPG-LULUCF. The Tier 1 approach includes procedures for checking parameters and activity data, and for archiving references. More detailed information on the QA/QC activity procedures is described in Section 6.1 of Annex 6.

e) Source-/Sink-specific Recalculations

• Areas of Forest land converted to Other land

As mentioned in section 7.4.2.e), the method of determining areas of Forest land converted to other land-use categories was revised. Hence, areas of Forest land converted to Other land were recalculated.

• Biomass Stocks before Conversion in Forest land converted to Other land

Carbon stock losses resulting from conversion in Forest land converted to Other land had been estimated by multiplying its converted areas in a certain year by biomass stocks per area in all forests. Because average biomass stocks before deforestation in D areas seemed to better represent actual conditions of conversion from forests, the biomass stocks used in the estimation were changed to those before deforestation in D areas, and the carbon stock losses were recalculated.

• Carbon Stock Changes in Dead Organic Matter in Forest land converted to Other land

Carbon stock changes in dead organic matter in Forest land converted to Other land had been estimated under the same assumption for soil that the carbon stocks were changed linearly over 20 years. However, the 2006 IPCC Guidelines mentioned in section 2.3.2.2 in its Volume 4 that the carbon stocks should be assumed oxidized immediately after land conversion. Therefore, the estimation method of the carbon stock changes in the carbon pool was revised in accordance with the

2006 IPCC Guidelines, and the carbon stock changes were recalculated.

f) Source-/Sink-specific Planned Improvements

• Carbon Stock Changes in Living Biomass of Land converted to Other Land

The carbon stock changes in living biomass of land converted to Other land were assumed to be zero because of a lack of reference information for Other land. However, this assumption may differ from the actual situation. Therefore, methods used to quantifying the carbon stock are being examined.

• Breakdown Analysis of Other Land and Reclassification into Other Land Use Categories Further breakdown analysis of the Other land is required, since it may still include some areas that are supposed to be classified into other land-use categories even after the reallocation carried out in this year.

• Estimation Method of Soil Carbon Stock Change upon Land Use Conversion from Forest, Cropland and Grassland to Other Land

Consideration for the estimation method will be implemented when new data and information are obtained.

7.9. Direct N₂O emissions from N fertilization (5. (I))

a) Source/Sink Category Description

It is assumed that volume of nitrogen-based fertilizer applied to forest soils is included in the amount of applied nitrogen-based fertilizers in Agriculture sector, although fertilization application in Forest land may not conducted in Japan. Therefore, these sources have been reported as "IE".

7.10. N₂O emissions from drainage of soils (5.(II))

a) Source/Sink Category Description

Regarding the N_2O emissions from soil drainage activities in Forest land and Wetlands, experts advised that the N_2O emissions are extremely low, because the soil drainage activities are very rarely carried out in Japan. Based on this advice, this category is reported as "NO".

7.11. N₂O emissions from disturbance associated with land-use conversion to Cropland (5.(III))

a) Source/Sink Category Description

This category deals with N_2O emissions from disturbance associated with land-use conversion to Cropland. The emission by this subcategory in FY 2008 was 7.4 Gg-CO₂; this represents a decrease of 92.0% over the FY 1990 value and a decrease of 15.1% over the FY 2007 value.

Gas		Category	Unit	1990	1995	2000	2005	2006	2007	2008
N_2O	Total		Gg-N ₂ O	0.30	0.18	0.09	0.04	0.04	0.03	0.02
				92.52	56.38	28.72	13.27	11.81	8.70	7.38
	Crop	Cropland		0.30	0.18	0.09	0.04	0.04	0.03	0.02
		Forest land converted to Cropland	Gg-N ₂ O	0.22	0.15	0.09	0.04	0.03	0.02	0.02
		Grassland converted to Cropland	Gg-N ₂ O	0.06	0.03	0.01	0.01	0.00	0.00	0.00
		Wetlands converted to Cropland	Gg-N ₂ O	0.01	0.00	0.00	0.00	0.00	0.00	0.00
		Other land converted to Cropland	Gg-N ₂ O	IE,NE						
	Othe	r	Gg-N ₂ O	NA						

b) Methodological Issues

• Estimation Method

According to the GPG-LULUCF, Tier 1 method is used.

$$\begin{split} N_2 O - N_{conv} &= N_2 O_{net-min} - N \\ N_2 O_{net-min} - N &= EF \times N_{net-min} \\ N_{net-min} &= C_{released} \times 1/CN_{ratio} \\ N_2 O - N_{conv} &: N_2 O \text{ emission due to land-use conversion to Cropland (kgN_2 O-N)} \\ N_2 O_{net-min} - N &: N_2 O \text{ emission due to land-use conversion to Cropland (kgN_2 O-N)} \\ N_{net-min} &: nual N \text{ emission from soil disturbance associated with mineralization of soil organic matter (kgN/ha/yr)} \\ EF &: \text{ emission factor} \\ CN_{ratio} &: CN \text{ ratio} \\ C_{released} &: \text{ soil carbon stock that has been mineralized within the past 20 years} \end{split}$$

• Parameters

> CN ratio for soils

11.3 (Country specific data (Ministry of the Environment, 2006))

> $N-N_2O$ emission factor for soils

0.0125 [kg-N₂O-N/kg-N] (default value stated in the GPG-LULUCF, Page 3.94)

• Activity Data

Areas of land converted to Cropland and carbon emissions from soils due to this conversion are used. The areas are the same as those shown in Table 7-23.

c) Uncertainties and Time-series Consistency

• Uncertainty Assessment

The uncertainties of parameters were individually assessed on the basis of field studies, expert judgment, or default values described in the GPG-LULUCF, and the uncertainty estimates for the carbon emissions from soil in land converted to Cropland were applied to the activity data of this category. As a result, the uncertainty estimates of N_2O emissions from disturbance associated with land-use conversion to Cropland were 74%. The methodology of uncertainty assessment was described in Annex 7.

• Time-series Consistency

Time-series consistency for this category is ensured.

d) Source-/Sink-specific QA/QC and Verification

Quality control (QC) is implemented in accordance with the Tier 1 approach described by the GPG (2000) and the GPG-LULUCF. The Tier 1 approach includes procedures for checking parameters and

activity data, and for archiving references. The QA/QC activity procedures are described in Section 6.1 of Annex 6.

e) Source-/Sink-specific Recalculations

• Areas of Forest land converted to Cropland

Areas of "Forest land converted to Cropland" were recalculated as mentioned in section 7.4.2.e). As a result, N₂O emissions from this category were also recalculated.

f) Source-/Sink-specific Planned Improvements

• Estimation Method of the Area converted from Forest Land to Cropland and from Grassland to Cropland

The methods used to obtain data on the area of Forest land converted to Cropland and Grassland converted to Cropland need to be improved as mentioned in section 7.4.2.f). Therefore, validity of the estimates is being reviewed, and the estimation method is being reexamined.

• Method of Obtaining Data of the Area converted from Grassland to Cropland

Moreover, data on the area of land converted from grassland to Cropland cannot be obtained from current statistics, so the carbon stock changes in the areas have not been estimated. Therefore, the methods used to obtain the following area data need to be investigated.

- from pasture land to upland field
- from pasture land to orchard
- from grazing meadow to rice field
- · from grazing meadow to upland field
- · from grazing meadow to orchard

7.12. CO₂ emissions from agricultural lime application (5.(IV))

a) Source/Sink Category Description

This category deals with CO_2 emissions from agricultural lime application. The CO_2 emissions from this category in FY 2008 were 306 Gg-CO₂; this represents a decrease of 44.5% over the FY 1990 value and a decrease of 5.9% over the FY 2007 value. One of the reasons for the decline over FY 1990 is that the amount of calcium carbonate fertilizer applied in Japan has decreased because chemical nature of soils was progressively improved by soil amendment.

Gas		Category	Unit	1990	1995	2000	2005	2006	2007	2008
	Total		Gg-CO ₂	550.2	303.5	332.9	231.3	230.3	325.0	305.6
		Cropland	Gg-CO ₂	IE						
CO ₂		Grassland	Gg-CO ₂	IE						
CO_2		Other	Gg-CO ₂	550.2	303.5	332.9	231.3	230.3	325.0	305.6
		Limestone	Gg-CO ₂	549.9	303.0	332.4	230.7	230.0	324.3	304.1
		Dolomite	Gg-CO ₂	0.3	0.5	0.5	0.6	0.3	0.7	1.6

Table 7-53 CO₂ Emissions from Agricultural Lime Application

b) Methodological Issues

• Estimation Method

Tier 1 method is used in accordance with the GPG-LULUCF (page 3.80).

 $\Delta C_{CCLime} = \left(M_{Limestone} \times EF_{Limestone} + M_{Dolomite} \times EF_{Dolomite}\right) \times 44/12$

 $\begin{array}{ll} \Delta C_{CCLime} & : \mbox{ annual } \mathrm{CO}_2 \mbox{ emissions from agricultural lime application (tCO_2/yr)} \\ M_{Limestone} & : \mbox{ annual amount of calcic limestone (CaCO_3) (t/yr)} \\ M_{Dolomite} & : \mbox{ annual amount of dolomite (CaMg(CO_3)_2) (t/yr)} \\ EF_{Limestone} & : \mbox{ emission factor of calcic limestone (CaCO_3) (tC/t)} \\ EF_{Dolomite} & : \mbox{ emission factor of dolomite(CaMg(CO_3)_2) (tC/t)} \\ \end{array}$

• Parameters

- Emission factor of calcic limestone (CaCO₃) 0.120 [tC/t] (default value, GPG-LULUCF)
- Emission factor of dolomite(CaMg(CO₃)₂) 0.122 [tC/t] (default value, GPG-LULUCF)

• Activity Data

> Annual amount of lime applied to Cropland

These data were calculated by adding up lime production and import quantities as listed in *the Yearbook of Fertilizer Statistics (Pocket Edition)* published by the Ministry of Agriculture, Forestry and Fisheries of Japan. Based on expert judgment, all of the "Calcium carbonate fertilizer" and 70% respectively of "Fossil seashell fertilizer", "Crushed limestone" and "Seashell fertilizer" listed in the Yearbook was classified as calcic limestone (CaCO₃), and all of the "Magnesium carbonate fertilizer" and 74% of "Mixed magnesium fertilizer" as dolomite (CaMg(CO₃)₂).

c) Uncertainties and Time-series Consistency

• Uncertainty Assessment

The uncertainty for this category was assessed based on the uncertainty of the emission factor (see 2006GL, p.11.27) and that of the statistics that provided the activity data. Consequently, the uncertainty of CO_2 emissions from this category was assessed and estimated as 51%. More detailed information on the uncertainty assessment is described in Annex 7. In addition, concrete uncertainty estimates for each parameter in this category will be illustrated in future submissions after investigation is completed.

• Time-series Consistency

Time-series consistency for this category is ensured.

d) Source-/Sink-specific QA/QC and Verification

Quality control (QC) is implemented in accordance with the Tier 1 approach described in the GPG (2000) and the GPG-LULUCF. The Tier 1 approach includes procedures for checking parameters and activity data, and for archiving references. More detailed information on the QA/QC activity procedures is described in Section 6.1 of Annex 6.

e) Source-/Sink-specific Recalculations

The emission in FY 2007 of this category was recalculated because the activity data for FY 2007 were updated.

f) Source-/Sink-specific Planned Improvements

None.

7.13. Biomass burning (5.(V))

a) Source/Sink Category Description

This category deals with emissions of CH₄, CO, N₂O and NOx from biomass burning resulting from forest fires. The emissions resulting from wildfires in Forest land remaining Forest land and Land converted to Forest land are reported in a lump in the cell for wildfires in Forest land remaining Forest land in the CRF tables, because the data in the statistics for forest fires includes the wildfires occurred in both of the categories. Moreover, controlled burning activities in forests are quite rarely implemented in Japan because the activities are stringently restricted by the "Waste Management and Public Cleansing Law" and "Fire Defense Law". Hence, the emissions resulting from controlled burning in Forest land are reported as "NO".

Controlled burning resulting from land conversion from land-use categories other than Forest land to Forest land is also very rarely carried out in Japan because of heavy restrictions imposed under the "Waste Management and Public Cleansing Law" and the "Fire Defense Law". Hence, CH₄, CO, N₂O, and NOx emissions derived from controlled burning other than in Forest land are reported as "NO".

 CH_4 , CO, N₂O and NOx emissions from controlled burning in Cropland are reported as "NE" because they are not estimated due to lack of data. CH_4 , CO, N₂O and NOx emissions from wildfires in Cropland are reported as "NO". One of the characteristics of Japan's cropland is intensive management. Under the management style, occurrence of wildfire is regarded as negligible small. CH_4 , CO, N₂O and NOx emissions from wildfires in land other than Forest land and Cropland are reported as "NE" because information on the wildfires is not sufficiently collected.

The emission by this subcategory in FY 2008 was 23.7 Gg-CO₂; this represents an increase of 159.0% over the FY 1990 value and an increase of 955.7% over the FY 2007 value. The reason of the increases of 159.0% over the FY 1990 value and 955.7% over the FY 2007 was that the damaged timber volume due to wildfires in private forests in FY 2008 was increased 174.3% over the FY 1990 value and 1020.3% over the 2007 value, respectively (see Table 7-56).

Gas	Category	Unit	1990	1995	2000	2005	2006	2007	2008
All	Total	Gg-CO ₂ eq.	9.2	9.5	8.5	10.1	2.7	2.2	23.7
	Total	Gg-CH ₄	0.4	0.4	0.4	0.4	0.1	0.1	1.0
		Gg-CO2 eq.	8.3	8.7	7.8	9.1	2.4	2.0	21.5
	Forest land	Gg-CH ₄	0.4	0.4	0.4	0.4	0.1	0.1	1.0
	Cropland	Gg-CH ₄	NE,NO						
CH_4	Grassland	Gg-CH ₄	NE,NO						
	Wetlands	Gg-CH ₄	NE,NO						
	Settlements	Gg-CH ₄	NO						
	Other land	Gg-CH ₄	NO						
	Other	Gg-CH ₄	NA						
	Total	Gg-N ₂ O	0.003	0.003	0.003	0.003	0.001	0.001	0.007
		Gg-CO2 eq.	0.8	0.9	0.8	0.9	0.2	0.2	2.2
	Forest land	Gg-N ₂ O	0.003	0.003	0.003	0.003	0.001	0.001	0.007
	Cropland	Gg-N ₂ O	NE,NO						
N ₂ O	Grassland	Gg-N ₂ O	NE,NO						
	Wetlands	Gg-N ₂ O	NE,NO						
	Settlements	Gg-N ₂ O	NO						
	Other land	Gg-N ₂ O	NO						
	Other	Gg-N ₂ O	NA						

Table 7-54 Non-CO₂ Emissions from Biomass Burning

b) Methodological Issues

• Estimation Method

For CH₄, CO, N₂O and NOx emissions due to biomass burning, Tier 1 method is used.

Forest land

(CH₄、CO)

 $bbGHG_f = L_{forestfires} \times ER$

 (N_2O, NOx)

 $bbGHG_{f} = L_{forestfires} \times ER \times NC_{ratio}$

bbGHG_f: GHG emissions due to forest biomass burningL_forest fires: Carbon released due to forest fires(tC/yr)ER: Emission ratio (CO : 0.06, CH₄ : 0.012, N₂O : 0.007, NO_x : 0.121)NCratio

• Parameters

> Emission ratio

The following values are applied to emission ratios for non-CO₂ gases due to biomass burning. CO: 0.06, CH₄: 0.012, N₂O: 0.007, NOx: 0.121

(default value stated in the GPG-LULUCF, Table 3A.1.15)

> NC ratio

The following values are applied to NC ratio.

NC ratio: 0.01 (default value stated in the GPG-LULUCF p.3.50)

• Activity Data

> Forest land

For activity in Forest land, carbon released due to forest fire is used. Carbon released due to forest fire is estimated by the Tier 3 method in the GPG-LULUCF. For each of national forest land and private forest land, carbon emissions are calculated from the fire-damaged timber volume multiplied by wood density, biomass expansion factor and carbon fraction of dry matter.

 $L_{\rm forestfires} = \Delta C_{\rm fn} + \Delta C_{\rm fp}$

 $L_{forest fires}$: carbon emissions due to fire (tC/yr) ΔC_{fn} : carbon emissions due to fire in national forests (tC/yr) ΔC_{fP} : carbon emissions due to fire in private forests (tC/yr)

- National forest

 $\Delta C_{fn} = V f_n \times D_n \times B E F_n \times C F$

 ΔC_{fn} : carbon emissions due to national forest fires (tC/yr)

 $V f_{fn}$: damaged timber volume due to fire in national forest (m³/yr)

 D_n : wood density for national forest (t-dm/m³)

 BEF_n : biomass expansion factor for national forest

CF : carbon fraction of dry matter (tC/t-dm)

- Private forest

 $\Delta C_{fP} = V f_p \times D_P \times B E F_P \times C F$

 ΔC_{fp} : carbon emissions due to private forest fires (tC/yr)

 Vf_p : damaged timber volume due to fire in private forest (m³/yr)

 D_p : wood density for private forest (t-dm/m³)

 BEF_p : biomass expansion factor for private forest

CF : carbon fraction of dry matter (tC/t-dm)

The values for wood density and biomass expansion factors for national and private forest land are determined as weighted averages using the ratios of intensively managed forest and semi-natural forests.

Table 7-55 Wood densi	ty and biomass ex	xpansion factors	for national and	private forest (FY 2008)
-----------------------	-------------------	------------------	------------------	--------------------------

Туре	Wood density [t-dm/m ³]	Biomass expansion factor
National forest	0.49	1.61
Private forest	0.46	1.61

Source: Based on Forestry Agency data

Biomass stock change due to fires is separately estimated for national forests and private forests respectively.

With regard to national forests, volume of standing timbers damaged due to fires in national forests in *Handbook of Forestry Statistics* is used.

With regard to private forests, damaged timber volume due to fires is estimated by using actual damaged area and damaged timber volume by age class (inquiry survey by Forestry Agency). Damaged timber volume for age class equal to or under 4 is estimated by multiplying the cumulative volume of age class equal to or under 4 per area estimated by the Forestry Status Survey and the National Forest Resources Database by loss ratio of age class equal to or over 5 in private forests (ratio of damaged timber volume to cumulative volume). The loss ratio is assumed to be constant regardless of age classes.

	Category			1990	1995	2000	2005	2006	2007	2008
Damag	Damaged timber volume due to disturbance in national forest		m ³	3,688.0	1,014.0	1,599.0	359.0	35.0	969.0	969.0
Damag	Damaged timber volume due to disturbance in private forest		m ³	62,009.2	67,771.0	60,012.3	72,307.1	19,356.6	15,181.4	170,073.3
	≥5 Actual damaged area Damaged timber volume	kha	0.29	0.94	0.48	0.35	0.19	0.15	0.57	
		Damaged timber volume	m ³	47,390.0	58,129.0	54,487.0	59,235.0	17,555.0	11,930.0	119,900.0
1 [≤ 4	Actual damaged area	kha	0.27	0.51	0.16	0.27	0.07	0.14	0.85
	=4	Damaged timber volume	m ³	14,619.2	9,642.0	5,525.3	13,072.1	1,801.6	3,251.4	50,173.3

Source: Based on Forestry Agency data

c) Uncertainties and Time-series Consistency

• Uncertainly Assessment

The uncertainties for parameters and activity data related to biomass burning were individually assessed on the basis of field studies, expert judgment, or default values described in the GPG-LULUCF. As a result, the uncertainty estimates for the emissions resulting from biomass burning were 89% for CH_4 and 114% for N₂O, respectively. The methodology of uncertainty assessment is described in Annex 7. In addition, concrete uncertainty estimates for individual parameters in this category will be illustrated in future submissions after investigation is completed.

• Time-series Consistency

Time-series consistency for biomass burning in the Forest Land remaining Forest Land is ensured by using the same data sources (*National Forestry Project Statistics* compiled by the Forestry Agency, and the data provided by the Agency) and the same methodology from 1990 to 2006. In addition, Japan defines the procedure to report information on forest fires in both private and national forests to the Forestry Agency, and the reported data are reflected in the statistics and the data mentioned above. Data from private forest is covering all the forest other than national forest, thus these two sets of data covering all forests in Japan. Therefore, all the emissions resulting from biomass burning in the Forest Land are covered in the inventory.

d) Source-/Sink-specific QA/QC and Verification

Quality control (QC) is implemented in accordance with the Tier 1 approach described by GPG (2000) and the GPG-LULUCF. The Tier 1 approach includes procedures for checking parameters and activity data, and for archiving references. The QA/QC activity procedures are described in Section 6.1 of Annex 6.

e) Source-/Sink-specific Recalculations

• Emissions from Controlled Burning in Forest land

Emissions resulting from controlled burning in Forest land had been reported as "IE" until the 2009 submission. Because controlled burning activities in forests are quite rare under the strict restriction by laws in Japan, reporting of the emissions was changed from "IE" to "NO".

• Non CO₂ Emissions from Wildfire in Cropland

Non-CO₂ emissions from wildfire in Cropland had been reported as "NE" until the 2009 submission because the actual condition of the wildfire had not been clarified. However, it came to be clarified that occurrence of wildfire was regarded as negligible small under the cropland management style in Japan. Therefore, reporting of the emissions was changed from "NE" to "NO".

f) Source-/Sink-specific Planned Improvements

• Ratios of incineration of biomass burning and of biomass that remained on the site after biomass burning

The parameters determined by expert judgment in the 2000 Committee for Greenhouse Gas Emission Estimation Methods were applied to the ratio of incineration of biomass burning and the ratio of biomass that remained on the site after biomass burning. However, there is a need to further examine the parameters to be used. If more accurate and precise data for determining the parameters become available, then recalculations will be implemented for this category.

References

- 1. IPCC, Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, 1997
- 2. IPCC, Good Practice Guidance for Land Use, Land-Use Change and Forestry, 2003
- 3. IPCC, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 2006
- 4. Japan Meteorogical Agency, *Mesh climatic data of Japan for the 1970-2000* [CD-ROM], Japan Meteorogical Business Support Center, Tokyo, 2002
- 5. Environmental Agency Committee for the Greenhouse Gases Emissions Estimation Methods, *Review* of Greenhouse Gases Emissions Estimation Methods Part 1, September 2000
- 6. Ministry of the Environment Committee for the Greenhouse Gases Emissions Estimation Methods, *Review of Greenhouse Gases Emissions Estimation Methods Part 3*, August 2002
- 7. Ministry of the Environment Committee for the Greenhouse Gases Emissions Estimation Methods, *Review of Greenhouse Gases Emissions Estimation Methods Part 5*, August 2006
- 8. Ministry of Agriculture, Forestry and Fisheries, World Census of agriculture and Forestry, 2000
- 9. Ministry of Agriculture, Forestry and Fisheries, *Statistics of Cultivated and Planted Area* (Survey of Cropland area)
- 10. Ministry of Agriculture, Forestry and Fisheries, A Move and Conversion of Cropland
- 11. Ministry of Agriculture, Forestry and Fisheries, Yearbook of Fertilizer Statistics (Pocket Edition)
- 12. Forestry Agency, Handbook of Forestry Statistics
- 13. Ministry of Land, Infrastructure, Transport and Tourism, Land Use Status Survey
- 14. Ministry of Land, Infrastructure, Transport and Tourism, Urban Park Status Survey
- 15. Ministry of Land, Infrastructure, Transport and Tourism, *Road Tree Planting Status Survey*
- 16. Ministry of Land, Infrastructure, Transport and Tourism, Sewage Treatment Facility Status Survey
- 17. Ministry of Land, Infrastructure, Transport and Tourism, Urban Greening Status Survey
- 18. Ministry of Land, Infrastructure, Transport and Tourism, Survey on Carbon Dioxide Absorption at Source in River Works
- 19. Ministry of Land, Infrastructure, Transport and Tourism, *Progress Survey on Tree Planting for Public Rental Housing*
- 20. National Land Policy Research Team, National Land Agency, *Handbook for National Land Planners*, November 1996
- 21. Japan Dam Foundation, Dam Yearbook
- 22. National Astronomical Observatory, 2008 Chronological Scientific Tables (Tokyo: Maruzen Inc., 2007) p.176
- 23. Ministry of Internal Affairs and Communications, Housing and Land Survey of Japan
- 24. UNFCCC, Guidelines on reporting and review (FCCC/SBSTA/2004/8)
- 25. UNFCCC, Tables of the common reporting format for land use, land-use change and forestry (FCCC/SBSTA/2005/L.19, FCCC/SBSTA/2005/L.19/Add.1)
- 26. Mariko HANDA et al, "A Study to Estimate the Amount of Carbon Stocks of Soil and Litter in Revegetation Areas" (2008) 69 Urban Green Tech. pp.18-22
- 27. Daiyu ITO et al, "Estimating the Annual Carbon Balance in Warm-Temperature Deciduous Orchards in Japan"
- Kazuhito MORISADA, Kenji ONO, Hidesato KANOMATA, "Organic carbon stock in forest soil in Japan", Geoderma 119 (2004) p.21-32
- 29. Makoto NAKAI, "Carbon accumulation in soils due to soil management" Association for Advancement of Agricultural Science"Survey on method for quantification of amount of GHG emission cuts (2000)"

30. Hisao SAKAI, Kenji ONO, Shoji HASHIMOTO, Shin UGAWA, Shigehiro ISHIZUKA, Yoshimi SAKAI, Kazuhito MORISADA, Hiroyuki TANOUCHI, Hidesato KANOMATA, Kazuo HOSODA, Toshirou IEHARA, Mitsuo MATSUMOTO, Masamichi TAKAHASHI, "Estimation of the effect of forest management on carbon stocks in deadwood, litter, and soil in Japanese planted forests using CENTURY-jfos: a modified CENTURY model", Bulletin of FFPRI (submitted)

Chapter 8. Waste (CRF Sector 6)

8.1. Overview of Sector

In the waste sector, greenhouse gas emissions from treatment and disposal of waste are estimated for solid waste disposal on land (6.A.), wastewater handling (6.B.), waste incineration (6.C.), and other $(6.D.)^1$ in accordance with treatment processes.

Waste to be covered in this sector is the waste as defined in the Revised 1996 IPCC Guidelines. In the case of Japan, the waste does not only include municipal waste and industrial waste as defined by the Waste Disposal and Pubic Cleansing Law, but also recyclables and valuables that are re-used within a company. Since waste statistics are compiled separately for municipal waste and industrial waste in Japan, estimation methodologies for many of emission sources in the waste sector are discussed respectively for municipal waste and industrial waste.

In FY 2008, emissions from the waste sector amounted to 20,052 Gg-CO₂ eq. and represented 1.6% of Japan's total greenhouse gas emissions. These emissions had decreased by 21.5% compared to those of FY 1990.

In Japan, annual waste generation is amounted to around 600 Mt and it has hardly changed since FY 1990. According to the latest results, the FY 2006 data, waste of biogenic-origin, waste of fossil-origin, and metal and nonmetallic mineral wastes accounted respectively for 54%, 3% and 43% of total amount of waste. With regard to the recycle flow for the waste in FY 2008, for overall waste activities generated, natural decomposition, recycling, volume reduction and final disposal accounted for 27%, 16%, 54% and 3%, respectively, for waste of biogenic-origin; while for waste of fossil-origin, recycling, volume reduction and final disposal accounted for 35%, 48% and 17%, respectively. The final disposal amount in Japan has been decreasing year by year.

Additional efforts were made to complete the reviews or updates of many of historical activity data emission factors for the waste sector earlier than ever. As a result, emission estimates for many categories for FY2006 and FY2007 were updated and recalculated, which is one of the major achievements made to significantly improve the accuracy of emission estimates method for Japan's national inventory for its submission in 2010.

8.2. Solid Waste Disposal on Land (6.A.)

This category covers CH_4 emissions from solid waste disposal on land. For this emission source category, estimation methodologies were discussed separately for municipal waste and industrial waste in accordance with Japan's waste classification system, and emissions were estimated for the sources presented in Table 8-1.

¹ Data for some emission source categories in the waste sector are complemented by estimation, when statistical data or related data are not available. The methodologies for this estimation are not described in this chapter. For details, refer to the *Report of the Waste Panel on Greenhouse Gas Emission Estimate (2006)*.

Category		Waste types estimated	Treatment type
		Kitchen garbage	Anaerobic landfill Semi-aerobic landfill
	Munic	Waste paper	Anaerobic landfill Semi-aerobic landfill
	ipal sol	Waste wood	Anaerobic landfill Semi-aerobic landfill
	Municipal solid waste	Waste textiles (natural fiber) ^{a)}	Anaerobic landfill Semi-aerobic landfill
6.A.1.	e	Human waste treatment, Septic tank sludge	Anaerobic landfill Semi-aerobic landfill
(8.2.1)	Industrial waste	Kitchen garbage Waste paper Waste wood Waste textiles (natural fiber) a) Sewage Digested sewage sludge c) sludge Other sewage sludge Waterworks sludge Organic sludge from manufacturing industries Livestock waste a) A	Anaerobic landfill ^{b)}
6.A.3. (8.2.3)	Inapp	propriate disposal ^{e)}	Anaerobic landfill

Table 8-1 Categories whose emissions are estimated for solid waste disposal on land (6.A.)

- a) Only natural fiber waste textiles are included in the estimation under the assumption that synthetic fiber waste is not biologically decomposed in landfills.
- b) For landfill disposal of industrial waste, the entire volume is deemed to have been disposed of in an anaerobic landfill because the percentage disposed of in semi-aerobic landfill is not identified.
- c) "Digested sewage sludge" includes sewage sludge landfilled after digested and dehydrated. Because digestion treatment reduces the amount of carbon content biodegraded in sludge decreases, CH₄ emissions were estimated separately by landfilled sewage sludge with and without digestion treatment.
- d) Although livestock waste is not classified as "sludge" under Japanese law, emissions from it were estimated within the category of sludge because of the similarities in their properties.
- e) Waste inappropriately disposed of and containing biodegradable carbon is considered to include waste wood, waste paper, and sludge. However, only the emissions from waste wood were calculated, because only its state of dumping is known at present.

Estimated greenhouse gas emissions from solid waste disposal on land are shown in Table 8-2. In FY 2008, greenhouse gas emissions from this source category were 3,591 Gg-CO₂ eq. and accounted for 0.3% of the national total emissions. Emissions from this category decreased by 53.2% compared to the emissions in FY 1990. This CH_4 emissions decrease is the result of decrease in the amount of biodegradable waste landfilled due to the increase in the practice of waste incineration to reduse waste volume in Japan.

Page 8-2

Gas	Category	Item	Unit	1990	1995	2000	2005	2007	2008
		Kitchen garbage	Gg CH ₄	62.9	60.6	52.3	34.7	26.1	22.0
		Waste paper	Gg CH ₄	145.7	133.0	109.2	84.9	74.1	67.9
		Waste textile (natural fiber)	Gg CH ₄	9.5	8.2	6.8	5.4	4.7	4.4
		Waste wood	Gg CH ₄	46.0	50.1	49.3	47.0	45.9	45.2
	6.A.1.	sewage Digested sewage sludge	Gg CH ₄	5.6	5.3	4.2	2.8	2.2	1.9
	Managed Solid	sludge Other sewage sludge	Gg CH ₄	28.1	26.2	21.1	13.7	10.8	9.4
	Waste Disposal	Human waste treatment, Septic tank slu	udge Gg CH ₄	12.4	9.0	6.5	4.8	4.3	3.9
CH_4	site	Waterworks sludge	Gg CH ₄	3.5	3.3	2.8	2.2	1.9	1.7
		Organic sludge from industry	Gg CH ₄	48.4	38.9	24.4	15.9	12.8	11.4
		Livestock waste	Gg CH ₄	1.4	1.4	1.4	1.3	1.3	1.3
		Recovery	Gg CH ₄	-0.8	-0.7	-0.7	0.0	-0.3	-0.3
		Total	Gg CH ₄	362.9	335.6	277.5	212.6	183.9	168.8
[6.A.3. Other	Inappropriate disposal	Gg CH ₄	0.4	0.9	2.4	2.4	2.3	2.2
		Total	Gg CH ₄	363.2	336.4	279.9	215.0	186.2	171.0
		Total	Gg CO ₂ eq	7628	7065	5877	4515	3909	3591

Table 8-2 GHG emissions from solid waste disposal on land (6.A.)

8.2.1. Emissions from Managed Landfill Sites (6.A.1.)

a) Source/Sink Category Description

In Japan, part of kitchen garbage, waste paper, waste textiles, waste wood, and sludge in municipal solid waste (MSW) and industrial waste is landfilled without incineration; therefore, CH4 is generated as a result of biodegradation of organic materials from the landfill sites. Because Japanese landfill sites are appropriately managed pursuant to the Waste Disposal and Public Cleansing Law, the amount of CH4 emitted from there is reported under this category "Emissions from Managed Landfill Sites (6.A.1.)". Emissions of CO2 from waste incineration at the managed landfill sites are reported as NO, because waste incineration is not implemented at that site in Japan.

b) Methodological Issues

• Estimation Method

In accordance with the decision tree in the 2006 IPCC Guidelines, emissions from this source were estimated with the revised FOD methods given in the 2006 IPCC Guidelines with Japan's country-specific parameters (Tier 3). In Japan, emission factor is defined as "CH₄ emissions from biodegradable waste", and activity data are defined as "the amount of waste biodegraded within the reporting fiscal year".

$$E = \left\{ \sum \left(EF_{ij} \times A_{ij} \right) - R \right\} \times \left(1 - OX \right)$$

Where:

E : CH₄ emissions from landfill sites (kg CH₄)

- EF_{ij} : emission factor for a biodegradable waste i (dry basis) that is damped into a landfill site j without incineration (kg CH₄/t)
- A_{ij} : amount of a biodegradable waste i (dry basis) that is damped into a landfill site j without incineration and is biodegraded within an inventory year)

R : recovered CH₄ in an inventory year (kg CH₄)

OX : oxidation factor of CH₄ related to soil cover

• Emission Factors

Emission factors were defined as the amount of CH4 (kg) generated through decomposition of one ton of unburned biodegradable landfill wastes (dry basis). They were set by the type of biodegradable

waste (i.e., kitchen garbage, waste paper, waste natural fibers, waste wood, sewage sludge, human waste, waterworks sludge, organic sludge from manufacturing industries and livestock waste) and by the type of landfill site (i.e., anaerobic or semi-aerobic landfill). They were calculated by multiplying carbon content of biodegradable waste by the gas conversion rate for biodegradable waste being landfilled, by the site-specific CH4 correction factor, and by the percentage of CH4 in landfill gas.

Emission factor = (carbon content) × (gas conversion rate) × (methane correction factor) × (percentages of CH₄ in landfill gas) ×1000 / 12×16

> Carbon content

- Kitchen garbage, waste paper, waste wood

Carbon contents of kitchen garbage, waste paper and waste wood were calculated by taking the averages of carbon contents of MSW provided by Tokyo, Yokohama, Kawasaki, Kobe, and Fukuoka (FY 1990-2004) and applied to the entire time-series. Since waste paper, waste textiles and waste wood in the industrial waste have similar properties to those in the MSW, the emission factors for the MSW were also used for the industrial waste. The properties of kitchen garbage in the industrial waste may differ from those of the MSW. Nevertheless, the emission factor for the MSW was alternatively used for the one in the industrial waste, since, in the case of industry waste, their properties vary according to the type of industry and/or place of origin; therefore it is difficult to set an average property for the industrial waste.

However, such application of MSW carbon content to ISW would not be considered as a significant uncertainty factor for estimating emissions.

- Waste natural fiber textiles

Carbon contents of waste natural fiber textiles were substituted by the ones of natural fibers in textile products. They were calculated for each type of natural fiber (cotton, wool, silk, linen, and recycled textiles) based on the constituent of those fibers and their respective carbon contents, and then uniform carbon content was set from year to year by taking a weighted average of them based on the domestic demand of natural fibers (FY 1990-2004).

- Sludge

The carbon content of digested sewage sludge was determined by expert judgment using the survey results (See Reference 72, 73, 74, and 75). The upper limit of the carbon content of sewage sludge indicated in the GPG (2000) was applied to the carbon content of "other sewage sludge". For the carbon content of human waste treatment, septic tank sludge, and livestock waste treatment, the same value as that used for "other sewage sludge" was applied. The carbon content of waterworks sludge was obtained by using the average values of survey results conducted at 23 water purification plants, which were provided by the Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector, 2010 (Ministry of the Environment). For the carbon content for organic sludge generated by manufacturing industries, the value for the papermaking industry was used, since it generates the largest final disposal amount of organic sludge. This value was set by referring to the carbon content of cellulose, because the main constituent of the organic sludge generated by the sludge properties hardly change from year to year.

	-		•			
Item	Unit	1990	1995	2000	2006	2007
Kitchen garbage	%	43.4	43.4	43.4	43.4	43.4
Waste paper	%	40.9	40.9	40.9	40.9	40.9
Waste wood	%	45.2	45.2	45.2	45.2	45.2
Waste natural fiber textiles	%	45.0	45.0	45.0	45.0	45.0
Sewage sludge	%	40.0	40.0	40.0	40.0	40.0
Human waste sludge	%	40.0	40.0	40.0	40.0	40.0
Waterworks sludge	%	7.5	7.5	7.5	7.5	7.5
Organic sludge from manufacturing	%	45.0	45.0	45.0	45.0	45.0
Livestock waste	%	40.0	40.0	40.0	40.0	40.0

Table 8-3 Carbon content of waste disposed of in managed landfill sites

➢ Gas conversion rate

Gas conversion rate for the biodegradable waste was set at 50% based on Ito (1992).

> Methane correction factor

Default values given in the 2006 IPCC Guidelines were used: 1.0 for anaerobic landfill sites and 0.5 for semi-aerobic landfill sites.

Proportions of methane in generated gas

Default value (50%) given in the Revised 1996 IPCC Guidelines was used.

• Activity Data

Out of the amount of waste landfilled without incineration (dry basis), the amount of waste degraded within the reporting year was calculated by multiplying the amount of waste remaining in landfills at the end of the previous reporting year by the decomposition rate for waste landfilled. The amount of biodegradable MSW and ISW were determined by type of waste and landfill site.

The amount of waste landfilled in each fiscal year was calculated by multiplying the amount of biodegradable waste landfilled (wet basis) by the percentage of landfill site by the type of site (wet basis), and subtracting the water content by each type of waste. Activity data were estimated going back as far as FY1954, when the Public Cleansing Law (now the Waste Disposal and Public Cleansing Law) was enforced.

$$W_i(T) = W_i(T-1) \times e^{-k} + w_i(T)$$

$$A_i(T) = W_i(T-1) \times (1-e^{-k})$$

$$k = \ln(2) / H$$

Where:

- Ai(T) : the amount of waste *i* degraded in the calculated year (year T) (activity data: dry basis)
- Wi(T) : the amount of waste *i* remaining in a landfill in year T
- wi(T) : the amount of waste *i* landfilled in year *T*
- k : decomposition rate constant (1/year), and
- *H* : decomposition half-life of waste i (the time taken by landfilled waste i to reduce in amount by half)

The amount of waste i landfilled in year T

- = (Amount of biodegraded waste i landfilled in year T)
- \times (percentages of landfill sites of each site type) \times (1 percentage of water content in waste *i*)

Amount of biodegradable waste disposed of in landfills

Table 8-4 shows the annual amount of biodegradable waste disposed of in landfills (dry basis) in Japan.

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Kitchen garbage	kt / year (dry)	501	483	297	110	98	50	52
Waste paper	kt / year (dry)	1,179	868	611	290	247	82	71
Waste textiles (natural fiber)	kt / year (dry)	59	48	31	20	13	7	5
Waste wood	kt / year (dry)	652	476	221	152	142	76	39
Digested sewge sludge	kt / year (dry)	59	50	31	11	8	5	4
Other sewage sludge	kt / year (dry)	219	185	114	42	29	20	17
Human waste treatment, Septic tank	kt / year (dry)	78	51	46	47	29	21	21
Waterworks sludge	kt / year (dry)	199	166	146	66	62	67	67
Organic sludge from manufacturing	kt / year (dry)	341	155	69	48	39	34	35
Livestock waste	kt / year (dry)	12	12	11	11	11	11	12
Total	kt / year (dry)	3,299	2,494	1,577	796	677	373	324

Table 8-4 Annual amount of biodegradable waste disposed of in landfills

- Kitchen garbage, waste paper, waste wood

The amounts of directly landfilled kitchen garbage, waste paper, and waste wood were extracted from the Report of the Research on the State of Wide-range Movement and Cyclical Use of Wastes (Volume on Cyclical Use) (Waste Management and Recycling Department of the Ministry of the Environment; hereafter, Cyclical Use of Waste Report) and the data from the same research on FY2008. The amount of the MSW was calculated by summing up the results after the multiplication of the volume of direct landfill waste for each classification of waste accumulation (by waste type) by the percentages of kitchen garbage, waste paper, and waste wood in the volume of direct landfill waste, in accordance with the classification of waste accumulation.

For the industrial waste, the amount of kitchen garbage was the sum of the volume of direct landfill waste of animal and plant residues and of livestock carcasses, and the volume of landfill waste after intermediate processing of animal and plant residues. For the amount of waste paper and waste wood for industrial waste, the volume of direct landfill waste of waste paper and waste wood was used. Landfilled amounts of both the MSW and the industrial waste were determined back to FY 1980 (some years were interpolated) and the FY 1980 value was used for the years prior to FY 1980.

- Waste natural fiber textiles

The amount of waste natural fiber textiles directly landfilled was estimated by multiplying the directly landfilled amount of waste textiles that was extracted expediently from the Cyclical Use of Waste Report and the data from the same research on FY2008by the percentages of waste natural fiber textiles. For MSW, the percentages of waste natural fiber textiles were annually extracted from the Annual Textile Statistics Report; while the ones for industrial waste were regarded as 100% based on the regulation of the Waste Disposal and Public Cleansing Law, since waste textile of ISW should not include synthetic fiber textiles. The landfill amount in the past year was estimated using the same method used for kitchen garbage, waste paper, waste wood.

- Sewage sludge

The total amount of sewage sludge landfilled was provided by the annual editions of Sewage Statistics (Admin. Ed.) (Japan Sewage Works Association). The amount of sewage sludge digested and landfilled was estimated as "digested sewage sludge", and the rest of landfilled sewage sludge was estimated as "other sewage sludge"; the breakdown of total was compiled and provided by the Ministry of Land, Infrastructure, Transport and Tourism. The amount of landfilled sewage sludge in the past as far as FY 1985 were obtained (some years are interpolated), and the FY 1985 value was

Chapter 8. Waste

used for the years prior to FY 1985.

- Human waste treatment, septic tank sludge

Landfilled amount of human waste treatment and septic tank sludge were determined as those reported in "direct final disposal" of "human waste treatment and septic tank sludge" in annual editions of Cyclical Use of Waste Report and the data from the same research on FY2008, and those reported in "final disposal after treatment" that was estimated by subtracting the amount of final disposal from those incinerated within the incineration facilities or sewage sludge treatment facilities. Their entire amounts are considered as the biodegradable landfill amount. As data prior to FY 1998 cannot be directly extracted from statistics, the final disposal amount is estimated by multiplying the amount of human waste sludge in landfill (volume basis) reported in the Waste Treatment in Japan (Waste Management and Recycling Department, the Ministry of the Environment) by the weight-conversion factor (1.0 kg/L). The final disposal amount after treatment is estimated by multiplying the estimated direct final disposal amount after treatment by the average ratio of the direct final disposal amount and final disposal amount after treatment.

- Waterworks sludge

The amount of water purification sludge generated and the percentage landfilled were extracted from "total amount of soil disposed" and "landfilled percentage" by each water purification plant given in annual editions of Waterworks Statistics (Japan Water Works Association). Landfill amounts in the past were determined back to FY 1980 and the FY 1980 amount was used for the years prior to FY 1980.

- Organic sludge from manufacturing industries

Since no references are available for determining the total amount of organic sludge landfilled by manufacturing industries year by year, activity data were determined only for food manufacturing industry, papermaking industry, and chemicals industry, which produce large amounts of landfill organic sludge. The amount landfilled by the papermaking industry was determined by using the final disposal amount (dry basis) of organic sludge in Results of a Study on Industrial Wastes from Paper and Pulp Plants (Japan Paper Association, Japan Technical Association of the Pulp and Paper Industry, 2006). The landfill amounts of the food manufacturing and chemical industries for FY 1999 and thereafter were determined by using Report on Results of Trend and Industry-Specific Studies on Industrial Wastes (Mining Industry Waste) and Recyclable Waste (2003 Data) (Clean Japan Center); while the amount for FY 1998 and for the years prior to FY 1998 were determined by using Voluntary Environmental Report (Waste Control Volume), FY 2004 Follow-up Results). Landfill amounts were determined back to FY 1990 for food manufacturing industry and chemicals industry and to FY 1989 for papermaking industry. The FY 1990 amounts were used for the years prior to FY 1980 for food manufacturing industry amount was used for the years prior to FY 1989 for papermaking industry.

- Livestock waste treatment

The amount of livestock waste landfilled was provided by the survey conducted by the Ministry of the Environment in FY2009. The data were provided as far as FY 1980 (some years were interpolated), and the data for FY 1980 was also used for the years prior to FY 1980.

> Percentage of water content in waste

In Japan, activity data are estimated on a dry basis which can identify the carbon content of waste more

precisely. The percentages of water content by each type of waste to estimate activity data on a dry basis and its sources are given in Table 8-5. In order to estimate the CO_2 emissions for the category "8.4. Waste Incineration (6C)" as well as this source category, dry basis activity were used for the same reason.

	Category	Water content (%)	Source			
Kitchen g residues	arbage, animal and plant	75 (direct final disposal)	Water percentage of kitchen garbage in Report of the Research on the State of Wide-range Movement and Cyclical Use of Wastes			
		70 (final disposal after treatment)				
Waste paj	per	20 (MSW) 15 (ISW)	Expert judgment			
Waste nat	tural fiber textiles	20 (MSW) 15 (ISW)	Expert judgment			
Waste wo	ood	45	Expert judgment			
Sewage	Digested sewage sludge	- Specific to each disposal site	Average moisture content of "delivered or final disposal sludge" in <i>Sewage</i>			
sludge	Other sewage sludge	Specific to cach disposal site	Statistics (Admin. Ed.)			
Sludge fr and septio	rom human waste treatment 85 (direct final disposal) c tanks		Moisture content standard of landfill standard (sludge) specified by enforcement ordinance of Wastes Disposal and Public Cleansing Law			
		70 (final disposal after treatment)	Determined by specialists			
Waterwor	rks Sludge	- *	—			
Livestock	c waste	83.1 (direct final disposal)	Organic percentage in "Controlling the Generation of Greenhouse Gases in the Livestock Industry"			
		70 (final disposal after treatment)	Expert judgment			
Organic s industries	ludge from manufacturing	23 (food manufacturing) 43 (chemical industries) - (paper industries) *	Reference of Clean Japan Center Survey			

Table 8-5 Percentage of water content in waste disposed of in controlled landfill sites

*The water content of waterworks sludge and organic sludge from paper industries are not included in this table because activity data on a dry basis were provided by the data sources.

> Percentages of landfill sites of each site structure type

The percentages of MSW landfill sites with respect to the land fill sites by their structure of each site structure type were determined by referring to annual editions of Results of Study on Municipal Solid Waste Disposal (Waste Management and Recycling Department, Ministry of the Environment), which lists Japan's MSW disposal sites in the section "Facility by Type (Final Disposal Sites)", regarding as semi-aerobic those sites which have leachate treatment facilities and subsurface containment structures, and regarding the percentage of semi-aerobic landfill disposal volume to be the percentage of their total landfill capacity (m³).

However, disposal sites, where landfilling started before the 1977 joint order, and all coastal and inland water landfills are treated as anaerobic disposal sites. Additionally, because sites, where landfilling started in FY 1978-1989 likely include both anaerobic and semi-aerobic sites, the percentages of semi-aerobic sites were determined based on the expert judgment, and then the estimation was carried out. All industrial waste disposal sites are considered to be anaerobic.

	-		_		_				
Item	Unit	1977	1980	1985	1990	1995	2000	2005	2008
Anaerobic landfill percentage	%	100.0	94.0	84.1	74.2	64.2	54.4	43.5	40.5
Semi-aerobic landfill percentage	%	0.0	6.0	15.9	25.8	35.8	45.6	56.5	59.5

Table 8-6 Landfill percentages of municipal solid waste disposal sites by site structure

> Decomposition half-life

Decomposition half-life is the time taken for 50% of waste landfilled in a certain year to be degraded from its initial mass. According to Ito's article A study on estimating amounts of landfill gas, Metropolitan Tokyo Sanitation Engineering Journal No. 18, 1992, the half-lives for kitchen waste, waste paper, waste natural fiber textiles, and waste wood are respectively 3, 7, 7, and 36 years. Because no relevant research have been obtained to identify a country specific half life for the sludge, the default value of 3.7 years provided in the spreadsheets attached to the 2006 IPCC Guidelines was applied.

> Delay time

Delay time is the time lag since the waste is landfilled until the decomposition actually occurs. As no research is found for making it possible to set a delay time specific to Japan, the default value (6 months) given in the 2006 IPCC Guidelines was used.

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Kitchen garbage	kt / year (dry)	517	511	444	304	264	230	193
Waste paper	kt / year (dry)	1,246	1,175	995	803	754	706	648
Waste textiles (natural fiber)	kt / year (dry)	73	65	56	45	43	40	37
Waste wood	kt / year (dry)	344	377	373	357	353	349	343
Digested sewage sludge	kt / year (dry)	63	58	47	31	27	24	21
Other sewage sludge	kt / year (dry)	234	219	176	114	102	90	78
Human waste treatment, Septic	kt / year (dry)	111	84	64	51	51	47	43
Waterworks sludge	kt / year (dry)	192	185	157	120	111	103	97
Organic sludge from	kt / year (dry)	359	288	181	118	106	95	84
Livestock waste	kt / year (dry)	12	12	12	11	11	11	11
Total	kt / year (dry)	3,151	2,976	2,504	1,954	1,822	1,694	1,554

Table 8-7 Amount of biodegraded waste decomposed in each year (Activity data)

The declining trend of amount of biodegraded waste is affected by the improvement of waste reduction that causes the decrease of landfilled waste.

> Amount of CH₄ recovered from landfills

In order to reduce the amount of organic matter content and CH_4 emissions at landfill sites, certain intermediate treatments and landfill methods have been conducted; CH_4 recovery from landfills is not very common practice in Japan. CH_4 recovery from landfilled MSW for the purpose of electric power generation implemented at the Tokyo Metropolitan Inner Landfill Site for the Central Breakwater "*Uchigawa-Shobunjo*" is the sole practice example in Japan. For ISW, there is no practice of CH_4 recovery from landfills implemented in Japan. Because CO_2 emitted from the combustion of recovered CH_4 is of biogenic-origin, it is not included in the total emissions. $R = r \times f \times 16 / 22.4 / 1000$

- R : Amount of CH_4 recoved in landfill (g)
- r : Amount of recovered landfill gas used for electric power generation (m³N)
- f : Ratio of CH_4 to recovered gas (-)

> The amount of recovered landfill gas used for electric power generation in "Uchigawa-Shobunjo" landfill

The amount of recovered gas used for electric power generation was provided by the Waste Disposal Management Office of Tokyo.

Fraction of CH₄ to the recovered gas

The fraction of CH_4 to recovered landfill gas in the *Uchigawa-Shobunjo* has been annually provided since FY 2005 by the Waste Disposal Management Office of Tokyo. The fraction for the years prior to FY 2005 were determined based on the hearing conducted with the Waste Disposal Management Office of Tokyo: 60% for FY 1987, when the recovery of landfill gas was started; 40% for FY 1996; interpolated for FY 1988 through FY 1995; The FY 1996 value was used for FY 1997 through FY 2004.

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Amount of gaseous use	km ³ N	1,985	2,375	2,372	140	1,309	1,157	1,161
CH ₄ ratio	%	53.3	42.2	40.0	48.5	42.1	37.4	37.1
Amount of CH ₄ use	km ³ N	1,059	1,003	949	68	551	433	431
CH ₄ unit conversion	Gg CH ₄	0.76	0.72	0.68	0.05	0.39	0.31	0.31

Table 8-8 Amount of CH₄ recovered at landfill sites in Japan (Gg-CH₄)

The consumption of gas used for electric power generation during 1991-1994 had decreased compared to the preceding year and the following year because recovered gas was used for the purposes other than electric power generation. The consumption of recovered gas used for electric power generation had decreased compared to 1996 because no electric power generation using recovered gas was conducted between late 1994 and early 1995 due to the relocation of electric power generation facilities. Amount of gas used in 2005 has dropped to less than 10 percent over the previous year because the electric power generating equipment had been halted from April, 2005 to Mid-February, 2006. After resumption, methane concentration was high through to the end of the fiscal year.

> CH₄ oxidation rate related by landfill cover soil

Based on law enforcement ordinances and local government ordinances, daily, intermediate and final soil coverings are practiced in the managed final disposal sites for MSW and ISW in Japan. Therefore, the default oxidation factor for managed landfill sites (0.1) was used in accordance with the 2006 IPCC *Guidelines*.

c) Uncertainties and Time-series Consistency

• Uncertainties

The uncertainty in emission factors was evaluated by integrating the uncertainties for carbon content, gas conversion rate, CH_4 correction factor, and percentage of CH_4 in generated gas, and estimated to be in the range of 42.4-108.6%. The uncertainty in activity data was evaluated by integrating the uncertainties for the residual amount of biodegradable waste (landfilled amount and percentage of water

content in waste) at the end of the year before the reporting year and the decomposition rate for the reporting year, and estimated to be in the range of 31.7-56.6%. As a result, the uncertainty in the emissions from solid waste disposal sites was estimated to be in the range of 53-113%.

The methods for evaluation of the uncertainty levels for each component are:

- Use of 95% confidence interval of actual measurement data: carbon content (kitchen garbage, waste paper and waste wood)
- Use of the statistical uncertainties: domestic demand for textile and landfilled amount of biodegradable waste
- Based on expert judgment: carbon content (sewage sludge, human waste treatment sludge and organic sludge from manufacturing industries), gas conversion rate, percentage of CH₄ in landfill gas and percentage of water content in biodegradable waste
- Use of the default values in the IPCC Guidelines: carbon content (livestock waste) and CH_4 correction factor
- Use of the values set by the Committee for GHGs Emissions Estimation Methods: carbon content (waterworks sludge)
- Use of the differences between the adopted values and default ones: residual amount of biodegradable waste.

For more details about basic methods for uncertainty assessment in Japan, refer to the Annex 7.

• Time-series consistency

Although some activity data in FY 1990 and thereafter are not available, they are estimated by using the methods described in "Activity data" to develop consistent time-series data. The emissions were calculated in a consistent manner.

d) Source-specific QA/QC and Verification

Tier 1 QC activities are implemented in accordance with the *GPG (2000)*. The Tier 1 QC activities include the verification of parameters such as activity data and emission factors, and the archive of reference materials. Also, QA activity was implemented for the waste sector by the GHG Inventory Quality Assurance Working Group in FY 2009. For more details of QA/QC activities, refer to Annex 6.

e) Source-specific Recalculations

- Due to the data update on the amount of waste landfilled, the activity data and emission estimates for FY 2006 and FY2007 were recalculated.
- Due to the data update on the carbon content of waterworks sludge, the emission estimates for FY1990-2007 were recalculated.
- Because the part of the amount of livestock waste disposed of in landfills was deducted from the total activity data regarded as a return to the environment, the activity data and emission estimates for FY1990-2007 were recalculated; this recalculation contributes to the increase in activity data for the category of "Manure Management (4.B.)",.
- Due to the data update on the amount of CH₄ recovered, the emission estimates for FY2007 were recalculated.
- · Because the amounts of digested sewage sludge and "other sewage sludge" were identified, the

emission estimates for each sludge type for FY 1990 through FY2007 were recalculated.

f) Source-specific Planned Improvements

Further improvements are planned owing to a lack of sufficient current information. Major issues are:

- Determining the value of methane correction factor taking into account the conditions of the management of landfill sites
- Gas conversion rate for each type of biodegradable waste
- Country-specific half-life for sludge at final disposal sites
- Percentage of anaerobic and semi-aerobic landfills for ISW

8.2.2. Emissions from Unmanaged Waste Disposal Sites (6.A.2.)

Because landfill sites in Japan are appropriately managed pursuant to the Waste Disposal and Public Cleansing Law, there are no unmanaged waste disposal sites in Japan. Therefore, the emissions from this source category are reported as NA.

8.2.3. Emissions from Other Managed Landfill Sites (6.A.3.)

8.2.3.1. Emissions from Inappropriate Disposal (6.A.3.a)

a) Source/Sink Category Description

In Japan, waste is disposed in landfill sites pursuant to the Wastes Disposal and Public Cleansing Law; however, part of it is disposed inappropriately. Although these inappropriate disposal sites generally satisfy the conditions of managed disposal sites defined in the *Revised 1996 IPCC Guidelines*, CH_4 emissions from inappropriate disposal are reported under "Other (6.A.3.)", because it is not appropriate management under the law. Fires are occasionally observed in inappropriate landfill sites, and they may be emitting fossil-fuel derived CO_2 . However, since actual data are not available, the emissions from the fires at inappropriate landfill sites are reported as NE.

b) Methodological Issues

• Estimation Method

Waste wood and waste paper are the wastes containing biodegradable carbon and being inappropriately disposed without incineration; however, only waste wood is the subject for the estimation, because the residual amount of waste paper should be very small.

In a similar manner for the "Emissions from Controlled Disposal Sites (6.A.1.)", a FOD method with Japan's country-specific parameters is used for the estimation. Emissions are estimated by multiplying the amount of waste wood (dry basis) degraded in a reporting year by an emission factor.

• Emission Factor

Since inappropriately disposed wastes are generally covered with soil in Japan, the mechanism for CH_4 emissions from inappropriate disposal is regarded as almost same as for the anaerobic landfill.

Therefore the same emission factor is used for the anaerobic disposal sites for "waste wood emissions from managed disposal sites".

• Activity Data

Activity data (dry basis) was obtained by subtracting the water content from the residual amount of inappropriately disposed waste wood (wet basis) and multiplied by decomposition rate. The amount of inappropriately disposed waste wood is provided by "Waste Wood (Construction and Demolition)" in *Study on Residual Amounts of Industrial Waste from Illegal Dumping and other Sources* (Waste Management and Recycling Department, Ministry of the Environment). The percentage of water content and the decomposition rate used for estimating emissions from waste wood in managed disposal sites were also used for this source.

Table 8-9 Activity	data of inapp	ropriately dispo	osed waste wood	(dry basis)
14010 0 7 11041119	adda or mapp	copriatory anopo	bed maste mood	(ar joubib)

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Activity data	kt (dry)	2.4	5.7	16.1	15.8	15.6	15.3	14.9

c) Uncertainties and Time-series Consistency

• Uncertainties

The uncertainties in emission factor and activity data were evaluated by using the same methods that were used for "Emissions from Controlled Landfill Sites" (6.A.1). The uncertainty in the CH_4 emissions from inappropriate disposal was estimated to be 79%. For more details, refer to the Annex 7.

• Time series consistency

Because data on inappropriate disposal are available only since FY 2002, activity data prior to FY 2002 are estimated. The emissions are calculated in a consistent manner.

d) Source-specific QA/QC and Verification

Tier 1 QC activities are implemented in accordance with the *GPG (2000)*. The Tier 1 QC activities include the verification of parameters such as activity data and emission factors, and the archive of reference materials. Also, QA activity was implemented for the waste sector by the GHG Inventory Quality Assurance Working Group in FY 2009. For more details of QA/QC activities, refer to Annex 6.

e) Source-specific Recalculations

Due to the changes in the amount of inappropriate disposal, emission estimates were recalculated.

f) Source-specific Planned Improvements

For future inventories, long-term efforts on further scientific investigations will be made to identify country-specific parameters.

8.3. Wastewater Handling (6.B.)

The CH₄ and N₂O emissions from wastewater handling are estimated in the "Wastewater Handling (6.B.)". The target categories are shown in Table 8-10. Since an emission factor that takes into account emissions from wastewater and sludge treatment processes is used in Japan, emissions from these processes are reported altogether. Therefore, total emission amount is reported in the subcategory "Wastewater" in CRF, 6.B.; while IE is reported in the subcategory "Sludge".

Category	Type Estimated	Forms o	f Treatment	CH_4	N_2O
6.B.1. (8.3.1)	Industrial wastewater	(Sewage treatment plants))	0	0
		Sewage treatment plants ((8.3.2.1)	0	0
		Domestic wastewater	Community plant	0	0
		treatment facilities	Gappei-shori johkasou	0	0
		(mainly septic tanks)	Tandoku-shori johkasou	0	0
		(8.3.2.2)	Vault toilet	0	0
	D		High-load denitrification	0	0
	Domestic/commercial		treatment	0	Ŭ
	wastewater		Membrane separation	0	0
6.B.2. (8.3.2)		Human waste treatment	Anaerobic treatment	0	
0.D.2.(0.3.2)		facilities (8.3.2.3)	Aerobic treatment	0	
			Standard denitrification	0	0
			treatment	0	
			Other	0	
		Discharge of untreated	Tandoku-shori johkasou	0	0
	Degradation of	domestic wastewater	Vault toilet	0	0
	domestic wastewater		On-site treatment	0	0
	in nature (8.3.2.4)	Sludge disposal at sea	Human waste sludge	0	0
		Shudge disposal at sea	Sewage sludge	0	0

Table 8-10 Categories for which wastewater amount is estimated under wastewater handling (6.B.)

Estimated greenhouse gas emissions from wastewater handling are shown in Table 8-11. In FY 2008, emissions from this source category were 2,501 Gg-CO₂ eq. and accounted for 0.2% of the national total emissions. The emissions from this source category decreased by 26.7% compared to those in FY 1990. This emission decrease is the result of decrease in the amount of CH_4 emissions from "Degradation of Domestic Wastewater in Nature" because the practice of wastewater treatment at wastewater treatment plants increased in Japan. Due to the same reason, the N₂O emissions from the subcategory of "Sewage Treatment Plants (6.B.2.a)" for FY1995 through FY1998 increased.

Gas	Category	Item	Unit	1990	1995	2000	2005	2006	2007	2008
	6.B.1. Industrial waste water	(Sewage treatment plants)	${ m Gg}{ m CH}_4$	5.4	5.2	5.1	4.9	4.9	5.0	5.0
		Sewage treatment plants	Gg CH ₄	8.6	9.1	11.0	11.8	12.0	11.9	12.2
	6.B.2.	Domestic waste water treatment facilities (mainly septic tanks)	$\mathrm{Gg}\mathrm{CH}_4$	21.5	20.4	20.6	20.5	20.6	21.0	21.0
CH ₄	Domestic/commercial wastewater	Humanwaste treatment facilities	Gg CH ₄	5.2	3.2	1.8	1.0	0.9	0.8	0.8
	wastewater	Degradation of domestic wastewater in nature	${ m Gg}\ { m CH}_4$	60.2	50.8	39.5	28.7	26.8	24.7	24.8
		Total	Gg CH ₄	101.0	88.6	77.9	66.9	65.3	63.3	63.7
		Total	Gg CO ₂ eq	2121	1861	1636	1404	1371	1329	1338
	6.B.1. Industrial waste water	(Sewage treatment plants)	Gg N ₂ O	0.4	0.4	0.3	0.4	0.4	0.4	0.4
		Sewage treatment plants	Gg N ₂ O	1.6	1.7	2.0	2.2	2.2	2.2	2.2
	6.B.2.	Domestic waste water treatment facilities (mainly septic tanks)	Gg N ₂ O	1.5	1.4	1.2	1.0	1.0	0.9	0.9
N ₂ O	Domestic/commercial wastewater	Humanwaste treatment facilities	Gg N ₂ O	0.2	0.3	0.1	0.0	0.0	0.0	0.0
	wastewater	Degradation of domestic wastewater in nature	Gg N ₂ O	0.4	0.4	0.3	0.2	0.2	0.2	0.2
		Total	Gg N ₂ O	4.2	4.0	3.9	3.8	3.8	3.7	3.8
		10141	Gg CO ₂ eq	1290	1247	1211	1163	1163	1142	1163
	Total	of all gases	Gg CO ₂ eq	3410	3108	2848	2567	2534	2470	2501

Table 8-11	GHG emissions	from wastewater	handling (6.B.)
------------	---------------	-----------------	-----------------

8.3.1. Industrial Wastewater (6.B.1.)

a) Source/Sink Category Description

 CH_4 and N_2O emissions from industrial effluent, which is treated by factories and other facilities in accordance with the regulations based on the Water Pollution Prevention Law and the Sewerage Law, are allocated to "Emissions from industrial wastewater treatment (6.B.1.)".

b) Methodological Issues

• Estimation Method

In accordance with the *GPG (2000)* decision tree, CH₄ and N₂O emissions were estimated for the industries that release organic-rich wastewater. Since default values given in the *Revised 1996 IPCC Guidelines* are considered to be unsuited to Japan's circumstances, CH₄ emissions were estimated based on Japan's country-specific methodology, namely, by multiplying the annual amount of organic matter in industrial wastewater subject to report (BOD basis)² by the CH₄ emission factor per unit BOD that is based on Japan's country-specific wastewater handling. Because CH₄ is emitted in wastewater biological treatment processes, BOD-based activity data (amount of organic matter in wastewater degraded through biological treatment) is thought to be preferable to COD-based data. For this reason, CH₄ emissions are calculated using BOD in Japan. With regard to N₂O emissions, no estimation methodologies are given in the IPCC guidelines. Therefore, in the same manner for estimating CH₄ emissions, N₂O emissions were estimated by multiplying the amount of nitrogen in industrial wastewater by Japan's country-specific N₂O emission factor.

² BOD is used in effluent regulations in Japan. Potassium permanganate (KMnO₄) is used for measuring COD in Japan and effectiveness at oxidizing organic compounds is different from commonly-used potassium dichromate (K₂Cr₂O₇).

 $E = EF \times A$

- E : amount of CH₄ or N₂O emissions generated when treating industrial wastewater (kg CH₄, kg N₂O)
- EF : emission factor (kg CH₄/kg BOD, kg N₂O/kg N)
- A : organic matter amount (kg BOD) or nitrogen amount (kg N) in industrial wastewater

• Emission Factor

No research applicable to the circumstances in Japan has been found for the amounts of CH_4 and N_2O generated from the industrial wastewater treatments; therefore, emission factors were established by using with the ones used for the "Emissions from Treatment of Domestic and Commercial Wastewater (at sewage treatment plants) (6.B.2.a)", which were believed to be relatively similar to the CH_4 and N_2O generation processes in wastewater treatment.

Since the ones used in "6.B.2.a" are expressed in units of volume of wastewater treated (m³), these emission factors were converted to units per amount of organic matter (BOD basis) and nitrogen by dividing the emission factor by the following concentrations of organic matter (BOD basis) and nitrogen in the wastewater intake at sewage treatment plants.

For the BOD concentration of runoff water, the "Planned Runoff Water Quality of Municipal Solid Domestic Wastewater" (180 mgBOD/l) given in *Guidelines and Explanation of Sewerage Facility Design* (Japan Sewage Works Association, 2001) was used.

For the nitrogen concentration of runoff water, 37.2 mg N/L was used, which was the simple average of total nitrogen concentrations of runoff water of sewage treatment plants extracted from the *Sewage Statistics 2003 (Admin. Ed.)*.

 $\frac{CH_4 \text{ emission factor}}{=(CH_4 \text{ emission factor for emissions from domestic and commercial wastewater treatment (sewage treatment plant)) / (BOD concentration in influent water)$ $= <math>8.8 \times 10^{-4} (\text{kg CH}_4/\text{m}^3) / 180 (\text{mg BOD/L}) \times 1000$ = $0.00489 = 0.0049 (\text{kg CH}_4/\text{kg BOD})$

In Japan, CH_4 emissions generated by anaerobic wastewater treatment are entirely recovered. For a small amount of CH_4 emissions generated under partially anaerobic conditions created during aerobic treatment, a country-specific emission factor was applied for emission estimates because the condition for this particular CH_4 emissions differs from that for the use of default value for the CH_4 emissions generated from anaerobic treatment defined in *the 2006 IPCC Guidelines*.

• Activity Data

The activity data for CH_4 emission were estimated based on the amount of organic matter contained in wastewater using BOD concentrations. The emission estimates were conducted for the industries which generate large amount of CH_4 emissions with high BOD concentrations from the treatment of wastewater referring to the industry types provided in the *Revised 1996 IPCC Guidelines* (Table 8-12).

The amount of organic matter was obtained by sorting and aggregating by industry type according to the middle industrial classification provided by the *Guidelines and Explanation of Sewage Facility Design* (Japan Sewage Works Assosiation, 2001).

The use of COD concentrations is required to report activity data on CRF; however, activity data are reported as "NE" because country-specific methodology was used for this source.

<u> CH_4 </u> emission activity = \sum [(amount of industrial wastewater flowing into wastewater treatment facilities) × (percentage of industrial wastewater treated at treatment facilities emitting CH₄) × (percentage of industrial wastewater treated on-site) × (BOD concentration of runoff water)]

The activity data for N_2O emissions were obtained based on the amount of nitrogen contained in industrial wastewater and aggregated by the same industrial sub-category as that applied to the estimation of CH_4 emissions.

 $\underline{N_2O} \text{ emission activity} = \sum [(\text{amount of industrial wastewater flowing into wastewater treatment facilities}) \times (\text{percentage of industrial wastewater treated at treatment facilities emitting N_2O}) \times (\text{percentage of industrial wastewater treated on-site}) \times (\text{nitrogen concentration of runoff water})]$

> Amount of industrial wastewater

The amount of water used for treatment of products by industrial sub-category and the volume of water used for washing given in the *Table of Industrial Statistics - Land and Water* (Ministry of Economy, Trade and Industry) were used for the amount of industrial wastewater.

> Percentage of industrial wastewater treated at facilities generating methane

Emissions of CH_4 from industrial wastewater treatment are believed to be generated from the treatment of wastewater with the activated sludge method and from the anaerobic treatment. Industrial wastewater treatment percentages for each industry code were set from the percentages of reported wastewater amounts in total wastewater, as given under "active sludge", "other biological treatment", "membrane treatment", "nitrification and denitrification" and "other advanced treatment" in the *Study on the Control of Burdens Generated* (Water and Air Environment Bureau, Ministry of the Environment).

> Percentage of industrial wastewater treated at facilities generating nitrous oxide

Emissions of N_2O from industrial wastewater treatment are believed to be generated mainly from biological treatment processes such as denitrification. Data on the fraction of industrial wastewater treated at facilities generating CH₄ was used for N_2O emission estimates.

> Percentage of industrial wastewater treated on-site

Percentage of industrial wastewater treated on-site is set at 1.0 in all industrial sub-categories because there is no statistical information available making it possible to ascertain this percentage.

> BOD and nitrogen concentrations in runoff wastewater

For the BOD concentrations for industrial sub-categories, the BOD raw water quality for industrial sub-categories given in the *Guidelines and Analysis of Comprehensive Planning Surveys for the Provision of Water Mains, by Catchment Area 1999 Edition* (Japan Sewage Works Association) was used. For the nitrogen concentrations for industrial sub-categories, emission intensities (TN: Total Nitrogen) provided by the same survey for industrial sub-categories were used.

Industry code	Category of Manufacturing
9	Food manufacturing
10	Beverage, tobacco and feeding stuff manufacturing
11	Textile manufacturing (excluding clothing material, other
12	Clothing material and other textile manufacturing
15	Pulp, paper and other paper manufacturing
17	Chemical industries
18	Petroleum products and coal product manufacturing
19	Plastic products manufacturing
20	Rubber products manufacturing
21	Chamois, chamois products and fur skin manufacturing

Table 8-12	Industries to	o be estin	nated for	emissions
------------	---------------	------------	-----------	-----------

Table 8-13 BOD loading (kt BOD) and nitrogen (kt N) amounts for industrial wastewater

Item	Unit	1990	1995	2000	2005	2006	2007	2008
BOD load	kt BOD	1,100	1,060	1,045	1,012	1,011	1,018	1,018
TN load	kt N	91	90	78	91	89	91	91

c) Uncertainties and Time-series Consistency

• Uncertainties

The level of uncertainty in the CH₄ emission factor was evaluated on the basis of expert judgment. The uncertainty in activity data was estimated to be 37.4% on the basis of the uncertainties in the amount of wastewater used, percentage of industrial wastewater treated at CH₄-generating facilities, percentage of wastewater treated on-site, and BOD concentration in runoff water provided by each middle classification industry. The uncertainties in the amount of wastewater used, percentage of industrial wastewater used, percentage of industrial wastewater used, percentage of industrial wastewater treated at facilities generating CH₄, and BOD concentration in runoff water were estimated by using statistical uncertainty. The uncertainty in the percentage of wastewater treated on-site was determined by expert judgment. The uncertainty level for N₂O is evaluated by the same method as was used for the CH₄ and estimated to be 300% and 51.1% for emission factor and activity data, respectively. The uncertainties in CH₄ and N₂O emissions from industrial wastewater handling were estimated to be 71% and 304%, respectively. For details, refer to the Annex 7.

• Time-series consistency

Data on the percentage of industrial wastewater treated at CH_4 - and N_2O -generating facilities since FY 2001 are available only for FY 2004. Therefore, data were interpolated and extrapolated for the remaining years. The emissions were calculated in a consistent manner.

d) Source-specific QA/QC and Verification

Tier 1 QC activities are implemented in accordance with the *GPG (2000)*. The Tier 1 QC activities include the verification of parameters such as activity data and emission factors, and the archive of reference materials. Also, QA activity was implemented for the waste sector by the GHG Inventory Quality Assurance Working Group in FY 2009. For more details of QA/QC activities, refer to Annex 6.

e) Source-specific Recalculations

The emission estimates were recalculated owing to an update in the amount of wastewater used for FY 2007.

f) Source-specific Planned Improvements

For future inventories, long-term efforts on further scientific investigations will be made to the following items:

- Improving the emission factors for emissions from industrial wastewater treatment for which currently the emission factors used for sewage treatment plants are substituted.
- Identifying the methodology for estimating emissions from landfill leachate treatment
- Determining the amount of CH₄ recovery from industrial wastewater treatment

8.3.2. Domestic and Commercial Wastewater (6.B.2.)

Domestic and commercial wastewater generated in Japan is treated at various wastewater treatment facilities (e.g., sewage treatment plants, septic tanks, human-waste treatment plants) and greenhouse gas emissions from these sources are reported under "Domestic and Commercial Wastewater (6.B.2.)". Because the CH_4 and N_2O emission characteristics differ from one wastewater treatment facility to another, a different emission estimation method is established for each facility.

The characteristics, effectiveness, and economic efficiency of wastewater treatment systems were thoroughly reviewed, and the most suitable systems were selected for each area in Japan with care also being taken to avoid excessive expenditure. Public sewerage system is spreading from large cities to smaller municipalities and used by 66.7% of the population at the end of FY 2007.

Domestic wastewater treatment systems (e.g. *gappei shori jokasou*) are being promoted as an effective means of supplementing sewerage systems in smaller municipalities with low population densities and little flat land. In FY 2007, septic tanks (*jokasou*) were used by 23.7% of the population, with the remainder being treated after collection or on-site.

In CRF (6.B.2.), N_2O emissions from human waste treatment plants are reported in the subcategory "Human sewage (6.B.2.2)", and other emissions are reported in "Domestic and Commercial (w/o human sludge) (6.B.2.1)".

"NE" is reported on the CRF table for activity data instead of reporting the amount of organic carbon based on BOD values because the activity data for this source are estimated using a country-specific method by each gas and each wastewater treatment facility.

8.3.2.1. Sewage Treatment Plant (6.B.2.a)

a) Source/Sink Category Description

This category covers CH_4 and N_2O emissions from treatment of wastewater at sewage treatment plants.

b) Methodological Issues

• Estimation Method

Emissions of CH₄ and N₂O from this source were calculated using Japan's country-specific method in accordance with decision tree of the *GPG* (2000) (Page 5.14, Fig. 5.2). Emissions were calculated by multiplying the volume of sewage treated at sewage treatment plants by the emission factor (Refer to 6B-2006.xls¥6B2-D&C for details of the calculation process).

 $E = EF \times A$

- E: Amount of CH₄ or N₂O emitted from sewage treatment plants in conjunction with domestic/commercial wastewater treatment (kg CH₄, kg N₂O)
- *EF* : Emission factor (kg CH_4/m^3 , kg N_2O/m^3)
- A : Yearly amount of sewage treated at a sewage treatment plant (m^3)

• Emission Factors

Emission factors were established by adding the simple averages for each treatment process, having taken the actual volume of CH_4 and N_2O released from sludge treatment and water treatment processes measured at sewage treatment plants from research studies conducted in Japan (Water treatment process: 528.7 [mg CH_4/m^3], 160.3 [mg N_2O/m^3]; sludge treatment process: 348.0 [mg CH_4/m^3], 0.6 [mg N_2O/m^3]).

Calculation of methane emission factor=Average of emission factor for water treatment processes+Average of emission factor for sludge treatment processes= $528.7 [mg CH_4/m^3] + 348.0 [mg CH_4/m^3]$ = $8.764 \times 10^{-4} [kg CH_4/m^3]$

Calculation of nitrous oxide emission factor	
= Average of emission factor for water treatment processes	
+ Average of emission factor for sludge treatment processes	
$= 160.3 [mg N_2O/m^3] + 0.6 [mg N_2O/m^3]$	
$= 1.609 \times 10^{-4} [\text{kg N}_2\text{O/m}^3]$	

• Activity Data

Activity data for CH_4 and N_2O emissions associated with water treatment at sewage treatment plants was derived by subtracting the volumes subject to primary processing from the annual volume of water treated, as given in the *Sewage Statistics (Admin. Ed.)* (Japan Sewage Works Association).

In order to avoid overestimates of activity data, volumes subject to primary processing was subtracted from the annual volume of water treated because CH_4 and N_2O emitted from this source are primarily emitted from biological reaction tanks although the annual volume of water treated as given in the *Sewage Statistics (Admin. Ed.)* (Japan Sewage Works Association) includes primary treatment volumes that are only subject to settling.

= (Annual volume of water treated at sewage treatment plants)

- (Annual input volume for primary processing at sewage treatment plants)

Table	8-14	Activity	data	(sewage	treatment	plant)

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Annual amount of	10^{6}m^{3}	9 857	10.392	12.519	13,407	13,744	13.534	13.963
wastewater treated	10 111	,057	10,372	12,517	15,107	13,711	13,331	13,703

c) Uncertainties and Time-series Consistency

• Uncertainties

The uncertainties in CH_4 and N_2O emission factors were estimated by using the 95% confidence interval of actual measurement data. The uncertainty in activity data was evaluated based on the annual throughput and annual primary treatment amount and estimated by using the statistical uncertainties. The uncertainties in CH_4 and N_2O emissions from sewage treatment plants were estimated to be 33% and 146%, respectively. For details, refer to the Annex 7.

• Time series consistency

The emissions were calculated in a consistent manner.

d) Source-specific QA/QC and Verification

Tier 1 QC activities are implemented in accordance with the *GPG (2000)*. The Tier 1 QC activities include the verification of parameters such as activity data and emission factors, and the archive of reference materials. Also, QA activity was implemented for the waste sector by the GHG Inventory Quality Assurance Working in FY 2009. For more details of QA/QC activities, refer to the Annex 6.

e) Source-specific Recalculations

The emission estimates for FY2007 were recalculated owing to an update in activity data for FY 2007.

f) Source-specific Planned Improvements

A revision of the emission factor for sewage treatment plants is planned owing to the high uncertainty.

8.3.2.2. Domestic Sewage Treatment Plant (mainly septic tanks) (6.B.2.b)

a) Source/Sink Category Description

A part of domestic and commercial wastewater not processed in the public sewerage in Japan is processed in *community plants*, *gappei-shori johkasou*, the *tandoku-shori johkasou*, and vaults. The *gappei-shori* and *tandoku-shori* are decentralized wastewater treatment facilities installed at an individual home. The *gappei-shori* processes feces and urine and miscellaneous wastewater, whereas *tandoku-shori* processes only feces and urine. A community plant is small-scale sewage facility, where

urine and the miscellaneous wastewater of each region are processed. This category covers CH_4 and N_2O emissions from domestic sewage treatment plants. Emissions from human waste within its residence time in vault toilets were accounted for under this category, whereas the emissions that occur after the waste is collected from vault toilets were accounted for under "Human waste treatment facilities (6.B.2.c)".

b) Methodological Issues

• Estimation Method

Emissions of CH₄ and N₂O from this source were calculated using Japan's country-specific method, in accordance with decision tree the *GPG* (2000) (Page 5.14, Fig. 5.2). Emissions were calculated by multiplying the annual population of treatment for each type of domestic sewage treatment plant by the emission factor.

$E = \sum \left(EF_i \times A_i \right)$

- E : Emissions of methane and nitrous oxide from the processing of domestic and commercial wastewater at domestic sewage treatment plants (i.e. household septic tanks) (kg CH₄, kg N₂O)
- EF_i : Emission factor for domestic sewage treatment plant *i* (kg CH₄/person, kg N₂O/person)
- *A* : Population (persons) requiring waste processing at domestic sewage treatment plant *i* per year

• Emission Factors

The CH₄ and N₂O emission factors for this source were determined as described below:

- For the CH₄ emission factor for community plants by FY1995, the values indicated in Tanaka, (1998) were used. For the values from FY2005 onwards, the values indicated in Souda (2010) were used taking into account the performance improvement in the plants. The values for FY1996 through FY2004 were interpolated.
- For the N₂O emission factor for community plants by FY1995, the mean values of the upper limit and the lower limit of actual measured values indicated in Tanaka (1997) were used. For the values from FY2005 onwards, the values indicated in Ike and Souda (2010) were used taking into account the performance improvement of the plants. The values for FY1996 through FY2004 were interpolated.
- For the CH₄ and N₂O emission factors for *gappei-shori johkasou*, the mean values of the upper limit and the lower limit of actual measured values indicated in Tanaka (1998) were used.
- For the CH₄ and N₂O emission factors for *tandoku-shori johkasou*, the mean value of the upper limit and the lower limit of actual measured values indicated in Takeishi et al., (1993), and Takeishi et al., (1994) were used.
- For the CH₄ and N₂O emission factors for vault toilets, the same values as that used for tandoku-shori johkasou were applied because the detention period of human waste is very similar.

fuoto o fo offit Emission fuctors for domestic sewage acament plants						
Item	CH ₄ Emission factor [kg CH ₄ /person-year]					
nem	FY 1990-1995 FY 1996-2004		FY2005-			
Community plants	0.195	Calculated by interpolation using the values of FY1995 and FY 2005	0.062			
Gappei-shori johkasou	1.106					
Tandoku-shori johkasou	0.197					
Vault toilets	0.197					

Table 8-15 CH₄ Emission factors for domestic sewage treatment plants

Table 8-16 N₂O emission factor for domestic sewage treatment plants

Item	N ₂ O Emission factor [kg N ₂ O-N// person-year]					
Item	FY 1990-1995	FY 1996-2004	FY2005-			
Community plants	0.0394	Calculated by interpolation using the values of FY1995 and FY 2005	0.0048			
Gappei-shori johkasou		0.0264				
Tandoku-shori johkasou	0.0200					
Vault toilets	0.0200					

• Activity Data

Annual treatment population by type of domestic sewage treatment plant for community plants, *gappei-shori johkasou, tandoku-shori johkasou,* and vault toilets given in the *Waste Treatment in Japan* was used as the activity data for CH_4 and N_2O emitted in association with domestic wastewater treatment facilities.

Table 8-17 Annual treatment population by type of domestic sewage treatment plant

(1,000 persons)								
Item	Unit	1990	1995	2000	2005	2006	2007	2008
Community plants	1000 person	493	398	414	554	361	336	336
Gappei-shori johkasou	1000 person	7,983	8,515	10,806	12,770	13,286	13,939	13,939
Tandoku-shori johkasou	1000 person	25,119	26,105	23,289	18,303	17,187	15,923	15,923
Vault toilets	1000 person	38,920	29,409	20,358	13,920	12,983	12,121	12,121
Total	1000 person	72,515	64,427	54,867	45,547	43,817	42,319	42,319

c) Uncertainties and Time-series Consistency

• Uncertainties

The level of uncertainty in the emission factor was evaluated for each treatment facility taking into account the actual measurement data and setting methods. The following data were used:

- The 95% confidence interval of actual measurement data: gappei-shori (N₂O) and tandoku-shori (CH₄ and N₂O)

- The upper and lower limits of actual measurement data: community plants (CH₄) and *gappei-shori* (CH₄)

- The values set by the Committee for GHGs Emissions Estimation Methods: community plants (N₂O) and vault toilets (CH₄ and N₂O)

The uncertainty in activity data was evaluated based on the uncertainties in treatment population for each type of treatment facilities by using the statistical uncertainty (10%). The uncertainties in CH_4 and N_2O emissions from domestic wastewater treatment (mainly septic tanks) were estimated to be 87% and 72%, respectively. For details, refer to the Annex 7.

• Time series consistency

The emissions were calculated in a consistent manner.

d) Source-specific QA/QC and Verification

Tier 1 QC activities are implemented in accordance with the *GPG (2000)*. The Tier 1 QC activities include the verification of parameters such as activity data and emission factors, and the archive of reference materials. Also, QA activity was implemented for the waste sector by the GHG Inventory Quality Assurance Working Group in FY 2009. For more details of QA/QC activities, refer to the Annex 6.

e) Source-specific Recalculations

- Due to new scientific findings on the emission factor for community plants, emission estimates for FY1996 through FY2007 were recalculated.
- Due to the update on the activity data for FY2005 through FY2007, emission estimates were recalculated.

f) Source-specific Planned Improvements

No improvements are planned.

8.3.2.3. Human-Waste Treatment Plant (6.B.2.-)

a) Source/Sink Category Description

This category covers emissions of CH_4 and N_2O emissions from treatment of vault toilet human waste and septic tank sludge collected at human waste treatment plants.

b) Methodological Issues

1) CH₄

• Estimation Method

Emissions of CH_4 from this source were calculated using Japan's country-specific methodology in accordance with decision tree of the *GPG* (2000) (Page 5.14, Fig. 5.2). Emissions were calculated by multiplying the volume of domestic wastewater treated at human waste treatment plants by the emission factor.

$$E = \sum \left(EF_i \times A_i \right)$$

- E : Emission of methane from the processing of domestic and commercial wastewater at human waste treatment plants (kg CH₄)
- EF_i : Emission factor for human waste treatment plants (for treatment process *i*) (kg CH₄/m³)
- A_i : Input volume of human waste and septic tank sludge at human waste treatment plants (for treatment process *i*) (m³)

• Emission factors

Emission factors for CH_4 were determined by treatment processes type, including anaerobic, aerobic, standard denitrification and high-load denitrification treatments as well as membrane separation systems, for each of the human waste treatment plants.

	5 1
Treatment method	Methane emission factor [kg CH ₄ /m ³]
Anaerobic treatment ^a	0.543
Aerobic treatment ^b	0.00545
Standard de-nitrification treatment ^c	0.0059
High load de-nitrification treatment ^c	0.005
Membrane separation ^d	0.00545
Other ^d	0.00545

 Table 8-18 Methane emission factors by each treatment process

- a: Actual methane emissions given in the Japan Environmental Sanitation Center *Report of Analytical Survey of Methane Emissions FY1989 Commissioned by the Environmental Agency* multiplied by the rate of recovery of 1-methane (90%).
- b: Actual data on emissions is not available. A simple average of standard- and high-load de-nitrification has been used.
- c: Tanaka, Inoue, Matsuzawa, Osako, and Watanabe *B-2(1) Research into Volumes Released from Waste Treatment Plants* FY1994 Global Environment Research Fund Outcome Report
- d: Actual data on emissions is not available. The emission factor for aerobic treatment has been substituted.

• Activity Data

Activity data for CH_4 emissions associated with the processing of wastewater at human waste treatment plants was determined from the calculated throughput volume for each of the treatment processes (Table 8-19), by multiplying the total volume of human waste and septic tank sludge processed at human waste treatment plants that were indicated in *Waste Treatment in Japan* (Table 8-20) by the capacity of each treatment process (Table 8-21).

Table 8-19	Volume of human	waste treated at	t their treatment plants
------------	-----------------	------------------	--------------------------

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Vault toilet	1000 kl/year	20,406	18,049	14,673	10,400	9,864	9,261	9,261
ST sludge	1000 kl/year	9,224	11,545	13,234	13,790	14,089	13,987	13,987
Total	1000 kl/year	29,630	29,594	27,907	24,190	23,953	23,248	23,248

Data from Waste Treatment in Japan

Unit	Unit	1990	1995	2000	2005	2006	2007	2008
Anaerobic treatment	kl/day	34,580	19,869	10,996	6,476	5,856	4,801	4,801
Aerobic treatment	kl/day	26,654	19,716	12,166	8,465	8,005	7,892	7,892
Standard denitrification	kl/day	25,196	30,157	31,908	29,655	28,363	28,102	28,102
High-intensity denitrification	kl/day	8,158	13,817	16,498	17,493	15,980	15,784	15,784
Membrane separation	kl/day	0	1,616	2,375	3,055	4,264	3,861	3,861
Other	kl/day	13,777	20,028	25,917	30,292	34,733	33,115	33,115

Table 8-20 Trends in treatment capacity by treatment process

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Anaerobic treatment	1000 kl/year	9,455	5,589	3,073	1,638	1,443	1,193	1,193
Aerobic treatment	1000 kl/year	7,288	5,546	3,400	2,141	1,973	1,961	1,961
Standard denitrification	1000 kl/year	6,889	8,483	8,917	7,499	6,989	6,983	6,983
High-intensity denitrification	1000 kl/year	2,231	3,887	4,611	4,424	3,938	3,922	3,922
Membrane separation	1000 kl/year	0	455	664	773	1,051	959	959
Other	1000 kl/year	3,767	5,634	7,243	7,660	8,559	8,229	8,229
Total	1000 kl/year	29,630	29,594	27,907	24,135	23,953	23,248	23,248

Table 8-21 Activity Data

2) N_2O

• Estimation Method

Emissions of N_2O from this source were calculated using Japan's country-specific methodology, in accordance with decision tree of the *GPG* (2000) (Page 5.14, Fig. 5.2). Emissions were calculated by multiplying the volume of nitrogen treated at human waste treatment plants, by the emission factor (Refer to 6B-2006.xls¥6B2-D&C for details of the calculation process).

$$E = \sum \left(EF_i \times A_i \right)$$

E : Emission of nitrous oxide from the processing of domestic and commercial wastewater at human waste treatment plants (kg N₂O)

 EF_i : Emission factor for human waste treatment plants (by treatment process *i*) (kg N₂O/kg N)

 A_i : Amount of nitrous oxide in human waste and septic tank sludge input at human waste treatment plants (by treatment process *i*) (kg N)

• Emission factors

The emission factors for N_2O were determined for each treatment process including high-load denitrification treatment and membrane separation systems using the results of actual case studies in Japan.

According to the survey study on the emission factors for human waste treatment facilities conducted in FY1994 (Tanaka et al., 1997) and FY2003 (Ohmura et al., 2004) in Japan, because of the advancement of the structure of human waste treatment facilities and the technology of operation and maintenance, actual measurement results show the improvement in the emission factors for high load de-nitrification treatment and membrane separation; therefore, different emission factors were used for FY1994 or before and from FY2003 onwards.

Table 6 22 Willous oxide emission factors by each readment process							
Treatment method	N ₂ O emission factors [kg N ₂ O-N/kg-N]						
Treatment method	FY1990-1994	FY1995-2002	FY2003 -				
high load de-nitrification treatment	0.033 ^a	Calculated by interpolation using the values of FY1994 and FY 2003	0.0029 ^b				
membrane separation	0.033 ^a	Calculated by interpolation using the values of FY1994 and FY 2003	0.0024				
Other (including anaerobic treatment, aerobic treatment, standard de-nitrification treatment)		0.0000045 ^{c*}					

Table 8-22 Nitrous oxide emission factors by each treatment process

- a : Use median value of actual measurements at 13 plants given in Tanaka, Inoue, Osako, Yamada, and Watanabe B-16(7) Research into Limiting Generation of Methane and Nitrous Oxide from the Waste Sector FY1997 Global Environment Research Fund Outcome Report
- b : Use median value of actual measurements at 13 plants given in Omura, Kawakubo, and Yamada. *Study of Emission Factors for N₂O from High-load Human Waste Management*. Journal of Waste Management, 57 (260).
- c : Tanaka, Inoue, Matsuzawa, Osako, and Watanabe *B-2(1) Research into Volumes Released from Waste Treatment Plants* FY1994 Global Environment Research Fund Outcome Report

* : Calculated by dividing upper limit value for standard de-nitrification treatment $(0.00001 \text{kg N}_2\text{O/m}^3)$ by treated nitrogen concentration in FY1994 (2,211mg/L).

• Activity Data

The volume of nitrogen treated at human waste treatment plants was calculated by multiplying treated nitrogen concentration by the volume of human waste treated at these facilities (the sum of collected human waste and sewage in sewerage tank), given in the *Waste Treatment in Japan*. The treated nitrogen concentration is based on weighted average of the volume of nitrogen contained in collected human waste and sewage in sewerage tank derived using the volume of collected human waste and sewage in sewerage tank treated at human waste treatment plants.

Activity data

= [(Input volume of human waste at human waste treatment plants) \times (Nitrogen concentration in human waste)

+ (Input volume of septic tank sludge at human waste treatment plants) \times (Nitrogen concentration in septic tank sludge)]

 \times (percentage throughput of treatment process *i*)

> Input volume of human waste and septic tank sludge at human waste treatment plants:

Refer to the data used for the calculation of CH_4 emissions from human waste treatment plants (Table 8-19).

> Percentage throughput of the human waste treatment processes:

Refer to the data used for the calculation of CH_4 emission from human waste treatment plants (Table 8-20).

Nitrogen concentration in human waste and septic tank sludge input at treatment plants: See Table 8-23.

Table 8-23 Concentration	C		1	
Table X 13 Concentration	ot nitrogan	a contained in collected	human wasta and	Cowara in cowarage tank
$1aDIC 0^{-2}$.) CONCENTRATION		i containeu in conecteu	numan wasie and	I SEWARE III SEWELARE LAIIN

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Vault toilet	mg N/l	3,940	3,100	2,700	2,700	2,700	2,700	2,700
ST sludge	mg N/l	1,060	300	580	580	580	580	580
Weighted average	mg N/l	3,043	2,008	1,695	1,491	1,453	1,425	1,425

Use analytical values for FY 1989-1991, FY1992-1994, FY1995-1997 and FY1998-2000.

Data after 2001 are replaced by that in 2000.

Source: Okazaki, Shimizu, and Morita. Study of Operation Records Based on Precision Function Inspection of Human Waste Management Plant. Japan Environmental Sanitation Center Report, 28.

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Anaerobic treatment	kt N	28.8	11.2	5.2	2.4	2.1	1.7	1.7
Aerobic treatment	kt N	22.2	11.1	5.8	3.2	2.9	2.8	2.8
Standard denitrification	kt N	21.0	17.0	15.1	11.2	10.2	9.9	9.9
High-intensity denitrification	kt N	6.8	7.8	7.8	6.6	5.7	5.6	5.6
Membrane separation	kt N	0.0	0.9	1.1	1.2	1.5	1.4	1.4
Other	kt N	11.5	11.3	12.3	11.4	12.4	11.7	11.7
Total	kt N	90.2	59.4	47.3	36.0	34.8	33.1	33.1

 Table 8-24 Activity data: Amount of nitrogen in human waste and septic tank sludge processed at human waste treatment plants

c) Uncertainties and Time-series Consistency

• Uncertainties

The level of uncertainty in the CH₄ emission factor was evaluated by using the default values set by the Committee for GHGs Emissions Estimation Methods for each type of human waste treatment method (anaerobic treatment, aerobic treatment, standard denitrification, high-intensity denitrification, membrane separation, and other). The uncertainty in the activity data for CH₄ is associated with uncertainties in the amount of human waste and septic tank sludge that entered human waste treatment facilities and the throughput capacity rate by type of human waste treatment. The uncertainties for each component were estimated by using the statistical uncertainties. The uncertainty level in N₂O emission factors was also evaluated by treatment type. For high-intensity denitrification and membrane separation, the 95% confidence interval of actual measurement data on emission factors was used. For other treatments, the default values set by the Committee for GHGs Emissions Estimation Methods were used. The uncertainty in activity data for N₂O was estimated by using the uncertainties in nitrogen concentration in human waste and septic tank sludge that determined from the standard deviations in actual measurement data, in addition to the components of uncertainty for CH₄. The uncertainties in CH₄ and N₂O emissions from human waste treatment were estimated to be 101% and 106%, respectively. For details, refer to the Annex 7.

• Time series consistency

For N_2O emission factor, consistent data over the time series were constructed based on the actual measurement data by using the methods described in Table 8-22. For other parameters, data were constructed consistently for the entire time series. The emissions were calculated in a consistent manner.

d) Source-specific QA/QC and Verification

Tier 1 QC activities are implemented in accordance with the *GPG (2000)*. The Tier 1 QC activities include the verification of parameters such as activity data and emission factors, and the archive of reference materials. Also, QA activity was implemented for the waste sector by the GHG Inventory Quality Assurance Working Group in FY 2009. For more details of QA/QC activities, refer to the Annex 6.

e) Source-specific Recalculations

Due to the update on the activity data for FY2007, the emission estimates for FY2007 were recalculated.

f) Source-specific Planned Improvements

No improvements are planned.

8.3.2.4. Emission from the Natural Decomposition of Domestic Wastewater (6.B.2.d)

a) Source/Sink Category Description

Although most of the domestic wastewater generated by Japanese households is processed at wastewater treatment plants, some is discharged untreated into public waters. The domestic wastewater thus disposed of decomposes naturally and emits CH_4 and N_2O . The amounts of CH_4 and N_2O emitted from this source are reported in the "Emissions from Processing of Domestic and Commercial Wastewater (6.B.2.)".

b) Methodological Issues

• Estimation Method

Estimation method was established in accordance with the method described in the 2006 IPCC Guidelines. In the natural decomposition of wastewater, both the volume of organic matter extracted as sludge and recovered CH_4 were zero. Accordingly, CH_4 emissions were calculated by multiplying the volume of organic matter contained in the untreated domestic wastewater that was discharged into public waters by the emission factor. The N₂O emission was calculated by multiplying the volume of nitrogen contained in the wastewater by the emission factor.

 $E = EF \times A$

- E : Emission of methane or nitrous oxide from the natural decomposition of domestic wastewater (kg CH₄; kg N₂O)
- *EF* : Emission factor (kg CH₄/kg BOD; kg N₂O/kg N)
- A : Volume of organic matter (kg BOD) or nitrogen (kg N) in domestic wastewater

• Emission factors

Emission factors were determined in accordance with the 2006 *IPCC Guidelines*. The emission factor for CH_4 was established by multiplying the maximum CH_4 generation potential (B₀) by a CH_4 correction factor (MCF). The maximum CH_4 generation potential was set to 0.6 kg CH_4 /kg BOD, given in the 2006 *IPCC Guidelines*, and the MCF was set to 0.1, a default value for "Sea, river and lake discharge" of "Untreated systems".

$$EF_{CH4} = 0.6 \quad (kg CH_4/kg BOD) \times 0.1$$
$$= 0.06 \quad (kg CH_4/kg BOD)$$

The emission factor for N_2O was calculated from the value of 0.005 kg N_2O -N/kg N after conversion of the units.

 $EF_{N2O} = 0.005 \text{ (kg N}_2\text{O-N/kg N)} \times 44/28$ = 0.0079 (kg N}_2\text{O/kg N})

• Activity Data

Activity data to be calculated are the following sources:

- Domestic wastewater from households using tandoku-shori johkasou
- Domestic wastewater from households using Vault toilets
- Domestic wastewater from households using on-site disposal systems
- · Human waste and septic tank sludge dumped into the ocean
- Sewage sludge dumped into the ocean

Definition for each activity data is provided as in Table 8-25. Estimated activity data are shown in Table 8-26.

Table 8-25 Calculation method for activity data used for the calculation of GHG emissions from

	the natural decomposition of domestic wastewater							
Item	Methane emission activity data	Nitrous oxide emission activity data						
Tandoku-shori johkasou Vault toilet	User population (persons) × Unit BOD from domestic wastewater (g BOD/person·day)	User population (persons) × Unit nitrogen from domestic wastewater (g N/person·day)						
On-site disposal ^{a)}	Population using on-site disposal system (person) × Unit BOD from domestic wastewater (g BOD/person·day)	Population using on-site disposal system (person) × Unit nitrogen from domestic wastewater (g N/person·day)						
Ocean dumping (Human waste)	Human waste dumped in ocean (kL) \times BOD concentration in human waste (mg BOD/L) + septic tank sludge dumped in ocean (kL) \times BOD concentration in septic tank sludge (mg BOD/L)	Human waste dumped in ocean (kL) \times nitrogen concentration in septic tank sludge (mg N/L) + septic tank sludge dumped in ocean (kL) \times nitrogen concentration in septic tank sludge (mg N/L)						
Ocean dumping (Sewage sludge)	Sewage sludge dumped in ocean (kL) \times BOD concentration in sewage sludge (mg BOD/L)	Sewage sludge dumped in ocean (kL) \times nitrogen concentration in sewage sludge (mg N/L)						

Source: Volumes for *tandoku-shori johkasou*, vault toilets, on-site disposal systems and ocean dumping – *Waste Treatment in Japan*

Unit BOD and unit nitrogen from domestic wastewater – 1999 Survey of Comprehensive Sewerage System Development Program by Watershed – Guidelines and Commentaries

BOD concentration and nitrogen concentration in human waste and septic tank sludge: Okazaki, Shimizu, and Morita. Study of Operation Records Based on Precision Function Inspection of Human Waste Management Plant. Japan Environmental Sanitation Center Report, 28

a) A portion of the human waste in on-site disposal systems is utilized as fertilizer on farmlands in Japan. The nitrous oxide emission from this portion of human waste is already included in the "Direct emission from soil (4.D.)" category in the Agriculture section, and therefore, not included in the calculation for this source.

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Tandoku-shori	kt BOD	366.7	381.1	341.0	267.2	250.9	232.5	233.1
Vault toilet	kt BOD	568.2	429.4	298.0	203.2	189.6	177.0	177.5
On-site disposal	kt BOD	46.2	21.0	9.4	3.9	3.2	2.7	2.7
Ocean dumping (Human waste)	kt BOD	21.7	13.5	9.3	3.5	2.2	0.0	0.0
Ocean dumping (sewege sludge)	kt BOD	0.8	0.9	0.0	0.0	0.0	0.0	0.0
Total	kt BOD	1,002.9	845.1	657.7	477.8	445.9	412.1	413.3
Item	Unit	1990	1995	2000	2005	2006	2007	2008
Tandoku-shori	kt N	18.3	19.1	17.0	13.4	12.5	11.6	11.7
Vault toilet	kt N	28.4	21.5	14.9	10.2	9.5	8.8	8.9
On-site disposal	kt N	2.3	1.1	0.5	0.2	0.2	0.1	0.1
Ocean dumping (Human waste)	kt N	7.2	3.2	2.2	0.8	0.5	0.0	0.0
Ocean dumping (sewege sludge)	kt N	0.1	0.1	0.0	0.0	0.0	0.0	0.0
Total	kt N	56.3	44.7	34.6	24.5	22.7	20.6	20.7

Table 8-26 Activity data: Emission from natural decomposition of domestic wastewater

c) Uncertainties and Time-series Consistency

• Uncertainties

The level of uncertainty in the CH_4 emission factor was estimated by using the uncertainties in the maximum CH_4 generation potential and the CH_4 correction factor. The default value in the 2006 IPCC Guidelines was used for uncertainty in the N₂O emission factor. The uncertainties in activity data were evaluated for *tandoku-shori*, vault toilets, on-site disposal (determined from the wastewater treatment population and unit BOD or nitrogen in domestic wastewater) and ocean dumping (amount of human waste and septic tank sludge dumped into ocean, and concentration of organic matter or nitrogen in human waste and septic tank sludge). The methods of evaluation of the uncertainty levels for each component are:

- Use of the default values in the 2006 IPCC Guidelines: maximum CH_4 generation potential and CH_4 correction factor

- Based on expert judgment: unit BOD and nitrogen in domestic wastewater

- Use of 95% confidence interval of actual measurement data: concentrations of organic matter and nitrogen in human waste and septic tank sludge

- Use of the statistical uncertainties: wastewater treatment population, amount of human waste and septic tank sludge dumped into ocean

The uncertainties in CH_4 and N_2O emissions from natural decomposition of domestic wastewater were estimated to be 76%. For more details, refer to the Annex 7.

• Time series consistency

The emissions were calculated in a consistent manner.

d) Source-specific QA/QC and Verification

Tier 1 QC activities are implemented in accordance with the *GPG (2000)*. The Tier 1 QC activities include the verification of parameters such as activity data and emission factors, and the archive of reference materials. Also, QA activity was implemented for the waste sector by the GHG Inventory

Quality Assurance Working in FY 2009. For more details of QA/QC activities, refer to the Annex 6.

e) Source-specific Recalculations

Due to the update on the activity data for FY2007, the emission estimates for FY2007 were recalculated.

f) Source-specific Planned Improvements

No improvements are planned.

8.3.2.5. Recovery of CH₄ emitted from treating domestic and commercial wastewater (6.B.2.-)

a) Source/Sink Category Description

In Japan, CH₄ emissions generated from sludge digestion at sewage treatment plants and human waste treatment facilities are recovered.

 CH_4 emissions generated by anaerobic wastewater treatment are entirely recovered. A small amount of CH_4 emission generated under aerobic conditions is estimated with a country-specific emission factor. These recovered CH_4 emissions treating domestic and commercial wastewater explained in this section are not estimated by the methodology indicated in the *GPG (2000)* and not included in emission estimates.

Therefore, for reference purpose only, the amount of CH_4 recovered treating domestic and commercial wastewater at sewage treatment plants and human waste treatment facilities are reported in this section.

b) Methodological Issues

1) Methane Recovery at Sewage Treatment Plants

• Estimation Method

The amount of CH_4 recovered from sludge digesters at sewage treatment plants is calculated by multiplying the amount of digester gas (volumetric basis) recovered from digesters by an emission factor that takes into account the concentration of CH_4 in digester gas.

 $R = A \times EF$

- R : Amount of recovered CH₄ at final disposal site (Gg CH₄)
- A : Amount of generated digester gas (m^3)
- *EF* : Emission factor (Gg CH_4 / m^3)

• Emission factors

Emission factor is set by finding the weight equivalent of the average CH₄ concentration in digester gas.

$$EF = F_{CH_4} \times 16/22.4$$

$$EF \qquad : \text{Emission factor (Gg CH_4 / m^3)}$$

$$F_{CH4} \qquad : \text{Concentration of methane in digester gas (volumetric basis)}$$

The CH₄ concentration in digester gas (volumetric basis) was set at 60% with reference to the *Manual for Developing Plans for Biosolids Utilization (Draft)* (Ministry of Land, Infrastructure,

Transport and Tourism).

• Activity Data

The amount of digester gas recovered from sludge digesters at sewage treatment plants is provided by "amount of digester gas generated by sludge treatment facilities" in the *Sewage Statistics (Admin. Ed.)* (Japan Sewage Works Association). Because entire digester gas generated at sewage treatment plants in Japan is recovered, the total amount of generated digester gas is treated as the amount of digester gas recovered. The amount of digester gas used for energy to be included in the energy category is determined from the amount of digester gas listed in "amount of digester gas used in sludge digester facilities" of the *Sewarge Statistics*.

Table 8-27 Amount of methane recovered from sewage treatment plant sludge digesters (Gg-CH₄)

			U	-		0 0	, U	.,
Item	Unit	1990	1995	2000	2005	2006	2007	2008
Recovered CH ₄ amount	Gg CH ₄	88.7	110.5	113.3	122.0	130.2	134.1	130.3
Portion used as energy	Gg CH ₄	65.3	73.9	75.3	85.0	90.6	93.0	93.2

2) Methane Recovery from Human Waste Treatment Facilities

• Estimation Method

The amount of CH_4 recovery at human waste treatment facilities was obtained by multiplying the amount of recycled biogas at human waste treatment facilities on a volumetric basis by the emission factor taking into account CH_4 concentration in biogas.

$R = A \times E$	EF
R	: Amount of CH ₄ recovered at human waste treatment facilities (Gg CH ₄)
Α	: Amount of Recycled Biogas (m ³)
EF	: Emission Factor $(Gg CH_4 / m^3)$

• Emission Factors

Emission factor was determined by taking into account CH_4 concentration in biogas and molecular weight conversion. CH_4 concentration in biogas was determined to be 60% referring to the *JARUS Reference System for Information of Biomass Recycling Technology* (The Japan Association of Rural Resource Recycling Solutions). Because statistical data are aggregated on a volumetric basis, they are converted into molecular weight given the average temperature at the facilities is $18^{\circ}C$.

 $EF = F_{CH} \times 16 / 22.4 \times 273 / (273 + 18)$

EF: Emission factor (Gg CH₄ /m³) F_{CH4} : CH₄ concentration in biogas (volumetric basis)

• Activity Data

For the activity data on CH₄ recovery at human waste treatment facilities, the aggregated amount of recycled biogas at human waste treatment facilities (volumetric basis) provided by *the State of Municipal Waste Treatment Survey*, Ministry of the Environment, Waste Management and Recycling Department was used. The statistical data before FY2005 are not obtained. Therefore, the emissions for FY2004 and before

were estimated by applying the amount of CH_4 actually recovered in FY 2005 and in the year that facilities started their operation provided by this survey and in FY 2005, and also using the amount of human waste (vault toilet) and septic tank sludge treated at the facilities for FY 2004 and before.

Table 8-28 Amount of CH₄ recovered at human waste treatment facilities

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Recovered CH ₄ amount	$Gg CH_4$	0.3	0.5	0.8	0.9	1.0	1.4	1.4

c) Uncertainties and Time-series Consistency

• Uncertainties

The assessment was not conducted, as the amount of CH₄ recovered is reported as a reference value.

• Time series consistency

The emissions were calculated in a consistent manner.

d) Source-specific QA/QC and Verification

Tier 1 QC activities are implemented in accordance with the *GPG* (2000). The Tier 1 QC activities include the verification of parameters such as activity data and emission factors, and the archive of reference materials. Also, QA activity was implemented for the waste sector by the GHG Inventory Quality Assurance Working Group in FY 2009. For more details of QA/QC activities, refer to the Annex 6.

e) Source-specific Recalculations

The amount of CH₄ recovered at human waste treatment facilities was newly estimated.

f) Source-specific Planned Improvements

No improvements are planned.

8.4. Waste Incineration (6.C.)

In Japan, waste disposed of has been reduced in volume primarily by incineration. Emissions from waste incineration are categorized as shown in Table 8-26. CO₂, CH₄, N₂O emissions without energy recovery are allocated to this category. Also, waste incineration includes the following practices of waste used as raw material or fuel:

- Energy recovery from waste incineration
- Waste material is used directly as fuel
- Waste material is converted into fuel

Estimated emissions from the sources listed above are allocated to the "Fuel Combustion (Category 1.A.)" in accordance with the *Revised 1996 IPCC Guidelines* and the *GPG (2000)*.

In order to avoid double-counting or any other confusion, emissions from the categories indicated in Table 8-29 with or without energy use were estimated collectively under the waste sector, thus the estimation methodology for these categories are provided in this section.

140	the o-29 Callego	hes for the calculation of emissions.	nom waste	memera	(0.C.)	
Incineration	Waste category	Estimation classification	Category to be allocated to	CO ₂	CH_4	N ₂ O
	Martinal	Plastic	6.C.1	0	0	0
	Municipal solid waste	Synthetic textile	6.C.1	0	Estimated in	Estimated
		Other (biogenic) ^{a)}	6.C.1		bulk	in bulk
Waste	Industrial	Waste oil	6.C.2	0 ^{b)}	0 ^{c)}	0 ^{c)}
incineration	solid waste	Waste plastic	6.C.2	0	0	0
(without energy	sond waste	Other (biogenic) ^{a)}	6.C.2		0	0
recovery)	Specially	Waste oil	6.C.3	0 ^{b)}	0 ^{b)}	0 ^{b)}
	controlled	Infectious waste (plastic)	6.C.3	0	0	0
	industrial waste	Infectious waste (except plastic) ^{a)}	6.C.3		0	0
Waste incineration with energy	Municipal solid waste	Plastic	1.A.1	0	0	0
		Synthetic textile	1.A.1	0	Estimated in	Estimated
		Other (biogenic) ^{a)}	1.A.1		bulk	in bulk
	Industrial solid waste	Waste oil	1.A.1	0 ^{b)}	0 ^{c)}	0 ^{c)}
recovery		Waste plastic	1.A.1	0	0	0
		Other (biogenic) ^{a)}	1.A.1		0	0
	Municipal solid waste	Plastic	1.A.1/2	0	0	0
Dist	Industrial solid waste	Waste oil	1.A.2	0 ^{b)}	0 ^{c)}	0 ^{c)}
Direct use of waste as fuel		Waste plastic	1.A.2	0	0	0
waste as ruei		Waste wood	1.A.2		0	0
		Fossil origin	1.A.1/2	0	0	0
	Waste tire	Biogenic origin	1.A.1/2		0	0
Use of waste processed as	Refuse derived fuel	Fossil origin	1.A.1/2	0	0	0
fuel as	(RDF·RPF)	Biogenic origin	1.A.1/2		0	0

Table 8-29 Categories for the calculation of emissions from waste incineration (6.C.)

a) The CO_2 emissions from the incineration of biomass-derived waste is not included in the total emissions in accordance with the

Revised 1996 IPCC Guidelines; instead it is estimated as a reference value and reported under "Biogenic" in Table 6.A,C of the CRF.

b) Emission estimates were conducted solely for waste mineral oil.

c) Emission estimates were conducted for waste mineral oil and waste animal and vegetable oil. Waste animal and vegetable oil to be allocated to the waste sector is reported on "Biogenic", "Table 6.A,C" of CRF table..

Estimated greenhouse gas emissions from waste incineration (category 6.C.) are shown in Table 8-3. In FY 2008, emissions from waste incineration were 13,398 Gg-CO₂ eq. and accounted for 1.0% of the national total emissions. The emissions from this source category decreased by 2.9% compared to those in FY 1990. For the period FY1990-FY1997, CO₂ emissions increased as the practice of intermediate treatment by waste incineration increased in order to decrease the total volume of waste landfilled. From FY2001 onwards, as the use of waste as raw material or fuel has been replacing the incineration of fossil-origin waste for intermediate treatments, and these CO₂emissions which used to be allocated to the waste sector is now allocated to the energy sector, CO2 emission estimates from the waste sector decreased. On the other hand, N₂O emissions increased compared to FY1990 level due to increase in sewage sludge incineration practice. From FY2005 onwards, since the practice of high temperature incineration of sewage sludge has increased, N₂O emissions from this source decreased.

Gas	Waste category	Estimation Category	Unit	1990	1995	2000	2005	2006	2007	2008
	in able category	Plastics	Gg CO ₂	5041	5031	5222	3060	2530	2420	2312
	Municipal solid waste	Synthetic textiles	Gg CO ₂	503	539	421	428	518	447	434
	······	Other (biogenic) ^{a)}	Gg CO ₂							/
		Waste oil b)	Gg CO ₂	3652	4344	4775	4249	4084	4112	3410
	Industrial solid waste	Waste plastics	Gg CO ₂	2120	4516	4358	4311	4135	4549	3840
CO_2		Other (biogenic) ^{a)}	Gg CO ₂							\sim
2		Waste oil b)	Gg CO ₂	748	1110	1636	1504	1449	1463	1217
	Specially controlled	Infectious plastics	Gg CO ₂	198	327	426	433	417	459	388
	waste	Infectious waste (except plastics)	Gg CO ₂							\nearrow
	Te	otal	Gg CO ₂	12263	15867	16838	13984	13133	13449	11600
	Municipal solid waste		Gg CH ₄	0.5	0.4	0.4	0.1	0.1	0.1	0.1
	Industrial solid waste	Waste oil c)	Gg CH ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Waste plastics	Gg CH ₄	0.0	0.1	0.1	0.0	0.0	0.0	0.0
		Other (biogenic) ^{a)}	Gg CH ₄	0.1	0.2	0.2	0.5	0.5	0.4	0.5
CU	Specially controlled waste	Waste oil b)	Gg CH ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CH ₄		Infectious plastics	$\mathrm{Gg}\mathrm{CH}_4$	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Infectious waste (except plastics)	$\mathrm{Gg}\mathrm{CH}_4$	0.0	0.0	0.0	0.1	0.0	0.1	0.0
	Total		Gg CH ₄	0.6	0.7	0.6	0.7	0.6	0.6	0.6
			$Gg CO_2 eq$	13	15	13	14	13	12	12
	Municipal solid waste		Gg N ₂ O	1.0	1.0	1.0	0.5	0.5	0.5	0.5
	Industrial solid waste	Waste oil c)	Gg N ₂ O	0.0	0.0	0.0	0.1	0.1	0.1	0.1
			Gg N ₂ O	0.1	0.3	0.3	0.0	0.0	0.0	0.0
		Other (biogenic) ^{a)}	Gg N ₂ O	3.7	5.1	5.9	6.1	5.7	5.2	5.1
N ₂ O	Specially controlled waste	Waste oil b)	Gg N ₂ O	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N ₂ O		Infectious plastics	Gg N ₂ O	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Infectious waste (except plastics)	Gg N ₂ O	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Total		Gg N ₂ O	4.9	6.5	7.3	6.8	6.4	5.8	5.8
			Gg CO ₂ eq	1519	2012	2260	2096	1973	1809	1785
	Total of all gases			13796	17894	19111	16095	15119	15271	13398

Table 8-30 GHG emissions from waste incineration (6.C.)

a) The CO₂ emissions from the incineration of biomass-derived waste is not included in the total emissions in accordance with the *Revised 1996 IPCC Guidelines*; instead it is estimated as a reference value and reported under "Biogenic" in Table 6.A,C of the CRF.

b) Emission estimates were conducted solely for waste mineral oil.

c) Emission estimates were conducted for waste mineral oil and waste animal and vegetable oil. Waste animal and vegetable oil to be allocated to the waste sector is reported on "Biogenic", "Table 6.A,C" of CRF table.

For reference, the greenhouse gas emissions from waste incineration for energy purpose and with energy recovery are shown in Table 8-31. In FY 2008, the emissions from waste incineration including these sources were 27,656 Gg-CO₂, and it accounts for 2.2% of Japan's total greenhouse gas emissions. The emissions from this sources category had increased by 18.5% compared to those in FY 1990.

Chapter 8. Waste

Gas	Incineration type	Waste category	Estimation Category	Unit	1990	1995	2000	2005	2006	2007	2008
	Waste incineration without energy recovery (sir		(simple incineration)	Gg CO ₂	12263	15867	16838	13984	13133	13449	11600
	Waste incineration		Plastics	Gg CO ₂	5857	6309	8188	6611	5340	5010	4786
		Municipal solid waste	Synthetic textiles	Gg CO ₂	585	676	660	925	1094	925	899
			Other (biogenic)	Gg CO ₂	\langle						
	with energy recovery		Waste oil a)	Gg CO ₂	21	30	28	108	104	104	87
		Industrial solid waste	Waste plastics	Gg CO ₂	31	65	187	306	320	353	298
			Other (biogenic)	Gg CO ₂							
CO ₂		Municipal solid waste	Plastics	Gg CO ₂	0	0	91	507	469	440	368
CO ₂			Waste oil a)	Gg CO ₂	2019	2504	2345	3602	3471	3858	3677
	Direct use of waste as	Industrial solid waste	Waste plastics	Gg CO ₂	41	30	425	1206	1207	1378	1333
	fuel		Waste wood	Gg CO ₂							
		XX7 / /	Fossil origin	Gg CO ₂	524	841	1039	865	945	993	1023
		Waste tire	Biogenic origin	Gg CO ₂							
	Use of processed	Refuse derived fuel	Fossil origin	Gg CO ₂	26	41	159	984	1201	1348	1342
	waste as fuel	(RDF, RPF)	Biogenic origin	Gg CO ₂							
		Total		Gg CO ₂	21365	26363	29959	29097	27284	27857	25412
	Waste incineration	Gg CH ₄	0.6	0.7	0.6	0.7	0.6	0.6	0.6		
			solid waste	Gg CH ₄	0.5	0.5	0.6	0.1	0.1	0.1	0.1
	Waste incineration	Industrial solid waste	Waste oil b)	Gg CH ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	with energy recovery		Waste plastics	Gg CH ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0
			Other (biogenic)	Gg CH ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Municipal solid waste	Plastics	Gg CH ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CII		irect use of waste as	Waste oil b)	Gg CH ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CH_4	Direct use of waste as		Waste plastics	Gg CH ₄	0.0	0.0	0.0	0.1	0.1	0.2	0.2
	fuel		Waste wood	Gg CH ₄	1.8	1.8	2.2	2.9	3.1	3.3	3.7
		Waste tire	Fossil origin	Gg CH ₄	0.0	0.1	0.1	0.1	0.1	0.1	0.1
	Use of processed waste as fuel	Refuse derived fuel (RDF, RPF)	Fossil origin	Gg CH ₄	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	waste as ruer			Gg CH ₄	3.0	3.1	3.6	3.9	4.1	4.3	4.7
		Total		Gg CO ₂ eq	63	65	76	83	86	90	98
	Waste incineration	without energy recovery	(simple incineration)	Gg N ₂ O	4.9	6.5	7.3	6.8	6.4	5.8	5.8
	waste memeration	01 1	solid waste	Gg N ₂ O	1.2	1.3	1.5	1.1	1.1	1.1	1.0
	Waste incineration	P	Waste oil b)	Gg N ₂ O	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	with energy recovery		Waste plastics	Gg N ₂ O	0.0	0.0	0.0	0.0	0.0	0.0	0.0
			Other (biogenic)	Gg N ₂ O	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Municipal solid waste	Plastics	Gg N ₂ O	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N ₂ O		intanierpai sona waste	Waste oil b)	Gg N ₂ O	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Direct use of waste as fuel	Industrial solid waste	Waste plastics	Gg N ₂ O	0.0	0.0	0.0	0.0	0.0	0.0	0.0
			Waste wood	Gg N ₂ O Gg N ₂ O	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Waste tire	Fossil origin	Gg N ₂ O Gg N ₂ O	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Use of processed	Refuse derived fuel	Fossil origin	Gg N ₂ O	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	waste as fuel	(RDF, RPF)	1 05501 OTEM	Gg N ₂ O Gg N ₂ O	6.1	7.9	8.9	8.0	7.6	7.0	6.9
		Total		$Gg CO_2 eq$	1905	2441	2766	2487	2360	2184	2146
				$Gg CO_2 eq$	23333	28870	32802	31667	2300	30130	27656
L		$\log CO_2 eq$	23333	20070	52802	51007	29/30	30130	27030		

Table 8-31 Total GHG emissions from incineration of waste (reference value)
including emissions from waste incineration for energy use and energy recovery

a) Emission estimates were conducted solely for waste mineral oil

b) Emission estimates were conducted for waste mineral oil and waste animal and vegetable oil.

8.4.1. Waste Incineration without Energy Recovery (6.C.)

8.4.1.1. Municipal Solid Waste Incineration (6.C.1)

a) Source/Sink Category Description

This category covers the emissions from incineration of MSW without energy recovery. Emissions of CO_2 are reported under either "biogenic" or "plastics and other non-biogenic waste" in accordance with the waste type. Emissions of CH_4 and N_2O are estimated for each type of furnace. The data used for MSW incineration can not distinguish wastes that are either biogenic-origin or non-biogenic origin. Therefore, total emissions including biogenic-origin ones are reported altogether under "plastics and other non-biogenic waste".

b) Methodological Issues

1) CO₂

• Estimation Method

Emissions of CO_2 from this emission source was calculated based on Japan's country-specific emission factors, the volume of waste incinerated (dry basis) and the percentage of municipal waste incinerated at the municipal incineration facilities that is accompanied by energy recovery, in accordance with the decision tree in the *GPG* (2000) (Page 5.26, Fig. 5.5). In order to estimate CO_2 emissions from the incineration of fossil-fuel derived waste³, emissions from plastics and synthetic textile wastes in municipal waste were calculated.

$$E = EF \times A \times (1 - R)$$

- E : Emission of carbon dioxide from the incineration of various types of waste (kg CO₂)
- EF : Emission factor for the incineration of various types of waste (dry basis) (kg CO₂/t)
- *A* : Volume of each type of waste incinerated (dry basis) (t)
- *R* : Percentage of municipal solid waste incinerated at facilities with energy recovery

• Emission factor

In accordance with the *Revised 1996 IPCC Guidelines*, the emission factor was calculated by multiplying the carbon content of each type of waste by the incineration rate at each incinerator.

$\underline{CO_2 emission factor (dry basis)}$	
= 1000 [kg] \times Carbon content \times efficiency of combustion \times 44/12	

> Carbon content

The carbon content of waste plastics in MSW was estimated based on the averaged value of actual measured data for the period FY1990 - FY2008 provided by four municiparites (Akita city, Kawasaki city, Kobe city and Osaka pref.) and applying it for the entire time-series, according to the *Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector, 2010*, Ministry of the Environment.

For the carbon content of synthetic textile wastes in MSW, the carbon content of the synthetic fibers in the textile products was used. It was set by taking a weighted average of carbon contents determined by the molecular formula of polymer for each type of synthetic textile based on the volume of synthetic textile consumption.

Item	Carbon content	Remarks
Plastics	75.1 %	Averaged value of the data provided by 4 four municiparites
Synthetic textile	63.0 %	Weighted average of carbon content by each type of synthetic textile

³ Emissions from the incineration of kitchen garbage, waste paper, waste natural fiber textiles and waste wood were accounted for as the reference figures of biogenic waste. Estimation methods for their emissions are the same as those for emissions from the incineration of plastics and synthetic textile scraps.

Chapter 8. Waste

Efficiency of Combustion

Taking into account Japan's circumstances, the default value of 99% indicated in the *GPG* (2000) was used.

• Activity data

The activity data for CO_2 emissions from the incineration of waste plastics in MSW on a dry basis were calculated by subtracting water content in plastics from the amount of incinerated plastics (wet basis). Similarly, the activity data for synthetic textile waste on a dry basis were estimated by multiplying the incinerated amount of waste textile in MSW (wet basis) by the percentage of synthetic textile in waste textile, then subtracting water content in waste textile.

<u>Activity data for incineration of plastics (MSW) (dry basis)</u>
= Volume of plastics incinerated (wet basis) × (1 - percentage of water content in waste plastics)

<u>Activity data for incineration of synthetic textile scraps (MSW) (dry basis)</u>
= Volume of textile scraps incinerated (wet basis) × (1 - percentage of water content in waste textile) × percentage of synthetic fiber content in textile scraps

Table 8-33 Incineration of plastics and synthetic textile scraps (MSW [dry basis])

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Plastics	kt / year (dry)	3,998	4,160	4,919	3,548	2,887	2,725	2,604
Synthetic textile	kt / year (dry)	476	531	473	592	705	600	583

> Incineration volume by type of municipal solid waste

Data were extracted from the *Report of the Research on the State of Wide-range Movement and Cyclical Use of Wastes* and the data from the same research in FY2008.

> Percentage of water content

The percentage of water content in plastics in MSW was determined to be 20% provided by the *Report of the Research on the State of Wide-range Movement and Cyclical Use of Wastes*. The percentage of water content in the waste textile contained in MSW was determined to be 20% based on expert judgment and their review of case studies in Japan.

> Percentage of synthetic textile in waste textile

Percentage of synthetic textile content in waste textiles contained in the MSW was calculated using the percentage of synthetic textile products in textile products, which was determined by taking the ratio of the annual domestic demand for synthetic textile to the one for all textiles indicated in the *Textile Statistics Yearbooks*.

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Fraction of Synthetic fabric	%	49.1	50.7	53.5	52.8	53.7	55.3	55.9

Table 8-34 Percentage of synthetic textile in waste textile

 Percentage of municipal waste incinerated at municipal incineration facilities for energy recovery Percentage of municipal waste that is incinerated at municipal incineration facilities with energy recovery stands for the one being incinerated at the facilities actually supply electricity or heat outside of them. These values were extracted from the *State of Municipal Waste Treatment Survey* (Ministry of the Environment).

0	1						0,	5
Item	Unit	1990	1995	2000	2005	2006	2007	2008
Without off-field power generation or heat utilization	%	46.3	44.4	38.9	31.6	32.1	32.6	32.6
With off-field power generation or heat utilization	%	53.7	55.6	61.1	68.4	67.9	67.4	67.4

Table 8-35 Percentage of municipal solid waste incinerated at incineration facilities with energy recovery

2) CH₄

• Estimation Method

 CH_4 emissions from incinerator were estimated by multiplying the amount of MSW (wet basis) by incinerator method by each emission factor. CH_4 emissions from gasification melting furnace were estimated by multiplying the amount of MSW (wet basis) incinerated in gasification melting furnace by emission factors. Emissions from MSW with energy recovery were subtracted from the total emissions from this source and allocated to the waste sector.

 $E = \sum \left(EF_i \times A_i \right) \times \left(1 - R \right)$

- E : CH₄ emission from the incineration of MSW (kg CH₄)
- EF_i : Emission factor for incineration method *i* (or furnace type *i*) (wet basis) (kg CH₄/t)
- A_i : Amount of incinerated MSW by incineration method *i* (or furnace type *i*) (wet basis) (t)
- R : Percentage of MSW incinerated at facilities with energy recovery

• Emission factor

Incinerator

In order to implement countermeasures against dioxins, the renovations, repairs, or rebuilding of incineration facilities took place in the latter half of 1990 through the first half of 2000 in Japan. There have been some improvements made in CH₄ emission factors from the facilities renovated or rebuilt in FY 2000 and later, compared to the values obtained before then (Reference number 70). Based on the survey (Reference number 70) and expert judgment, the CH₄ emission factors for incinerator by incinerator type (stoker furnace and fluidized bed incinerator) and incineration method (continuous incinerator, semi-continuous incinerator, and batch type incinerator) in FY2001 and before were provided by the *Environmental Agency Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Review of FY 2002 and later were provided by the Ministry of the Environment, Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emission factors from the Waste Sector, 2010. All the emission factors were established based on actual measurement survey.*

In order to apply activity data based on the amount of incineration by incineration method, emission factors were established by incineration method (continuous incinerator, semi-continuous incinerator, and batch type incinerator) using the weighted average of fraction of the amount of incineration by incinerator type for each fiscal year. The Correction taking into account CH_4 concentrations in the atmosphere was not made to these emission factors.

Table 8-36 CH₄ emission factors by incineration method of incinerator (MSW)

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Continuous incinerator	g CH ₄ /t	8.2	8.2	8.3	2.6	2.6	2.6	2.6
Semi-continuous incinerator	g CH ₄ /t	69.6	69.6	75.1	19.9	20.7	20.9	20.9
Batch type incinerator	g CH ₄ /t	80.5	80.5	84.1	13.2	13.2	13.3	13.3

Source: Measurement surveys (Environmental Agency Results of Review of Calculation of Emissions of Greenhouse Gas Part 2 (2000))

Iwasaki, Tatsuichi, Ueno Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators (1992) Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection

Japan Society of Atmospheric Environment Method of Estimating Greenhouse Gas Emissions – Survey Report (1996)

Waste Management and Recycling Department, Ministry of the Environment, Japan's Waste Disposal (CD-ROM)

Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, City of Kobe, Niigata Prefecture, Hiroshima Prefecture, Hyogo Prefecture, Fukuoka Prefecture, Hokkaido *Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources* (1991-1997)

Gasification Melting Furnace

Emission factors for each furnace (shaft furnace, fluidized bed, and rotary kiln) were provided by the *Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector, 2010,* Ministry of the Environment. In order to apply activity data based on the total amount of incineration, emission factors were determined by taking the weighted average of the amount of incineration by gasification melting furnace type for each year.

Table 8-37 CH₄ emission factors by type of gasification melting furnace (MSW)

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Gasification melting furnace	$g CH_4 / t$	-	-	5.6	6.9	6.9	7.0	7.0

• Activity Data

Incinerator

The activity data for CH_4 emissions for incinerator and gasification melting furnace were estimated by multiplying the amount of MSW incinerated (wet basis) provided by the *Report of the research on the state of wide-range movement and cyclical use of wastes (the volume on cyclical use)*, the Ministry of the Environment, Waste Management and Recycling Department, and the data from the same research in FY2008 by the fraction of incineration by incineration method of incinerator or gasification meting furnace provided by the Waste Treatment in Japan.

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Continuous incinerator	kt /year (wet)	26,215	29,716	32,749	32,246	31,962	30,840	29,538
Semi-Continuous Incinerator	kt /year (wet)	4,810	5,455	5,882	4,047	3,852	3,609	3,457
Batch type Incinerator	kt /year (wet)	5,643	4,328	3,131	1,562	1,470	1,369	1,312

Table 8-38 Amount of incineration of MSW by type of melting furnace

Table 8-39 Amount of incineration of MSW from gasification melting furnace

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Gasification melting furnace	kt /year (wet)	0	0	370	2,397	2,630	2,954	2,830

$3) N_2 O$

• Estimation Method

 N_2O emissions from incinerator were estimated by multiplying the amount of MSW (wet basis) by incinerator method by each emission factor. N_2O emissions from gasification melting furnace were estimated by multiplying the amount of MSW (wet basis) incinerated in gasification melting furnace by emission factors. Emissions from MSW with energy recovery were subtracted from the total emissions from this source and allocated to the waste sector.

$$E = \sum \left(EF_i \times A_i \right) \times \left(1 - R \right)$$

- E : N₂O emission from the incineration of MSW (kg N₂O)
- EF_i : Emission factor for incineration method *i* (or furnace type *i*) (wet basis) (kg N₂O /t)
- A_i : Amount of incinerated MSW by incineration method *i* (or furnace type *i*) (wet basis) (t)
- R : Percentage of MSW incinerated at facilities with energy recovery

• Emission factor

Incinerator

Same as for CH4 emissions estimation, N₂O emission factors for incinerator by type and by incineration method in FY2001 and before were obtained from *Environmental Agency Committee* for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Review of FY 2002 and later were provided by the Ministry of the Environment, Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gase Emissions from the Waste Sector, 2010.

. In order to apply activity data based on the amount of incineration by incineration method, emission factors were established by incineration method (continuous incinerator, semi-continuous incinerator, and batch type incinerator) using the weighted average of fraction of the amount of incineration by incinerator type for each fiscal year calculated based on the *Waste Treatment in Japan*.

Table 8-40 N₂O emission factors for incinerator by incineration method (MSW)

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Continuous incinerator	g N ₂ O/t	58.8	58.8	59.1	37.9	37.9	37.9	37.9
Semi-continuous incinerator	g N ₂ O/t	56.8	56.8	57.3	71.5	72.8	73.1	73.1
Batch type Incinerator	g N ₂ O/t	71.4	71.4	74.8	76.0	76.0	76.0	76.0

Source: Measurement surveys (Environmental Agency Results of Review of Calculation of Emissions of Greenhouse Gas Part 2 (2000))

Iwasaki, Tatsuichi, Ueno Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators (1992) Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection

Japan Society of Atmospheric Environment Method of Estimating Greenhouse Gas Emissions – Survey Report (1996)

Waste Management and Recycling Department, Ministry of the Environment Japan's Waste Disposal (CD-ROM)

Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, City of Kobe, Niigata Prefecture, Hiroshima Prefecture, Hyogo Prefecture, Fukuoka Prefecture, Hokkaido *Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources* (1991-1997)

Gasification Melting Furnace

Emission factors for each furnace (shaft furnace, fuidized bed, and rotary kiln) were provided by the *Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector, 2010, Ministry of the Environment. In order to apply the activity data based on the total amount of incineration, emission factors were established by taking the weighted average of the amount of incineration by gasification melting furnace type for each year calculated based on the <i>Waste Treatment in Japan.*

Table 8-41 N₂O emission factors for gasification meting furnace (MSW)

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Gasification melting furnace	$g N_2 O / t$	-	-	16.9	12.0	11.3	11.5	11.5

• Activity Data

For estimating the activity data for N_2O emissions from incinerator and gasification melting furnace, the same data for estimating the CH_4 activity data for incinerator and gasification melting furnace were also applied.

c) Uncertainties and Time-series Consistency

• Uncertainties

The level of uncertainty in the CO_2 emission factor was estimated by using the uncertainties in the carbon content of MSW (plastic and synthetic textile) and the incineration rate of MSW incineration facilities. The uncertainty in activity data for CO_2 emissions was estimated from the uncertainties in the amount of MSW incinerated, the percentage of water content and the percentage of synthetic textile (for synthetic textile in MSW).

The uncertainties in the CH_4 and N_2O emission factors were evaluated by type of incineration facilities and determined from the uncertainties in the emission factors for each type of incineration facilities and the ratio of the incinerated amount by type of incineration facilities. The uncertainties in the activity data were estimated based on the uncertainties in the amount of waste incinerated and the ratio of incinerated amount by type of incineration facilities. The uncertainties of the uncertainties in the amount of waste incinerated and the ratio of incinerated amount by type of incineration facilities. The methods of evaluation of the uncertainty levels for each component are:

- Use of 95% confidence interval: carbon content, fraction of synthetic textile, emission factors for CH₄ and N₂O by type of incineration facility
- Use of the default value in the 2006 IPCC Guidelines: combustion rate

- Based on expert judgment: percentage of water content
- Use of the statistical uncertainties: incinerated amount of waste and incineration rate by incinerator type
- The uncertainties in the CO_2 emissions from incineration of plastics and synthetic textiles of MSW were estimated to be 17% and 23%, respectively. The uncertainties in the CH_4 and N_2O emissions from incineration of MSW were estimated to be 101% and 42%, respectively. For more details, refer to the Annex 7.

• Time-series consistency

Because data on the amount of waste incinerated by type of waste were not available for years prior to FY 1997, the data were estimated by using the total incinerated amount of MSW for each year and the ratio of amount of waste incinerated by waste type for FY 1998. The emissions were calculated in a consistent manner.

d) Source-specific QA/QC and Verification

Tier 1 QC activities are implemented in accordance with the *GPG (2000)*. The Tier 1 QC activities include the verification of parameters such as activity data and emission factors, and the archive of reference materials. Also, QA activity was implemented for the waste sector by the GHG Inventory Quality Assurance Working Group in FY 2009. For more details of QA/QC activities, refer to the Annex 6.

e) Source-specific Recalculations

- The result of new scientific findings on the carbon content of waste plastics in MSW provided by each municipality was carefully reviewed and applied to the emission estimates from this source; as a result, the emission estimates for FY1990 through FY2007 were recalculated.
- The methodology for the emission estimates from waste incineration for gasification melting furnaces, which had been substituted with the methodology for incinerators, was newly developed; the emission from this source was estimated.
- Due to the result of new scientific findings on the CH_4 and N_2O emission factors for incinerator and gasification melting furnace, the emission estimates for FY1996 through FY2007 were recalculated
- Due to the update on the activity data for the amount of incineration, the emission estimates for FY 2006-2007 were recalculated.

f) Source-specific Planned Improvements

No improvements are planned.

8.4.1.2. Industrial Waste Incineration (6.C.2)

a) Source/Sink Category Description

This category covers CO_2 , CH_4 and N_2O emissions from incineration of ISW without energy recovery by each waste type and the emissions are reported in the corresponding category either

"biogenic" or "plastics and other non-biogenic waste".

b) Methodological Issues

1) CO₂

• Estimation Method

Emissions of CO_2 from this source were calculated by using the volume of waste mineral oil and waste plastics incinerated, Japan's country-specific emission factors, and the percentage of incinerated industrial solid waste with energy recovery at industrial waste incineration facilities in accordance with the decision tree of the *GPG (2000)* (Page 5.26, Fig. 5.5). Since industrial waste textile does not include synthetic textileunder the regulation of the Waste Disposal and Public Cleansing Law, the industrial waste textile is regarded as waste natural fiber. Thus the CO_2 emissions from incineration of industrial waste textile were not included in national total because these emissions are biogenic-origin.

 $E = EF \times A \times (1 - R)$

- E : Emission of carbon dioxide from incineration of waste (kg CO₂)
- EF : Emission factor for waste incineration (wet basis) (kg CO₂/t)
- *A* : Amount of waste incinerated (wet basis) (t)
- R : Percentage of industrial solid waste incinerated at facilities with energy recovery (by type of waste)

• Emission factor

In accordance with the approach taken by the *Revised 1996 IPCC Guidelines*, emission factor was calculated by multiplying the carbon content of each type of waste by the incineration rate for incineration facilities.

Carbon dioxide emission factor (wet basis) = 1000 [kg] × Carbon content × Efficiency of combustion × 44/12

> Carbon content

Carbon content in waste oil was deemed to be 80% based on the factor of 0.8 (t C/t) given in the *Environmental Agency's Report on a Survey of Carbon Dioxide Emissions (1992)*.

Carbon content in waste plastic was deemed to be 70% based on the factor of 0.7 (t C/t) given in the *Environmental Agency's Report on a Survey of Carbon Dioxide Emissions (1992)*.

> Efficiency of combustion

Considering Japan's circumstances, the default value for hazardous wastes of 99.5% given in the *GPG* (2000) was used.

• Activity Data

For the activity data for CO2 emissions from the incineration of waste oil and waste plastics in industrial waste, the amount of incineration provided by *the Report of the Research on the State of Wide-range Movement and Cyclic Use of Wastes* and the data from the same research in FY2008 was used. However, the amount of incineration provided in this report includes the amount of incineration of specially controlled industrial waste which is separately reported under "Incineration of Specially Controlled

Industrial Waste (6.C.3)", thus it was subtracted from the activity data from this source. The activity data for waste mineral oil was obtained by using the fraction of animal and vegetable waste oil (biogenic-origin waste oil) provided by the survey study conducted by the Ministry of the Environment from the total amount of waste oil (see the methodological equation indicated below).

<u>Activity data for the incineration of waste mineral oil (wet basis)</u> = Amount of waste oil incinerated in industrial waste \times (1 – Fraction of waste oil from animal and vegetable origin) – Amount of waste oil incinerated in specially controlled industrial waste*

*All the waste oil in specially controlled industrial waste to be estimated for emissions are waste mineral oil.

<u>Activity data for the incineration of waste oil and plastics (ISW) (wet basis)</u> = Amount of waste plastics incinerated in industrial waste - Amount of waste plastics incinerated in specially controlled industrial waste

Table 8-42 Incinerated ISW (waste oil and waste plastics)

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Waste mineral oil	kt / year (wet)	1,258	1,498	1,646	1,493	1,435	1,445	1,198
Waste plastics	kt / year (wet)	842	1,794	1,780	1,808	1,745	1,919	1,620

Table 8-43 Fraction of was	ste animal and vegetable oil
----------------------------	------------------------------

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Fraction of waste animal and	%	2.6	3.5	4.5	5.4	5.6	5.8	6.0
vegetable oil								

• Percentage of industrial waste incinerated at industrial incineration facilities for energy recovery (by type)

Percentage of industrial waste that is incinerated at industrial incineration facilities with energy recovery stands for the one being incinerated at the facilities actually supply electricity or heat outside of them. The values were obtained from the *FY 2007 Survey of Industrial Waste Treatment Facilities* (Ministry of the Environment).

In Japan, industrial incineration facilities are installed mainly by private sector waste disposal enterprises. In comparison with the municipal waste incinerators installed primarily by municipal governments, energy recovery (for use in power generation and as a heat source) has not yet been so popular. The percentage for the industrial waste category is therefore smaller.

Table 8-44 Percentage of ISW	incinerated at incineration	facilities with energy recovery

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Waste oil ^{a)}	%	0.6	0.7	0.6	2.5	2.5	2.5	2.5
Waste plastics	%	1.4	1.4	4.1	6.6	7.2	7.2	7.2
Waste wood ^{b)}	%	0.2	0.8	1.1	1.5	1.8	1.8	1.8
Sludge	%	0.9	0.8	1.0	1.1	1.6	1.6	1.6
Other ^{c)}	%	0.2	0.8	1.1	1.5	1.8	1.8	1.8

a): "Waste oil" includes waste mineral/animal and vegetable oil.

b): "Waste wood" includes waste paper or waste wood.

c): "Other" includes waste textile, animal and vegetable residues, and animal carcasses.

2) CH₄

• Estimation Method

Emissions of methane from this source have been calculated by multiplying the volume of industrial waste incinerated by Japan's country specific emission factor and by percentage of industrial solid waste incinerated at incineration facilities with energy recovery.

$$E = \sum \left\{ EF_j \times A_j \times \left(1 - R_j \right) \right\}$$

- *E* : Emission of methane from the incineration of industrial waste (kg CH₄)
- EF_i : Emission factor for waste type *j* (wet basis) (kg CH₄/t)
- A_j : Incinerated amount of waste type *j* (wet basis) (t)
- Rj : Percentage of industrial solid waste *j* incinerated at facilities with energy recovery

• Emission factor

The emission factors by waste type for the period FY1990-FY2001 were provided by the *Review of Greenhouse Gases Emissions Estimation Methods Part 2*, September 2000. Taking into account the countermeasures against dioxins for incinerators based on expert judgment, the emission factors for FY2002 and later were provided by the *Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector, 2010, Ministry of the Environment*. These emission factors were established based on actual measurement survey. The correction taking into account CH_4 concentrations in the atmosphere was not made to these emission factors. The emission factor applied for waste paper or waste wood was also used for the value for waste textile, animal and vegetable residues, and animal carcasses.

Item	Unit	FY 1990-2001	FY 2002-
Waste oil (mineral/animal and vegetable)	g CH ₄ /t	4.8	4.0
Waste plastics	g CH ₄ /t	30	8.0
Waste paper or Waste wood	g CH ₄ /t	22	225
Waste textile	g CH ₄ /t	22	225
Animal and vegetable residues/animal	g CH ₄ /t	22	225
carcasses			
Sludge	g CH ₄ /t	14	1.5

Table 8-45 CH₄ emission factors for industrial waste by type

• Activity Data

The volume of waste incinerated (wet basis) by waste type was used as the activity data for CH_4 emissions from the incineration of industrial waste.

Paper and wood scraps, waste oil, textile scraps, animal and plant residues or animal carcasses: The volume of waste incinerated for each type was extracted from the *Report of the Research on the State of Wide-range Movement and Cyclical Use of Waste* and the data from the same research in FY2008.

Sludge

Activity data was taken as the aggregate of the values extracted from the "Volume of Other Incinerated Organic Sludge" section in the *Report of the Research on the State of Wide-range Movement and Cyclical Use of Wastes* and the data from the same research in FY2008, and the "Volume of Incinerated Sewage Sludge" reported in a survey by the Ministry of Lands, Infrastructure, Transport and Tourism.

> Waste oil (Mineral/Animal and Vegetable) and Waste plastics

The activity data for waste oil and waste plastics were provided by the *Report of the Research on the State of Wide-range Movement and Cyclical Use of Waste* and the data from the same research in FY2008. Because the values provided by this report include the amount of specially controlled industrial waste which is allocated to the category of Specially Controlled Industrial Waste (6.C.3), it was subtracted from the total amount to avoid double counting. Unlike the activity data for CO_2 emissions, waste mineral oil and also waste animal and vegetable oil are included for the estimation of activity data from this source.

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Waste animal and vetable oil	kt / year (wet)	40	69	103	115	115	120	103
Waste paper and waste wood	kt / year (wet)	3,014	5,455	3,832	2,188	1,982	1,800	1,840
Waste textile	kt / year (wet)	31	49	50	43	36	36	37
Animal and vegetable remnants, animal carcasses	kt / year (wet)	77	125	272	167	186	154	125
Sludge	kt / year (wet)	5,032	5,850	6,371	7,275	7,114	7,094	7,197

Table 8-46 Incinerated ISW, by waste types

For the amount of waste oil and waste tires incinerated, refer to Table 8-42.

$3) N_2 O$

• Estimation Method

Emissions of N_2O from this source were calculated separately for the major emission source, sewage sludge, and the waste other than sewage sludge. With respect to sewage sludge, emission factors were set by type of flocculants and furnaces; and the ones for "high-molecular-weight, flocculant fluidized bed incinerator" were further determined by the incineration temperatures. Emissions from the industrial waste other than sewage sludge were estimated by multiplying the volume of waste incinerated by Japan's country-specific emission factor. Among those emissions, the ones to be reported in the waste sector were calculated by multiplying the percentage of industrial waste incinerated at the industrial waste incineration facilities with energy recovery.

$$E = \sum \left\{ EF_j \times A_j \times (1 - R_j) \right\}$$

- E : Emission of nitrous oxide from the incineration of industrial waste (kg N₂O)
- EF_j : Emission factor for waste type j (wet basis) (kg N₂O/t)
- A_i : Incinerated amount of waste type j (wet basis) (t)
- R_i : Percentage of industrial solid waste j incinerated at facilities with energy recovery
- Emission factor
- Sewage sludge

Emission factor for N_2O emissions from sewage sludge incineration were determined by taking a weighted average of actually measured emission factors of N_2O at each incineration facility based on the volume of sewage sludge incinerated at the facilities. Since emission factors are different depending on the types of flocculants, incinerators, and furnace temperatures, they were established for each category as given in Table 8-40.

Type of flocculant	Type of incinerator	Combustion Temperature	Emission Factor (g N ₂ O/t)
	Fluidized Bed Incinerator	Normal temperature combustion(around 800°C)	1,508
High-molecular- weight flocculant	Fluidized Bed Incinerator	High temperature combustion (around 850°C)	645
	Multiple Hearth	_	882
Other	-	_	062
Lime Sludge	-	_	294

Table 8-47 Nitrous oxide emission factors for sewage sludge incineration (wet basis)

Assume that emission factors for FY1990-2002 are constant.

Source: Matsubara and Mizuochi, Survey of Emissions of Nitrous Oxide from Sewage Treatment Plants Environmental and Sanitary Engineering Research, 8(3) (1994)

Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces (1994)

Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces (1996)

Nakamura, et al. Emission of Nitrous Oxide from Incineration of Sewage Sludge Proceedings of the 20th Japan Urban Cleaning Research Conference pp. 391–393 (1998)

Waste excluding sewage sludge

Emission factors by waste type for the period FY1990-FY2001 were provided by *Review of Greenhouse Gases Emissions Estimation Methods Part* 2, September 2000. Taking into account the countermeasures against dioxins for incinerators based on expert judgment, the emission factors from FY2002 onwards were provided by the *Ministry of the Environment, Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector, 2010.* These emission factors were established based on actual measurement survey. The correction taking into account CH_4 concentrations in the atmosphere was not made to these emission factors. The emission factor applied for waste paper or waste wood was also used for waste textile, animal and vegetable residues, and animal carcasses.

Tuble 6 161120 Emission factors for industrial waste by type (wet busis)								
Item	Unit	FY 1990-2001	FY 2002-					
Waste oil (mineral/animal and vegetable)	$g N_2 O /t$	12	62					
Waste plastics	g N ₂ O /t	180	15					
Waste paper or Waste wood	g N ₂ O /t	21	77					
Waste textile	g N ₂ O /t	21	77					
Animal and vegetable residues/animal	$g N_2 O /t$	21	77					
carcasses								
Sludge (excluding sewage sludge)	g N ₂ O /t	457	99					

Table 8-48 N₂O Emission factors for industrial waste by type (wet basis)

- Activity Data
- > Sewage sludge

Data in the "volume of incinerated sewage sludge, by flocculants and by incinerator types" reported in a survey by the Ministry of Lands, Infrastructure, Transport and Tourism were used as activity data (wet basis).

Item	Unit	1990	1995	2000	2005	2006	2007	2008
High-molecular-weight flocculant Fluidized bed incinerator (nomal temp.)	kt / year (wet)	1,112	1,869	2,397	2,839	2,474	1,935	1,930
High-molecular-weight flocculant Fluidized bed incinerator (high temp.)	kt / year (wet)	128	219	723	1,469	1,781	2,355	2,348
High-molecular-weight flocculant multiple hearth	kt / year (wet)	560	656	572	102	88	69	56
Lime sludge	kt / year (wet)	1,070	767	341	289	219	211	193
Other	kt / year (wet)	190	316	267	289	299	249	233

Table 8-49 Activity data for nitrous oxide emissions from incineration of sewage sludge

Industrial waste other than sewage sludge

Activity data (wet basis) was determined in the same manner as for the CH_4 emissions from industrial waste, with the exception that the "volume of other incinerated organic sludge" was used as activity data for the sludge (excluding sewage sludge).

c) Uncertainties and Time-series Consistency

• Uncertainties

The uncertainties in the CO_2 emission factor and activity data for waste oil and waste plastics were evaluated by the same method as was used for incineration of MSW. The uncertainties in CH_4 and N_2O emission factors were estimated by using the 95% confidence interval of actual measurement data of the emission factors by type of ISW and by type of incineration facility. The uncertainties in the CH_4 and N_2O activity data were estimated by using the statistical uncertainties for incinerated amount of industrial waste by type of waste.

The uncertainties in the CH_4 and N_2O emissions from incineration of industrial waste were estimated to be 150% and 116%, respectively. The uncertainties in the CO_2 emissions from incineration of waste oil and waste plastics were 105% and 100%, respectively. For more details, refer to the Annex 7.

• Time series consistency

Emissions were calculated in a consistent manner.

d) Source-specific QA/QC and Verification

Tier 1 QC activities are implemented in accordance with the *GPG (2000)*. The Tier 1 QC activities include the verification of parameters such as activity data and emission factors, and the archive of reference materials. Also, QA activity was implemented for the waste sector by the GHG Inventory Quality Assurance Working Group in FY 2009. For more details of QA/QC activities, refer to the Annex 6.

e) Source-specific Recalculations

- Due to the data corrections on the activity data for waste oil in 2003, the emission estimates for FY2003 were recalculated.
- CO₂ emission estimates for FY1990 through FY 2007 were recalculated because the incineration rate of the biogenic-origin waste oil was identified.
- All of N₂O emission estimates from the incineration of sewage sludge are now allocated to the waste sector; however, this reallocation does not consequently affect the total national emission estimates.
- Due to the new scientific findings on CH_4 and N_2O emission factors, the emission estimates for both gases were recalculated
- Due to the update on the amount of incineration, the emission estimates for FY2006-FY2007 were recalculated.

f) Source-specific Planned Improvements

No improvements are planned.

8.4.1.3. Incineration of Specially controlled Industrial Waste (6.C.3)

a) Source/Sink Category Description

The specially controlled industrial waste includes wastes with properties that may be harmful to human health and living environment such as explosiveness, toxicity and infectivity. This category covers CO_2 , CH_4 , and N_2O emissions from incineration of specially controlled industrial waste were estimated by each waste type and reported in the corresponding category either "biogenic" or "plastics and other non-biogenic waste".

Because the actual state of energy recovery from the incineration of specially controlled industrial waste is not sufficiently understood, the emissions from specially controlled industrial waste are reported entirely in "Waste Incineration (Category 6.C.)".

b) Methodological Issues

1) CO₂

• Estimation Method

Emissions of CO_2 from the incineration of waste oil and infectious plastic waste contained in specially controlled industrial waste were calculated in accordance with the decision tree given in the *GPG* (2000) (Page 5.26, Fig 5.5) by using Japan's country-specific emission factors and the volume of waste incinerated.

• Emission factor

Emission factors for waste oil and waste plastics in industrial waste were used as the ones for waste oil and waste plastics in specially controlled industrial waste, since their differences in terms of carbon contents and rates of combustion were considered to be small.

• Activity Data

On the assumption that the entire volume of waste oil and infectious plastic waste contained in specially controlled industrial waste was incinerated, output volume of waste oil indicated in the *Report on Survey of Organizations in Industrial Waste Administration* (Water Supply Division, Health Service Bureau, the Ministry of Health and Welfare) was used as activity data for the waste mineral oil; while for the plastics in infectious waste, the activity data was calculated by multiplying the output volume of infectious waste reported by the same survey by the percentage of plastic content in infectious waste indicated in the *Waste Handbook* as the result of a composition analysis of infectious waste mineral oil.

<u>Activity data for incineration of waste mineral oil (specially controlled ISW) (wet basis)</u> = Output volume of waste oil

Activity data for incineration of plastics in infectious waste (specially controlled ISW)(wet basis)

= Output volume of infectious waste × percentage of plastic content in infectious waste

2) CH₄

• Estimation Method

Emissions of CH_4 from the incineration of waste oil and infectious waste included in the specially controlled industrial waste were calculated by multiplying the volume of incinerated waste by type (wet basis) by Japan's country-specific emission factor.

• Emission factor

Because actual measurement data were not available, the emission factors for the incineration of industrial waste were used as substitutes for the emission factor for the specially controlled industrial waste by type. Specifically, the substitute emission factors used were: the waste mineral oil in industrial waste for the waste mineral oil; the waste plastics in industrial waste for the infectious waste plastics; and the waste paper and waste wood in industrial waste for the waste other than infectious plastics.

• Activity Data

Activity data for the waste oil and infectious waste plastics were the same as those used for CO_2 emission. The volume of non-infectious waste plastics incinerated was deemed to be the same as the output volume, and calculated by multiplying the output volume of infectious waste by the percentage of non-plastic content in infectious waste.

$3) N_2O$

• Estimation Method

Emissions of N_2O from the incineration of waste oil and infectious waste in specially controlled industrial waste were calculated by multiplying the incinerated volume of each type of waste (wet basis) by Japan's country-specific emission factor.

• Emission factor

Because actual measurement data were not available, the N_2O emission factors for the incineration of industrial waste were used as substitutes for determining the emission factor for each type of specially controlled industrial waste. Specifically, the substitute emission factors used were: the waste oil in industrial waste for the waste oil; the waste plastics in industrial waste for the infectious waste plastics; and the waste paper and waste wood in industrial waste for the waste other than infectious plastics.

• Activity Data

The same activity data used for CH4 emissions was used.

Table 8-50 Incineration of specially controlled industrial waste

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Waste mineral oil	kt (wet)	256	380	560	515	496	501	417
Infections Waste (plastic)	kt (wet)	78	128	167	169	163	180	152
Infections Waste (non-plastic)	kt (wet)	105	172	225	228	220	242	205

c) Uncertainties and Time-series Consistency

• Uncertainties

Since the same CO_2 , CH_4 and N_2O emission factors used for the industrial waste were used; their uncertainties were also applied. The uncertainties in activity data were set out separately for waste oil and waste plastics. To the incinerated amount of waste oil and infectious waste, twice the statistical uncertainties were applied by taking into account the fact that the data were recently obtained based on the estimation. For waste plastics, the uncertainties in the percentage of plastics in infectious waste were determined based on the expert judgment, and then their uncertainties were combined with the ones in the amount of waste incinerated. The uncertainties in the CO_2 , CH_4 and N_2O emissions from incineration of specially controlled industrial waste were estimated to be 167%, 142% and 159%, respectively. For details, refer to the Annex 7.

• Time series consistency

Since some basic data used for calculating activity data were available only for part of time series, consistent data over the time series were developed based on the estimation. The emissions were calculated in a consistent manner.

d) Source-specific QA/QC and Verification

Tier 1 QC activities are implemented in accordance with the *GPG (2000)*. The Tier 1 QC activities include the verification of parameters such as activity data and emission factors, and the archive of reference materials. Also, QA activity was implemented for the waste sector by the GHG Inventory Quality Assurance Working Group in FY 2009. For more details of QA/QC activities, refer to the Annex 6.

e) Source-specific Recalculations

- Due to the data corrections on the activity data for waste oil in FY 2003, emission estimates were recalculated.
- Due to the update of data used in estimates Emission estimates for FY 2006 and FY 2007 were recalculated.

f) Source-specific Planned Improvements

No improvements are planned.

8.4.2. Emissions from waste incineration with energy recovery (1.A.)

8.4.2.1. Incineration of municipal solid waste with energy recovery (1.A.1.a)

a) Source/Sink Category Description

In this category, CO_2 , CH_4 , and N_2O emissions from the incineration of municipal waste with energy recovery are estimated and reported. The reporting category for the emissions is "Power Generation/Heat Supply (Category 1.A.1.a)" and the fuel type is classified as "Other fuels".

b) Methodological Issues

A methodology similar to that used in "8.4.1.1 Incineration of Municipal Waste (6.C.1)" is used. Emissions are calculated using the following formulas:

 CO_2

 $E = EF \times A \times R$

- E : Emission of CO₂ from waste incineration (kg CO₂)
- EF : Emission factor for incineration (dry basis) (kg CO₂/t)
- *A* : Amount of waste incinerated (dry basis) (t)
- *R* : Percentage of municipal solid waste incinerated at facilities with energy recovery

1) CH_4, N_2O

$$E = \sum (EF_i \times A_i) \times R$$

- E : Emissions of CH₄ or N₂O from incineration of municipal solid waste (kg CH₄) (kg N₂O)
- EF_i : Emission factor for municipal solid waste incinerator type *i* (wet basis) (kg CH₄/t) (kg N₂O/t)
- A_i : Amount of municipal solid waste incinerated for incinerator type *i* (wet basis) (t)
- R : Percentage of municipal solid waste incinerated at facilities with energy recovery

c) Uncertainties and Time-series Consistency

Omitted as it is the same as in "Incineration of Municipal Waste (6.C.1)".

d) Source-specific QA/QC and Verification

Tier 1 QC activities are implemented in accordance with the *GPG (2000)*. The Tier 1 QC activities include the verification of parameters such as activity data and emission factors, and the archive of reference materials. Also, QA activity was implemented for the waste sector by the GHG Inventory Quality Assurance Working Group in FY 2009. For more details of QA/QC activities, refer to the Annex 6.

e) Source-specific Recalculations

Due to the update on the amount of incineration, the emission estimates for FY 2006 and FY 2007 were recalculated.

f) Source-specific Planned Improvements

No improvements are planned.

8.4.2.2. Incineration of industrial solid waste with energy recovery (1.A.1.a)

a) Source/Sink Category Description

In this category, CO_2 , CH_4 , and N_2O emissions from the incineration of industrial waste with energy recovery are calculated and reported. The reporting category for the emissions is the "Power Generation/Heat Supply (Category 1.A.1.a)" and the fuel type is classified as "Other fuels".

b) Methodological Issues

A methodology similar to that used in "8.4.1.2 Incineration of Industrial Waste (6.C.2)" is used. Emissions are calculated using the following formulae:

1) CO₂

 $E = EF \times A \times R$

- E : Emission of CO₂ from waste incineration (kg CO₂)
- EF : Emission factor for incineration (dry basis) (kg CO₂/t)
- *A* : Amount of waste incinerated (dry basis) (t)
- *R* : Percentage of industrial solid waste incinerated at facilities with energy recovery

2) CH_4, N_2O

$$E = \sum (EF_i \times A_i) \times R$$

- E : Emissions of CH₄ or N₂O from incineration of industrial solid waste (kg CH₄) (kg N₂O)
- EF_i : Emission factor for industrial solid waste incinerator type *j* (wet basis) (kg CH₄/t) (kg N₂O/t)
- A_i : Amount of industrial solid waste incinerated for incinerator type *j* (wet basis) (t)
- *R* : Percentage of industrial solid waste incinerated at facilities with energy recovery

c) Uncertainties and Time-series Consistency

Omitted as it is the same as in "8.4.1.2. Incineration of Industrial Waste (6.C.2)".

d) Source-specific QA/QC and Verification

Tier 1 QC activities are implemented in accordance with the *GPG (2000)*. The Tier 1 QC activities include the verification of parameters such as activity data and emission factors, and the archive of reference materials. Also, QA activity was implemented for the waste sector by the GHG Inventory Quality Assurance Working Group in FY 2009. For more details of QA/QC activities, refer to the Annex 6.

e) Source-specific Recalculations

Due to the update on the amounts of incineration, the emission estimates for FY2006-FY2007 were recalculated.

f) Source-specific Planned Improvements

No improvements are planned.

8.4.3. Emissions from direct use of waste as fuel (1.A.)

a) Source/Sink Category Description

In this category, CO_2 , CH_4 , and N_2O emissions from waste directly used as fuel are estimated and reported. The reporting category for the emissions for each type of waste is, according to its use as fuel or raw material, either "Energy Industry (Category 1.A.1.)" or "Manufacturing and Construction (1.A.2)". The fuel type is classified as "Other fuels".

Greenhouse gas emissions during the direct use of waste as a raw material, such as plastics used as reducing agents in blast furnaces or as a chemical material in coking furnaces, or use of intermediate products manufactured using the waste as a raw material, are estimated in this category. The waste used as raw material and that used as fuel are combined and expressed as "Raw Material/Fuel Use" in this section.

Emission source	Application breakdown	Major application	Reporting category of energy sector	
	Petrochemical	Fuel	1A2f Other	
Use of municipal solid waste (plastics) as alternative fuel or	Blast furnace reducing agent	Reducing agent in blast furnace	1A2a Iron & Steel	
rawmaterial	Coke oven chemical feedstock	Alternative fuel or raw material in coke oven	1A1c Manufacture of solid fuels	
	Gasification	Fuel	1A2f Other	
Use of waste oil as alternative fuel or raw material	Cement burning	Cement burning	1A2f Cement & Ceramics	
Tuel of faw material	Other	Fuel	1A2f Other	
	Blast furnace reducing agent	Blast furnace reducing agent	1A2a Iron & Steel	
Use of industrial solid waste	Boiler	Fuel	1A2b Chemicals	
(waste plastics) as alternative fuel or raw material	Boiler	Fuel	1A2d Pulp, paper and print	
or raw material	Cement burning	Cement burning	1A2f Cement & Ceramics	
	Boiler	Fuel	1A2f Machinery	
Use of industrial solid waste (waste wood) as alternative fuel or material	-	Fuel	1A2f Other	
	Cement burning	Cement burning	1A2f Cement & Ceramics	
	Boiler	Fuel	1A2f Other	
	Iron manufacture	Alternative fuel or raw materials in iron manufacturing	1A2a Iron & Steel	
Use of waste tire as alternative	Gasification	Fuel in iron manufacturing	1A2a Iron & Steel	
fuel or raw material	Metal refining	Fuel in metal refining	1A2b Non-ferrous metals	
	Tire manufacture	Fuel in tire manufacturing	1A2c Chemicals	
	Papermanufacture	Fuel in paper manufacturing	1A2d Pulp, paper and print	
	Power generation	Power generation	1A1a Public electricity and heat production ^{\Box}	

Table 8-51 Estimation category for emissions from the direct use of waste as fuel

b) Methodological Issues

1) CO₂

• Estimation Method

Emissions were estimated by multiplying the incinerated volume of each type of waste used as raw material or fuel by Japan's country-specific emission factor. The wastes included in the estimation are the portions used as raw material or fuel of: plastics in MSW; waste plastics and waste mineral oil in industrial waste; and waste tires.

• Emission factor

Emission factors were established for the plastics from MSW that were used as chemical raw material in coke ovens and waste tires. The remaining emission sources used the emission factors for "Waste Incineration without Energy Recovery (Chapter 8.4.1.)".

Emission	factors	for	this	Plastics from municipal solid waste (as chemical raw material in coke ovens)					
category				and waste tires					
Emission fa	actors for	incine	ration	Plastics from municipal solid waste (other than those used as chemical material					
without energy recovery				in coke ovens) and industrial waste					

		-			e	•		
Item	Unit	1990	1995	2000	2005	2006	2007	2008
MSW-coke oven	kg CO ₂ /t(dry)	1,420	1,420	1,420	1,420	1,420	1,420	1,420
Waste tire	kg CO ₂ /t(dry)	1,858	1,785	1,790	1,737	1,729	1,722	1,725

Table 8-52 CO₂ emission factors for this category

• Activity Data

Incinerated amount of waste used as raw material or alternative fuels is used. For more details, refer to the 8.4.3.1. - 8.4.3.3.

Item	Unit	1990	1995	2000	2005	2006	2007	2008
MSW-plastics-oilification	kt (dry)	0	0	3	7	4	4	3
MSW-plastics-reducer in blast furnace	kt (dry)	0	0	24	35	37	32	17
MSW-plastics-chemical material in coke-oven	kt (dry)	0	0	10	168	150	137	136
MSW-plastics-gasification	kt (dry)	0	0	1	56	52	54	45
ISW-waste plastics (iron and steel)	kt (wet)	0	0	57	160	92	112	74
ISW-waste plastics (cement)	kt (wet)	0	0	102	302	365	408	427
ISW-waste plastics (boiler)	kt (wet)	16	12	8	10	15	19	21
ISW-waste mineral oil (cement baking furnace)	kt (wet)	137	225	343	423	447	451	384
ISW-waste mineral oil (boiler)	kt (wet)	554	633	460	811	742	871	876
Waste tire	kt (dry)	282	471	580	498	546	577	593

 Table 8-53 Usage as raw materials and fuels

2) CH₄, N₂O

• Estimation Method

Emissions were estimated by multiplying the amount of each type of waste used as raw material or fuel by the country-specific emission factor. It should be noted that emissions from some of the emission sources are not estimated. They are summarized below.

Table 8-54 CH_4 and N_2O emissions sources not included in calculation

for waste used as	alternative fuel	or raw materials
-------------------	------------------	------------------

Emission source	Emission source (not calculated)						
Use of municipal solid waste as alternative fuel or	Blast furnace redusing agent (NO), Coke-oven						
raw materials	chemical feedstock (IE), Gasification (NE)						
Use of industrial solid waste as alternative fuel or raw	Balst furnace reducing agent (NO), Petrochemical						
materials	(NE), Gasification (NE)						
Use of waste tire as alternative fuel or raw material	Iron manufacturing (NO)						

• Emission factor

Emission factors for waste used as raw material and fuel were determined by multiplying the emission factor for applicable types of furnaces by the calorific value of each waste type, and converting the result to the weight-based values. Table 8-47 shows the data used in the estimation.

Chapter 8. Waste

<u>Calculation of emission factor (wet basis)</u> = (Emission factor for each type of furnace (kg-CH₄/TJ, kg-N₂O/TJ)) × (Calorific value of each waste type (MJ/kg)) / 1000

Table 8-55 Data used for the calculation of CH_4 and N_2O emission factors for wastes used as raw material and fuel

	Iten	ı	Emission factor for furnaces and ovens (energy sector)	Calorific value		
Plast muni	ics from cipal solid waste	Plastic oil	Boilers (Heavy fuel oil A, gas oil, kerosene, naphtha, other liquid fuels)	Calorific value of waste plastics		
		Cement kilns	Other industrial furnaces (solid fuel)	Calorific value of		
Ind	Waste plastics	Boilers	ers CH ₄ : Boilers (wood, charcoal, and other solid fuel) N ₂ O: Boilers (other than fluidized-bed) (solid fuel)			
ustrial	Waste oil Cement kilns, boilers		() ther industrial furnaces (solid fuel)			
Industrial waste	(mineral/animal and vegetable)	Boilers	Boilers (Heavy fuel oil A, gas oil, kerosene, naphtha, other liquid fuels)			
	Wood scraps	Boilers	CH ₄ : Boilers (wood, charcoal) N ₂ O: Boilers (other than fluidized-bed) (solid fuel)	Calorific value of wood ^{b)}		
		Cement kilns	Other industrial furnaces (solid fuel)			
	Boilers		CH ₄ : Boilers (Steam coal, coke, other solid fuels) N ₂ O: Boilers (other than fluidized-bed) (solid fuel)	Calorific value of		
Wast	e tires	Carbonization	Boilers (gas fuels)	waste tires		
		Gasification	Other industrial furnaces (gas fuels) and other industrial furnaces (liquid fuels) $^{c)}$			

a) Calorific value per unit volume was determined by dividing by the specific gravity of waste oil (0.9 kg/L) obtained from the *Waste Handbook* (1997).

b) Source: 1997 General Survey of Emissions of Air Pollutants

c) The percentage of substances recovered during the gasification of waste tires. A weighted average was calculated using the proportions of gas and oil (22% and 43%) reported in the *Hyogo Eco-town* documents.

Table 8-56 Emission factors and calorific values (energy sector) for the use of waste as raw material

and fuel by furnace type								
Furnace type/Fuel type	Methane emission factor (kg-CH ₄ /TJ)	Nitrous oxide emission factor (kg-N ₂ O/TJ)	Source of fuel	Calorific value (MJ/kg)				
Boilers (Heavy fuel oil A, gas oil, kerosene, naphtha, other liquid fuels)	0.26	0.19	Waste plastics	29.3				
Boilers (gas fuels)	0.23	0.17	Reclaimed oil*	40.2 (TJ/l)				
Boilers (steam coal, coke, other solid fuels)	0.13		Waste tires					
Boilers (wood, charcoal)	74.9		(FY2004 and before)	20.9				
Boilers (other than fluidized-bed) (solid fuels)		0.85	(FY2005 and after)	33.2				
Other industrial furnaces (liquid fuel)	0.83	1.8	Refuse derived fuel (RDF)	18.0				
Other industrial furnaces (solid fuel)	13.1	1.1	Refuse derived fuel (RPF)	29.3				
Other industrial furnaces (gas fuel)	2.3	1.2	Wood	14.4				

Emission factors are from the documents relating to each furnace type. Calorific values are obtained from "General Energy Statistics".

* Basic unit of calorific value of oil is "TJ/l".

• Activity Data

Activity data were determined for each category using the wet-basis values (Table 8-49). For more details, refer to each section.

Table 8-57 Fuel usage of the waste associated with methane and nitrous oxide emissions

Item	Unit	1990	1995	2000	2005	2006	2007	2008
MSW-oilification	kt (wet)	0	0	3	7	4	4	3
ISW-waste wood	kt (wet)	1,635	1,635	2,061	2,683	2,841	3,045	3,417
ISW-waste mineral/animal & vegetable oil (cement baking furnace)	kt (wet)	141	233	359	447	474	479	408
ISW-waste mineral/animal & vegetable oil (boiler)	kt (wet)	569	657	482	858	786	924	932
Waste tire-cement baking furnace	kt (wet)	111	275	361	181	168	148	141
Waste tire-boiler	kt (wet)	119	184	163	255	316	369	394
Waste tire-pyrolysis furnace	kt (wet)	67	37	30	10	8	8	2
Waste tire-gasification	kt (wet)	0	0	0	27	34	42	48

Refer to Table 8-53 for the activity data for ISW-waste plastics (cement manufacurer) and ISW-waste plastics (boiler).

c) Uncertainties and Time-series Consistency

Refer to the respective section.

d) Source-specific QA/QC and Verification

Refer to the respective section.

e) Source-specific Recalculations

Refer to the respective section.

f) Source-specific Planned Improvements

Refer to the respective section.

8.4.3.1. Emissions from municipal waste (waste plastics) used as alternative fuel (1.A.1 and 1.A.2)

a) Source/Sink Category Description

This category covers the emissions from municipal waste (waste plastics) used as raw materials or alternative fuels.

b) Methodological Issues

1) CO₂

• Estimation Method

Emissions were calculated by multiplying the incinerated volume of each type of waste used as raw material or fuel by Japan's country-specific emission factor.

• Emission factor

Emission factors of municipal waste incineration were used except for plastics of MSW as chemical

raw material in coke ovens. The emission factor for plastics used as chemical raw material in coke ovens was set as the volume of hydrocarbon that is used as chemical raw material and from which no CO_2 is emitted into the air by subtracting the percentage of carbon in the plastics that migrates to hydrocarbon oil in the coke oven (47.9%) from emission factor for plastics (MSW).

<u>Calculation of the emission factor for plastics used as raw material in coke ovens (dry basis)</u> = (Emission factor for the incineration of plastics in municipal solid waste) × [1 – (fraction of carbon in plastics used as chemical raw material for coke ovens that migrates to hydrocarbon)]

• Activity Data

The portion of the plastics in MSW used as raw material or fuel (dry basis) was determined by subtracting the water content from the total amount collected by designated legal bodies and municipalities and processed as raw material and fuel (wet basis) under the Containers and Packaging Recycling Law. The percentage of water content for emission estimates was determined to be 4% by using the data provided by the Japan Containers and Packaging Recycling Association.

- Processing of plastics collected by designated legal bodies

The amount of the plastics collected by designated legal bodies and processed into raw material and fuel was determined from the amount reported in the "Plastic Containers and Packaging (Other Plastics, Food Trays)" section of the *Statistics of Commercial Recycling of Plastics (Recycling)* compiled by the Japan Containers and Packaging Recycling Association. Usage in products that do not emit CO_2 was deducted.

- Processing of plastics collected by municipalities

The amount of plastics collected by municipalities and processed into raw material and fuel was calculated by first subtracting the amount of plastics (wet basis) that was commercially recycled through designated legal bodies from the amount of all plastics that were commercially recycled under the Plastic Containers and Packaging Recycling Law (wet basis), and multiplying the result by the recycling rate of plastics by various methods and the percentage of recycled products in the total amount of the product.

• Amount of plastics commercially recycled under the Plastic Containers and Packaging Recycling Law (wet basis)

The results of the selective collections by municipalities and commercial recycling under the Plastic Containers and Packaging Recycling Law were determined from *Annual Recycling Statistics* by the Waste Management and Recycling Department of the Ministry of the Environment.

- Amount of plastics commercially recycled through designated legal body channels (wet basis) The amount was determined from the "Actual Collection of Plastic Containers and Packages" section of the *Statistics of Commercial Recycling of Plastics (Recycling)*.
- Percentage of commercially recycled plastics by recycling method The rates were obtained from the percentages for various methods of commercial recycling of the

plastics collected through municipal channels in the *Results of the 2001 Questionnaire to Municipalities on Waste Plastics Processing* compiled by the Plastic Waste Management Institute.

• Percentage of commercially recycled plastic products by recycling method

The values for the commercial recycling of the plastics collected through the municipal channels were substituted for the percentage of commercially recycled plastic products collected through designated legal body channels. The percentages were calculated by dividing the amounts of commercially recycled plastic products by various recycling methods, which were established in the activity data for recycling through designated legal body channels, by the amount of commercially recycled plastics. The amount of commercially recycled plastics by each of the recycling methods was calculated by multiplying the amount of plastics commercially recycled plastics by recycled through designated legal body channels, by the percentage of commercially recycled plastics by recycling method obtained from reference documents Assessment and Deliberation of the Plastic Containers and Packaging Recycling Law by the Japan Containers and Packaging Recycling Association.

2) CH_4, N_2O

For estimation method and emission factors, refer to the section "Emissions from Direct Use of Waste as Fuel (8.4.3)". Data used for CO_2 emission estimates were used in wet basis for activity data.

c) Uncertainties and Time-series Consistency

• Uncertainties

The same value of uncertainty in " CO_2 emissions from incineration of MSW (6.C.1.a)" was used for the uncertainty in the CO_2 emission factor. The uncertainty in activity data for CO_2 emissions was estimated by using the uncertainties in the amount of plastics used as raw materials or alternative fuels (statistical uncertainty) and the percentage of water content (same value that was used for the MSW incineration).

The uncertainty in the CH_4 emission factor was estimated by using the uncertainties in emission factors for each furnace type (energy sector) and the calorific value of plastics. For uncertainty in CH_4 and N_2O activity data, the uncertainties in the amount of MSW plastics used as raw materials or alternative fuels were used. The uncertainties in the CO_2 , CH_4 and N_2O emissions from MSW plastics used as raw materials or alternative fuels were estimated to be 17%, 180% and 112%, respectively. For details, refer to the Annex 7.

• Time series consistency

Time series consistency in emission estimates has been ensured. However, the statistical data for activity data have been available since FY 2000 because the use of waste as alternative fuel or raw material was not a common practice prior to FY 2000 in Japan.

d) Source-specific QA/QC and Verification

Tier 1 QC activities are implemented in accordance with the GPG (2000). The Tier 1 QC activities

include the verification of parameters such as activity data and emission factors, and the archive of reference materials. Also, QA activity was implemented for the waste sector by the GHG Inventory Quality Assurance Working Group in FY 2009. For more details of QA/QC activities, refer to the Annex 6.

e) Source-specific Recalculations

No recalculation was conducted.

f) Source-specific Planned Improvements

No improvements are planned.

8.4.3.2. Emissions from industrial waste (waste plastics, waste oil, and waste wood) used as raw material or alternative fuels (1.A.2.))

a) Source/Sink Category Description

This category covers greenhouse gas emissions from industrial waste (waste plastics, waste oil, and waste wood) used as raw material or alternative fuels.

b) Methodological Issues

1) CO_2

• Estimation Method and Emission factor

Emissions were estimated by multiplying the incinerated amount of waste plastics and waste mineral oil used as raw material or alternative fuels by emission factor used for incineration of ISW.

• Activity Data

- Industrial waste plastics

Estimated activity data were the amounts of waste plastics (wet basis) in industrial waste used as raw material or fuel in steel industry, chemical industry, paper industry, cement Manufacturer, and automobile manufacturer. The amount of waste plastics in industrial waste used as raw material or fuel in each industry was provided by the following data sources: for steel industry, the *Current State of Plastic Waste Recycling and Future Tasks* published by the Japan Iron and Steel Federation; for cement manufacturing industry, paper industry, and automobile manufacturer, the amount of waste plastics used for fluid bed boiler provided by the Japan Chemical Industry Association, the Japan Automobile Manufacturers Association.

- Waste mineral oil

Activity data were estimated by subtracting the amount of biogenic-origin waste oil indicated as "Fraction of Animal and Vegetable Origin Waste Oil" provided by the survey conducted by the Ministry of the Environment from the amount of waste oil indicated as "Fuel Usage" of "Direct Recycle Usage" and "Recycle Usage after Treatment" of ISW provided by the *Report of the Research* on the State of Wide-range Movement and Cyclical Use of Wastes. The activity data for FY1997 and before were estimated by using the trend of the amount of incinerated industrial waste oil.

2) CH₄, N₂O

• Estimation Method and Emission factor

Refer to the section "Emissions from Direct Use of Waste as Fuel (8.4.3)"

• Activity Data

- Waste plastics

Estimated activity data were the amounts of waste plastics used for cement kilns and boilers. Out of the activity data used for CO_2 emission estimates from this source, the amount used as raw materials and fuels in chemical industry, paper industry, cement manufacturer, and automobile manufacturer were used for CH_4 and N_2O emission estimates. Because blast furnace gas generated from steel industry is entirely recovered and not included in the activity data.

- Waste oil (Mineral / Animal and Vegetable)

The amount of waste oil used as raw material or fuel is calculated separately for cement kilns and boilers. The amount of waste oil and reclaimed oil, which was produced from the waste oil contained in industrial waste and other waste oil, used as fuel for cement kilns was determined from the annual data in the *Cement Handbook*. The amount used as fuel for boilers was determined by subtracting the amount used as fuel for cement kilns from the amount of waste oil indicated as "Fuel Usage" of "Direct Recycle Usage" and "Recycle Usage after Treatment" of ISW provided by the *Report of the Research on the State of Wide-range Movement and Cyclical Use of Wastes*.

Unlike the activity data for CO_2 emissions, waste mineral oil and also waste animal and vegetable oil are included for the estimation of activity data from this source.

- Waste wood

The amount of usage of waste wood as raw material or fuel was extracted from the "fuel usage" in the "direct recycle usage" and the "fuel usage" in the "recycle usage after treatment" in the *Report of the Research on the State of Wide-range Movement (the volume on Cyclical Use).* The values before FY 1997 are estimated by using the average value in the period of FY 1998-2002.

c) Uncertainties and Time-series Consistency

• Uncertainties

The same value of uncertainty as was used for " CO_2 emissions from incineration of industrial waste (6.C.1.b)" was applied to uncertainty in CO_2 emission factor. The uncertainties in emission factors for CH_4 and N_2O were evaluated by the same method that was used for municipal waste used as raw materials or alternative fuels. The uncertainty in activity data were evaluated separately for waste plastics, waste oil, and waste wood. For waste plastics, the uncertainty was calculated by combining of the uncertainties in the amount of waste plastics used as raw materials or alternative fuels in the cement industry. The uncertainty levels for each component were evaluated by using the statistical uncertainties. For waste oil, the values for cement kilns (statistical

uncertainty) and boilers (a value for CO₂) were combined. For waste wood, statistical uncertainties for the amount of waste wood used as raw materials or alternative fuels were used.

The uncertainties in CO₂, CH₄ and N₂O emissions from the incineration of industrial waste used as raw material or alternative fuels were estimated to be in the range of 13-105%, 74-128% and 31-110%, respectively. For details, refer to the Annex 7.

• Time series consistency

Data on the amount of waste oil and waste wood used as alternative fuels have been available since FY 1998. For waste oil, consistent data over the time series were developed by using the total amount of waste oil incinerated without the use of waste oil as alternative fuel. For waste wood, the average of FY 1998–2002 data was used to estimate the amount of waste wood for the past years. The emissions were calculated in a consistent manner.

d) Source-specific QA/QC and Verification

Tier 1 QC activities are implemented in accordance with the *GPG (2000)*. The Tier 1 QC activities include the verification of parameters such as activity data and emission factors, and the archive of reference materials. Also, QA activity was implemented for the waste sector by the GHG Inventory Quality Assurance Working Group in FY 2009. For more details of QA/QC activities, refer to the Annex 6.

e) Source-specific Recalculations

- The emission estimates for FY1990 through FY2007 were recalculated because the used amounts of waste plastics in chemical industry, paper industry, and automobile industry were identified.
- Because the fraction of incinerated biogenic-origin waste oil was identified, the CO₂emission estimates for the period FY 1990 2007 were recalculated.
- Because the activity data for waste wood was corrected, the CH_4 and N_2O emission estimates for the period FY 2001 FY2007 were recalculated.

f) Source-specific Planned Improvements

No improvements are planned.

8.4.3.3. Emissions from waste tires used as raw materials and alternative fuels (1.A.1 and 1.A.2)

a) Source/Sink Category Description

This category includes the emissions from the use of waste tires as raw materials or alternative fuels.

- b) Methodological Issues
- 1) CO₂

• Estimation Method

The emissions were calculated by multiplying the incinerated amount of waste tires used as raw

materials or fuels by Japan's country-specific emission factor.

• Emission factor

The emission factor for waste tires was calculated by multiplying the fossil fuel-derived carbon content of the waste tires by the efficiency of combustion of the waste tires at the facilities that use waste tires as fuel. The volume of the fossil fuel-derived carbon in the waste tires was calculated by the material contents of new tires. The efficiency of combustion for waste tires was set to 99.5% based on the maximum default value for hazardous waste in the *GPG* (2000).

<u>Calculation of emission factor for the incineration of waste tires (dry basis)</u> = (Fossil fuel-derived carbon content in waste tires) × (efficiency of combustion of waste tires) × 1000× 44 / 12

• Activity Data

Activity data (dry basis) was calculated by subtracting the water content in the waste tires determined from analyses of three constituents of divided tires reported in *the Basic Waste Date Fact Book (2000)* published by Japan Environmental Sanitation Center from the amount of waste tires used as raw material or fuel (wet basis) in the *Tire Industry of Japan (32)*, published by the Japan Automobile Tire Manufacturers Association, Inc.

2) CH₄, N₂O

• Estimation Method and Emission factor

Refer to the section 8.4.3.

• Activity Data

The volume of waste tires used as raw material or fuel by usage that was determined during the calculation of the CO_2 emissions from this source was used. For the activity data, the volume of waste tires recorded in the following categories were used: "Cement kilns" for use in cement kilns; "Medium to small boilers", "Use by tire factories", "Use by paper manufacturers", and "Power generation" for use in boilers; and "Gasification" for use in gasification processes.

c) Uncertainties and Time-series Consistency

• Uncertainties

The level of uncertainty in CO_2 emission was estimated by using the carbon content of waste tires and the combustion rate of the furnace using waste tires as alternative fuels. For activity data, the uncertainty was estimated by using the uncertainties in the amount of waste tires used as raw materials or alternative fuels and the percentage of water contents in waste tires. The uncertainties in the emission factors for CH_4 and N_2O were evaluated by the same method that was applied to MSW used as raw materials or alternative fuels and were estimated by combining the uncertainties in emission factors for each furnace type (CH_4 , N_2O of energy sector) using waste tires as raw materials or alternative fuels and in the calorific value of waste tires. For activity data, the uncertainties in the amount of waste tires used as raw materials or alternative fuels were used. The methods of evaluation of the uncertainty levels for each component are:

- Use of the values for industrial waste (waste plastics) incineration: carbon content and combustion rate

- Based on expert judgment: percentage of water contents

- Use of the uncertainties set by each statistics: amount of waste tires used as raw materials or alternative fuels

The uncertainties in CO_2 , CH_4 and N_2O emissions from the use of waste tires as raw materials or alternative fuels were estimated to be 15%, 91% and 26%, respectively. For details, refer to the Annex 7.

• *Time series consistency*

The emissions were calculated in a consistent manner.

d) Source-specific QA/QC and Verification

Tier 1 QC activities are implemented in accordance with the *GPG (2000)*. The Tier 1 QC activities include the verification of parameters such as activity data and emission factors, and the archive of reference materials. Also, QA activity was implemented for the waste sector by the GHG Inventory Quality Assurance Working Group in FY 2009. For more details of QA/QC activities, refer to the Annex 6.

e) Source-specific Recalculations

Emission estimates were recalculated due to the update on the calorific values of the waste tires from FY2005 onwards in accordance with the revision of gross calorific values for each fuel in *General Energy Statistics*.

f) Source-specific Planned Improvements

No improvements are planned.

8.4.4. Emissions from incineration of waste processed as fuel (1.A.)

8.4.4.1. Incineration of refuse-based solid fuels (RDF and RPF) (1.A.1 and 1.A.2)

a) Source/Sink Category Description

In this category, CO_2 , CH_4 , and N_2O emissions from waste that is processed and used as fuel are estimated and reported. Refuse-derived solid fuels (RDF as Refuse Derived Fuel and RPF as Refuse Paper and Plastic Fuel) are used for the estimation of emissions from fuels produced from waste. The reporting categories for the above emissions are included in "Energy Industry (1.A.1)" and "Manufacturing/Construction (1.A.2)" according to the use of waste as fuels. The fuel type is classified as "Other fuels".

Emission source	Application breakdown	Major application	Reporting category of energy sector	
	RDF	Fuel use (including power generation)	1A2f Other [*]	
Use of refuse-derived fuel	RPF (petroleum products)	boiler fuel	1A1b Petroleum refining	
$(RDF \cdot RPF)$	RPF (chemical industry)	boiler fuel	1A2c Chemicals	
	RPF (paper manufacture)	Fuel use in paper manufacturing	1A2d Pulp, paper and print	
	RPF (cement burning)	Cement burning	1A2f Cement & ceramics	

* : Emissions from power generation and heat supply excluding in-house use should be included in the category 1A1a. However, they are reported in the category 1A2f, because the actual circumstances are not understood at the moment.

b) Methodological Issues

1) CO₂

• Estimation Method

Emissions were estimated by multiplying the incinerated amount of RDF and RPF by Japan's country-specific emission factor.

• Emission factor

Emission factor associated with the use of the refuse-derived solid fuels (RDF and RPF) was calculated separately for RDF and RPF by the equation shown below. For the RPF (refuse paper and plastic fuel), the emission factors were calculated separately for the coal-equivalent and coke-equivalent fuels, and also calculated their average weighted by the percentage used as fuel.

<u>Calculation of emission factor for the use of RDF and RPF as fuel (dry basis)</u> = $1000 \times (1 - average percentage of water content) \times (percentage of plastic-derived constituents, dry basis) \times (carbon content of plastics, dry basis) \times (efficiency of combustion) \times 44 / 12$

- Average percentage of water content

Percentage of water contents in the RDF was set to 5.5%, based on the simple average of water content in the RDF manufactured by the facilities listed in the *Proper Management of Refuse-derived Fuels* compiled by the Study Group for Proper Management of RDF.

Percentage of water contents in the RPF was set to 2.6%, based on the water contents of coal-equivalent and coke-equivalent products indicated by the RPF quality standards set by the Japan RPF Industry Association with their average weighted by the manufacturing ratio of these products.

- Percentage of plastic-derived content

Calculation of the percentage of the plastics-derived constituents (dry basis) used the wet-based moisture content of the constituents of MSW determined in the "Emission from Controlled Disposal Sites (6.A.1.)" section, which was converted to a dry-based value. The results of the content analysis of the wet-based refuse were obtained from the *Results of Content Analysis of Refuse* for each facility listed in the "Proper Management of Refuse-derived Fuels". The percentage of plastics-derived constituents in the RPF (dry basis) was set at 50% for the coal-equivalent product and 90% for the coke-equivalent product based on the results of a fact-finding survey by the Japan RPF Industry Association.

- Carbon content in plastics

Average carbon content used in the "Incineration of Municipal Solid Waste (Plastics)" (Table 8-29)" was applied to the carbon content in plastics contained in the RDF (dry basis). The carbon content (73.7%) of plastics contained in the RPF (dry basis) was determined from the carbon content value (70%) used in the "Incineration of Industrial Waste (Waste Plastics)" (95%), which was converted to a dry basis using the moisture content in waste plastics in industrial waste.

- Efficiency of combustion

Rate of combustion of the RDF was set to 99%, applying the default value in the *GPG* (2000) in the same manner as for MSW (plastics). The rate for the RPF was set to 99.5%, using the default value in the *GPG* (2000) in the same manner as for industrial waste (waste plastics).

Item	Unit	1990	1995	2000	2005	2006	2007	2008
RDF	kg CO ₂ /t(dry)	808	808	808	808	808	808	808
RPF (Coal)	kg CO ₂ /t(dry)	1,419	1,419	1,419	1,419	1,419	1,419	1,419
RPF (Coke)	kg CO ₂ /t(dry)	2,445	2,445	2,445	2,445	2,445	2,445	2,445
RPF (weighted average)	kg CO ₂ /t(dry)	1,627	1,627	1,627	1,627	1,627	1,627	1,627

Table 8-59 CO₂ emission factors for the emissions from the use of refuse derived fuel as fuel

• Activity Data

- RDF

The amount of RDF production was used as the substitute for the amount of use of RDF. Activity data (dry basis) was calculated by subtracting the water content of RDF from the amount of RDF production at RDF production facilities (wet basis) provided by the *Report on Survey of State of Treatment of Municipal Solid Waste* which was compiled by the Waste Management and Recycling Department of the Ministry of the Environment. For the fiscal years that the data were unavailable, emission estimates were conducted substituting the values of the refuse processing capacity. - RPF

The amounts of RPF used in chemical industry, paper industry, cement manufacturer, and petroleum product manufacturer were estimated. The amount of RPF (dry basis) for paper industry was obtained from the survey results conducted by the Japan Paper Association. The amounts of RPF (dry basis) for chemical industry, cement manufacturer, and petroleum product manufacturer were obtained by using the average water content of RPF and also the survey results (wet basis) conducted by the Japan Cement Association and the Japan Automobile Manufacturers Association.

	14010 0	00 000 0	rerube a	erri ed rae	(ILDI), I	(1 1) us iu	01	
Item	Unit	1990	1995	2000	2005	2006	2007	2008
RDF	kt (dry)	31.7	36.7	140.0	391.8	373.5	375.1	375.1
RPF	kt (dry)	0.0	7.9	32.2	469.0	632.7	735.5	730.2

Table 8-60 Use of refuse derived fuel (RDF, RPF) as fuel

2) CH_4, N_2O

• Estimation Method and Emission factor

For the estimation method and the emission factors used, refer to "Emissions from Direct Use of Waste as Fuel (8.4.3)".

Item		Emission factor for furnaces and ovens (energy sector)	Calorific value	
RDF	Boilers	CH ₄ : Boilers (Steam coal, coke, other solid fuels) N ₂ O: Boilers (other than fluidized-bed) (solid fuel)	Calorific value of RDF	
RPF	Cement kilns, boilers	Other industrial furnaces (solid fuel)	Calorific value of RPF	
	Boilers	CH ₄ : Boilers (Steam coal, coke, other solid fuels) N ₂ O: Boilers (other than fluidized-bed) (solid fuel)		

 Table 8-61 Data used for the calculation of the methane and nitrous oxide emission factors for wastes

 used as raw material and fuel

: Weighted average of calorific values calculated based on the manufacturing ratio of Coal substitution RPF and Coke substitution RPF given by the Japan RPF Industry Association

• Activity Data

- RDF

The entire amount of RDF production (wet basis) used for CO_2 emission estimates was also used for the amount of use of RDF for boiler.

- RPF

Out of the amount of RPF used for CO_2 emission estimates, the amounts of RPF used in chemical industry, paper industry, and petroleum products manufacturer were applied to the amount of PRF used for boiler (wet basis). The amount of PRF used in cement industry was applied to the amount of RPF used for cement kiln (wet basis). Because the amount of RPF used in paper industry is on a dry basis, the average water content of RPF was added to obtain the value on a wet basis.

c) Uncertainties and Time-series Consistency

• Uncertainties

The level of uncertainty in the CO_2 emission factor for RDF used as fuels was estimated by using the uncertainties in the percentage of plastic-derived constituents in RDF, carbon content in the plastics, and combustion rate of the facilities using RDF as fuels. For RPF, the uncertainty in emission factor for coal-equivalent RPF was used. The uncertainty in activity data was estimated by combining the uncertainty for each element because the activity data were estimated by subtracting water content from the amount of RDF and RPF used as fuels (wet basis) to obtain the values on a dry basis.

The uncertainties in the CH_4 and N_2O emission factors were estimated by using the uncertainties in emission factors for each type of furnace by usage of RDF and RPF and the calorific values of the RDF and RPF. For activity data, the uncertainties in the amount of RDF and RPF were used.

The methods of evaluation of the uncertainty levels for each component are:

- Use of 95% confidence interval of data: percentage of plastic-derived constituents of RDF, percentage of water content in RDF

- Use of the values for MSW (plastics) incineration: carbon content of RDF and combustion rate for RDF

- Use of the values for ISW (waste plastics) incineration: carbon content of RPF and combustion rate for RPF

- Expert judgment: percentage of plastic-derived constituents of RPF

- Use of the uncertainties set by each statistics: amount of RDF and RPF used as alternative fuels

The uncertainties in CO_2 , CH_4 , and N_2O emissions from the use of RDF and RPF as raw materials or alternative fuels were estimated to be 44%, 49%, and 33%, respectively. For details, refer to the

Annex 7.

• Time-series consistency

Because data on the amount of RDF produced were not available for the years prior to FY 1997, these data were estimated by using the trend on capacity of refuse-based fuel-producing facilities. The emissions were calculated in a consistent manner.

d) Source-specific QA/QC and Verification

Tier 1 QC activities are implemented in accordance with the *GPG (2000)*. The Tier 1 QC activities include the verification of parameters such as activity data and emission factors, and the archive of reference materials. Also, QA activity was implemented for the waste sector by the GHG Inventory Quality Assurance Working Group in FY 2009. For more details of QA/QC activities, refer to the Annex 6.

e) Source-specific Recalculations

-The emissions estimates for FY1998 thorough FY2007 were recalculated because the amounts of RPF used in chemical industry and petroleum products manufacturer were identified.

f) Source-specific Planned Improvements

No improvements are planned.

8.5. Other (6.D.)

In this category, CO_2 emissions as a result of the decomposition of petroleum-derived surfactants and CH_4 and N_2O emissions from the composting of organic waste are calculated. Estimated greenhouse gas emissions from category 'Other' are shown in Table 8-62. In FY 2008, emissions from this source category were 562 Gg-CO₂ eq. and accounted for 0.04% of the national total emissions. The emissions from this source category had decreased by 23.1% compared to those in FY 1990. This emission decrease is primarily due to the decrease in CO_2 emissions for FY2001 through FY2004 from the use of alkylbenzenes by introduction of the Pollutant Release and Transfer Register (PRTR).

	Table 8-02 GHO emissions from category other (0.D.)									
Gas	Category	Unit	1990	1995	2000	2005	2006	2007	2008	
CO ₂	6.D.2. Decomposition of petroleum-derived surfactants	Gg CO ₂	703	668	656	507	522	561	530	
CH_4		Gg CH ₄	0.7	0.5	0.6	0.7	0.8	0.8	0.8	
	6.D.1. Composting of	Gg CO ₂ eq	14	11	13	15	17	18	17	
NO	organic waste	Gg N ₂ O	0.0	0.0	0.0	0.0	0.0	0.1	0.0	
N ₂ O		Gg CO ₂ eq	13	10	12	13	15	16	15	
	Total of all gases	Gg CO ₂ eq	730	689	681	534	555	595	562	

Table 8-62 GHG emissions from category 'Other' (6.D.)

8.5.1. Emissions from Composting of Organic Waste (6.D.1)

a) Source/Sink Category Description

Part of the MSW and industrial waste generated in Japan is composted, and CH_4 and N_2O generated in that process are emitted from composting facilities. Emissions from composting of livestock waste are accounted for under "Emissions from manure treatment (4.B)" in the agriculture sector.

b) Methodological Issues

• Estimation Method

Emissions were calculated by taking the amount of organic waste composted, which was extracted from the statistical information available in Japan, and multiplying it by the default emission factor provided in the *IPCC 2006 Guidelines*. The calculation method is the same for both CH_4 and N_2O emissions.

 $E = EF \times A$

- *E* : Amount of CH_4 (N₂O) emissions generated by composting organic waste (kg CH_4 or kgN₂O)
- EF : Emission factor for (dry basis) (kg CH₄/t, (kg N₂O/t)
- A_{dry} : Amount of composted organic waste (dry basis)

• Emission factor

In accordance with the 2006 *IPCC Guidelines*, emission factors (dry basis) are set as 10.0 (kg CH_4/t) for CH_4 and 0.6 (kg N_2O/t) for N_2O , respectively, for all fiscal years.

• Activity data

Activity data (amount composted on a dry basis) was obtained by subtracting the water content appropriate to the properties of composted waste from the amount of composted waste (wet basis) listed below:

OMunicipal Solid Waste

Amount of composted waste by waste types calculated by multiplying the amount of MSW treated at high-rate composting facilities indicated in the *Waste Treatment in Japan* by the fraction of waste types in MSW treated at high-rate composting facilities provided in the *Report of the Research on the State of Wide-range Movement and Cyclical Use of Wastes*.

- Amount of composted waste at human waste treatment facilities indicated in the *Ministry of the Environment, Waste Management and Recycling Department, The state of municipal waste treatment surve.*

OIndustrial Solid Waste

- Amount of sludge treated at composting facilities provided by the Sewage Statistics

Percentage of water content in composted waste, as indicated in the "Emissions from Controlled Disposal Sites (6.A.1)" section, are; 20% in waste paper, 75% in kitchen waste, 20% in textile waste, 45% in waste wood, and 70% in sewage sludge.

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Municipal solid waste	kt (dry)	38	22	29	30	31	32	32
Industrial solid waste	kt (dry)	31	33	34	39	50	52	46

Table 8-63 Amounts of composted waste

c) Uncertainties and Time-series Consistency

• Uncertainties

The uncertainty in emission factor was estimated by using the upper and lower limits for the uncertainty range provided in the 2006 *IPCC Guidelines*. For activity data, uncertainty was evaluated on the basis of the statistical uncertainties. The uncertainties in CH_4 and N_2O emissions from composting of organic wastes were estimated to be 74% and 86.3%, respectively. For more details, refer to the Annex 7.

• *Time series consistency*

With respect to the input of municipal waste at composting facilities, due to changes in the statistical classification, the data used for FY 2005 and subsequent years covered a wider scope than those used in the FY 2004 and years prior. Consequently, the continuity of values between FY 2004 and FY 2005 is not maintained. Re-tabulation of the FY 1990–2004 data according to the current classification is now in progress, and the activity data will be updated as soon as the new data become available. The estimation methodology itself, however, remains consistent.

d) Source-specific QA/QC and Verification

Tier 1 QC activities are implemented in accordance with the *GPG (2000)*. The Tier 1 QC activities include the verification of parameters such as activity data and emission factors, and the archive of reference materials. Also, QA activity was implemented for the waste sector by the GHG Inventory Quality Assurance Working Group in FY 2009. For more details of QA/QC activities, refer to the Annex 6.

e) Source-specific Recalculations

The emission estimates for FY2005 through FY2007 were recalculated due to the addition of the activity data to composted MSW at human waste treatment facilities.

f) Source-specific Planned Improvements

For future inventories, detailing of emission estimates will be conducted upon new scientific findings because the necessity of establishing country-specific emission factor from this source has been well recognized.

Based on the results of QA activity, the emission estimates for domestic and commercial composting machine are planned for improvements; a long-term efforts on further scientific investigations are planned because this kind of research could not be completed in a short period of time.

8.5.2. Emissions from the Decomposition of Petroleum-Derived Surfactants (6.D.2)

a) Source/Sink Category Description

Surfactants are used for various cleaning activities at home and factories in Japan. Petroleum-derived surfactants discharged into wastewater treatment facilities and into the environment, and emit CO_2 . As this emission source did not correspond to any of the existing waste categories (6.A. to 6.C.), it was included in the "Other (6.D.)" section. Because "CH₄ and N₂O emissions from wastewater treatment" and "CO₂ emissions from the decomposition of petroleum-derived surfactants" concern different types of gas, they are unrelated to each other and pose no duplicate inventory issues.

b) Methodological Issues

• Estimation Method

As neither the *Revised 1996 IPCC Guidelines* nor the *GPG (2000)* specified a method for determining CO_2 emissions, a method specifically established in Japan was applied to the calculation. Because carbon contained in surfactants that emitted into wastewater treatment facilities and into the environment is eventually oxidized to CO_2 and emitted into the atmosphere as a result of surfactants decomposition, CO_2 emissions were estimated based on the amount of carbon contained in surfactants that emitted into the environment.

Based on the facts stated above, the CO_2 emissions were calculated by multiplying the volume of the petroleum-derived surfactant for each type of raw material by the carbon content of each of the materials. The calculation covered synthetic alcohols, alkylbenzenes, alkylphenols, and ethylene oxide. Some of the carbon contained in surfactants discharged into wastewater treatment facilities are adsorbed and assimilated by sludge. However, this portion of carbon is not decomposed biologically. It is released into the atmosphere as CO_2 through incineration and landfilling of sludge. Therefore, the emission is included in CO_2 emission estimates.

• Emission factor

Emission factor was determined for each type of material by calculating the amount of CO_2 , expressed in kg that was emitted from the decomposition of 1 t of a surfactant using the average carbon content in the molecules.

$EF_i = C_i \times 1000/12 \times 44$

 EF_i : Emission factor of petroleum-derived raw material *i* used in a surfactant

 C_i : Average carbon content of petroleum-derived raw material *i* used in a surfactant

Raw material	Carbon numberMolecular weightCarbon contentBasis for determination		Basis for determination	
Synthetic alcohol1218677.4%C12-alcohol as the main constituent.		C12-alcohol as the main constituent.		
Alkylbenzene	18	250	86.4%	C12-alkylbenzene as the main constituent.
Alkylphenol	15	210	85.7%	C9-alkylphenol as the main constituent.
Ethylene oxide 2 44 54.5		54.5%	Based on ethylene oxide molecules (C_2H_4O)	

Table 8-64 Average carbon content of surfactants, by petroleum-derived raw material

• Activity Data

Activity data is the amount of raw materials consumed for petroleum-derived surfactants. As some of the surfactants produced in Japan are exported, the activity data were determined by multiplying the volume of raw materials used in the surfactants obtained from the statistical data for surfactant use by an import/export adjustment factor.

Volume of surfactants used

The volumes of the use of surfactant by material were extracted from the consumption of raw materials for surfactants indicated in the *Chemical Industry Statistical Yearbook*. As there was no compilation of usage since FY 2002, the volume of use was estimated using the simple averages of ratio of consumption and production in the period from FY 1990 to FY 2001.

> Export/import correction factor

Correction factor was calculated from the export/import statistics in *International Trade Statistics* by the Customs Bureau of the Ministry of Finance for categories of anionic surfactants, cationic surfactants, non-ionic surfactants, and other organic surfactants and the volume of surfactants used. As some of the materials for surfactants were used in several types of surfactants, an average of the export/import correction factor was weighted by surfactant production volume as necessary to calculate the correction factor for each classification of surfactant.

Export/Import correction factor	
= (Surfactant production + Surfactants imported – surfactants	ctants exported) / surfactant production

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Synthetic alcohol	t	29,239	16,253	28,285	31,609	34,575	36,896	32,988
Alkyl benzene	t	105,432	102,794	80,832	47,349	46,281	51,251	55,442
Alkyl phenol	t	10,141	8,798	7,454	3,448	3,184	3,084	2,338
Ethylene oxide	t	124,984	132,175	146,509	127,150	132,828	141,104	125,628

Table 8-65 Activity data associated with decomposition of petroleum-based surfactants

c) Uncertainties and Time-series Consistency

• Uncertainty

The level of uncertainty associated with emission factor was evaluated by using the differences in carbon content in the major constituents of raw materials for surfactants and was found to be 19% (calculated by using standard deviation). With respect to uncertainties in activity data, twice of the statistical uncertainties set out for the statistics (Survey of total population (rounding) and Other statistics) was used and evaluated to be 40%.

• Time-series consistency

Consistent methodology was used in the estimation. However, data on the amount of raw materials consumed for surfactants have became not available since FY 2002 and activity data were estimated from the production amount of the surfactants.

d) Source-specific QA/QC and Verification

Tier 1 QC activities are implemented in accordance with the *GPG* (2000). The Tier 1 QC activities include the verification of parameters such as activity data and emission factors, and the archive of reference materials. Also, QA activity was implemented for the waste sector by the GHG Inventory Quality Assurance Working Group in FY 2009. For more details of QA/QC activities, refer to the Annex 6.

e) Source-specific Recalculations

Due to minor changes made to the values in trade statistics, the results of the emission calculation have been slightly modified for certain years.

f) Source-specific Planned Improvements

No improvements are planned.

References

- 1. IPCC, Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, 1997
- 2. IPCC, Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, 2000
- 3. IPCC, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 2006
- 4. Contracting Survey of Environmental Agency, Comprehensive Survey on Air Pollutant (1995)
- 5. Environmental Agency, Report on a Survey of Carbon Dioxide Emissions, 1992
- 6. Environmental Agency Committee for the Greenhouse Gases Emissions Estimation Methods, *Review* of Greenhouse Gases Emissions Estimation Methods Part 2, September 2000
- 7. Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, *Review of Greenhouse Gases Emissions Estimation Methods*, February 2006
- 8. Ministry of the Environment, Water Environment Department of the Environmental Management Bureau, *Comprehensive Survey of Emissions of Water Quality Contaminants*
- 9. Ministry of the Environment, Waste Management and Recycling Department, *Waster Treatment in Japan*
- 10. Ministry of the Environment, Waste Management and Recycling Department, *The state of municipal waste treatment survey*
- 11. Ministry of the Environment, Waste Management and Recycling Department, *Report of the research* on the state of wide-range movement and cyclical use of wastes (the volume on cyclical use)
- 12. Ministry of the Environment, Waste Management and Recycling Department, *Study on Residual Amounts of Industrial Waste from Illegal Dumping and other Sources*
- 13. Ministry of the Environment, Waste Management and Recycling Department, Annual Recycling Statistics under the Plastic Containers and Packaging Recycling Law
- 14. Ministry of the Environment, the FY 2007 Survey of Industrial Waste Treatment Facilities
- 15. Ministry of the Environment, Water and Air Environment Bureau, *Study on the Control of Burdens Generated*
- 16. Japan Containers and Packaging Recycling Association, *Statistics of Commercial Recycling of Plastics (Recycling)*.
- 17. Japan Containers and Packaging Recycling Association, Assessment and deliberation of the Plastic Containers and Packaging Recycling Law
- 18. Ministry of Health, Labor and Welfare, Water Supply Division, Health Service Bureau, *Report on* Survey of Organizations in Industrial Waste Administration
- 19. Ministry of Land, Infrastructure, Transport and Tourism, Statistical Yearbook of Motor Vehicle Transport
- 20. Ministry of Land, Infrastructure, Transport and Tourism, *Manual for Developing Plans for Biosolids Utilization (Draft)*
- 21. Ministry of Economy, Trade and Industry, Table of Industrial Statistics Land and Water
- 22. Ministry of Economy, Trade and Industry, Chemical Industry Statistical Yearbook
- 23. Ministry of Economy, Trade and Industry, Annual Textile Statistics Report
- 24. Agency for Natural Resources and Energy, General Energy Statistics, 2003
- 25. Clean Japan Centre, Report on Results of Trend and Industry-Specific Studies on Industrial Wastes (Mining Industry Waste) and Recyclable Waste
- 26. Japan Environmental Sanitation Center, Basic Waste Data (FactBook 2000)
- 27. Japan Chemical Fibers Association, Textile Handbook
- 28. Japan Society of Waste Management Experts, Waste Handbook

- 29. Japan Iron and Steel Federation, Current State of Plastic Waste Recycling and Future Tasks
- 30. Japan Cement Association, Cement Handbook
- 31. Japan Automobile Tire Manufacturers Association, Tire Industry of Japan
- 32. Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, *Report* on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces (1994)
- Ministry of Land, Infrastructure, Transport and Tourism, National Institute for Land and Infrastructure Management, 2000 Annual Report of Investigation and Research for Sewer, NILIM Report 10: pp93-96, 2001
- 34. Ministry of Land, Infrastructure, Transport and Tourism, National Institute for Land and Infrastructure Management, 2001 *Annual Report of Investigation and Research for Sewer*, NILIM Report 64: pp116-122, 2002
- 35. Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, *Report* on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces (1996)
- 36. Japan Water Works Association, Wateworks Statistics
- 37. The Chemical Daily, 14705 Chemical manufactured
- Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, City of Kobe, Niigata Prefecture, Hiroshima Prefecture, Hyogo Prefecture, Fukuoka Prefecture, Hokkaido, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1999
- 39. Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, Hiroshima Prefecture, Hyogo Prefecture, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1999
- 40. Kanagawa Prefecture, Report of GHG Emission Factors from Stationary Combustion, 1994
- 41. Hyogo Prefecture, Report of GHG Emission Factors from Stationary Combustion, 1994
- 42. Japan Environmental Sanitation Center, *Report of Analytical Survey of Methane Emissions*, FY1989 Commissioned by the Environmental Agency
- 43. Japan Sewage Works Association, *Guidelines and Analysis of Comprehensive Planning Surveys for the Provision of Water Mains*, Catchment Area 1999 Edition
- 44. Japan Sewage Works Association, Sewage Statistics (Admin. Ed.)
- 45. Japan Society of Atmospheric Environment, Method of Estimating Greenhouse Gas Emissions -Survey Report, 1996
- 46. Study Group for Proper Management of RDF, Proper Management of Refuse-derived Fuels
- 47. Inamori and Mizuochi, "B-16(8) *On-Site Surveys of Balance of Methane and Nitrous Oxide from Sewage and Waste*", FY1998 Global Environment Research Fund Outcome Report
- 48. Iwasaki, Tatsuichi, Ueno, "*Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators*", Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection, 1992
- 49. Kyosai and Mizuochi, "*B-2(7) Research to Reveal Emission Volumes from Sewage Treatment Plants*", FY1990 Global Environment Research Fund Outcome Report
- 50. Sato Mizuochi and Suzuki, "B-2(7) Research to Reveal Emission Volumes from Sewage Treatment Plants", FY1992 Global Environment Research Fund Outcome Report
- 51. Masaru Tanaka, Compendium of Waste, Maruzen, 1998
- 52. Matsubara and Mizuochi, "Survey of Emissions of Nitrous Oxide from Sewage Treatment Plants", Environmental and Sanitary Engineering Research, 8(3), 1994

- 53. Matsuzawa et al., "*Estimates of Volume of Methane Released from Sewage Treatment Plants*", Collection of research papers presented to the 4th Academic Conference on Waste, 1993
- 54. Nakamura et al., *"Emission of Nitrous Oxide from Incineration of Sewage Sludge"*, Proceedings of the 20th Japan Urban Cleaning Research Conference, pp391-393, 1998
- 55. Nakamura, Suzuki, Sonemura, Ochi, and Harada, "*B-51(2) Sewage Treatment System Technology for Limiting Greenhouse Gases*", FY1997 Global Environment Research Fund Outcome Report
- 56. Okazaki, Shimizu, and Morita, "Study of Operation Records Based on Precision Function Inspection of Human Waste Management Plant", Japan Environmental Sanitation Center Report 28
- 57. Omura, Kawakubo, and Yamada, "Study of Emission Factors for N₂O from High-load Human Waste Management", Journal of Waste Management 57, p260
- 58. Yasuda et al., "Behavior of Nitrous Oxide Emissions Associated With Incineration of Sewage Sludge", Journal of Japan Society of Waste Management Experts Vol. 5, No. 4, 1994
- Suzuki, Ochi, Miyata, "Continuous Measurement of Nitrous Oxide Emissions from Sewage Sludge Flux Furnaces", Proceedings of the 11th Environmental Engineering Symposium 2001, pp387-390, 2001
- 60. Takeishi, Suzuki, and Matsubara, "B-2(7) Research to Reveal Emission Volumes from Sewage Treatment Plants", FY1993 and FY1994 Global Environment Research Fund Outcome Reports
- 61. Takeishi, Suzuki, and Matsubara, "B-2(7) Research to Reveal Emission Volumes from Sewage Treatment Plants", FY1993 Global Environment Research Fund Outcome Report
- 62. Takeishi, Watanabe, Matsubara, Hirayama, Maebashi, Koma, Wakasugi and Yoshikawa, "*Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces*", Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1996
- 63. Takeishi, Watanabe, Matsubara, Sato, Maebashi, Tanaka, Miwa, Wakasugi and Yamashita, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1994
- 64. Tanaka, Inoue, Matsuzawa, Osako, and Watanabe, "B-2(1) Research into Volumes Released from Waste Treatment Plants", 1994 Global Environment Research Fund Outcome Report
- 65. Tanaka, Inoue, Osako, Yamada, and Watanabe, "B-16(7) Research into Limiting Generation of Methane and Nitrous Oxide from the Waste Sector", FY1997 Global Environment Research Fund Outcome Report
- 66. Ueno et al., *"Review of Measures to Reduce Nitrous Oxide in Sewage Treatment Plants"*, Tokyo Metropolitan Research Institute for Environmental Protection, 1995
- 67. Watanabe et al., "Primary Screening of Greenhouse Gases Generated in Association with the Biological Breakdown of Organic Wastes", Collection of papers presented to the 13th Japan City Cleaning Research Conference, 1992
- 68. Iwata, Kato, Sawada and Mori, *Study on the Utilization of Sludge from Purification Plant for Agriculture II. Effects of application of sludge as soil amendment matter on rice plants*, Aichi-ken Agricultural Research Center Report, 14, 46-52, 1982
- 69. Japan Live stock Technology Association, "Controlling the Generation of Greenhouse Gases in the Livestock Industry" (2002)
- 70. Ministry of the Environment, Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector, 2010
- 71. Ike, Soda, "B-071, Estimation on Carbon and Nitrogen Flows and CH₄ and N₂O Reduction of Wastewater Stream in Japan, FY2010 Global Environment Research Fund"
- 72. Oshima, Kawai, "Technical Note of PWRI Number 2509, Survey Study on Sewage Sludge Fuel

Conversion, Annual Report of Sewage Works Research 1986", Public Works Research Institute (PRWI)

- 73. Fujishima et al., "Establishment of Zero-emission Processing Technology for Organic Sludge by Multistage Distillation-Chemical Analysis of Sewage Sludge", Industrial Research Institute of Ishikawa Research Report, FY 2003
- 74. Tanaka, Adachi, Seno, Yoshida, "*Components of Sewage Sludge, Tohoku Agriculture Research*", National Agricultural Research Center for Tohoku Region Research Report, 27, 1980
- 75. Fujimoto, "Survey study on about recycle by mud of sewage", Snow Management & Construction Technology Research Center of Fukui Pref.- Annual Report 2007
- 76. The Japan Association of Rural Resource Recycling Solutions, JARUS Reference System for Information of Biomass Recycling Technology
- 77. Ito, "A Study on Estimating Amounts of Landfill Gas", Metropolitan Tokyo Sanitation Engineering Journal No. 18, 1992.

Chapter 9. Other (CRF sector 7)

9.1. Overview of Sector

UNFCCC Reporting Guidelines (FCCC/SBSTA/2006/9) para.29 indicates that Annex I Parties should report and explicitly describe the details of emissions from each country-specific source of gases which are not included in the IPCC Guidelines. According to this requirement, emissions from other category (CRF sector7) are indicated below.

9.2. CO₂, CH₄, N₂O, HFCs, PFCs and SF₆

The national inventory submitted this year does not include the emissions and removals of gases targeted under the Kyoto Protocol (CO_2 , CH_4 , N_2O , HFCs, PFCs, SF₆) from the sources which are not included in the IPCC Guideline.

9.3. NOx, CO, NMVOC and SO₂

The inventory submitted this year includes CO emissions from smoking as the emissions of indirect greenhouse gases (NOx, CO, NMVOC) and SO_2 from the sources which are not included in the IPCC Guideline.

Chapter 10. Recalculation and Improvements

10.1. Explanation and Justification for Recalculations

This section explains improvements on estimation of emissions and removals in the inventory submitted in 2010.

In accordance with the *Good Practice and Uncertainty Management in National Greenhouse Gas Inventories (2000)* (hereafter, *the Good Practice Guidance (2000)*) and the *IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry*, recalculations of previously reported emissions and removals are recommended in the cases of 1) application of new estimation methods, 2) addition of new categories for emissions and removals and 3) data refinement. Major changes in the inventory submitted last year are indicated below.

10.1.1. General Issues

In general, activity data for the latest year available at the time when the inventory is compiled are often revised in the year following the submission year because of such as the publication of data in the fiscal year basis. In the national inventory submitted this year, activity data in many sources for 2007 have been changed and as a result, the emissions from those sources for the inventory year have been recalculated.

10.1.2. Recalculations in Each Sector

The information of recalculation for sectors (energy; industrial processes; solvent and other product use; agriculture; land use, land-use change and forestry; and waste) is described separately at sections named as "Source/Sink-specific Recalculations" in Chapters 3 to 8.

10.2. Implications for Emission Levels

Table 10-1 shows the changes made to the overall emission estimates due to the recalculations indicated in "Section 10.1. Explanation and Justification for Recalculations".

Compared to the values reported in the previous year's inventory, total emissions excluding LULUCF sector in the base year (1990) under the UNFCCC decreased by 0.08%, and the total emissions in year 2007 decreased by 0.38% compared to the data reported in last year (Table 10-1).

[Mt COseq.]

	[Mt CO ₂ eq.]																		
		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
CO ₂	JNGI2009	1,068.8	1,078.4	1,087.0	1,078.6	1,137.8	1,147.0	1,159.0	1,154.7	1,118.8	1,153.6	1,174.0	1,158.0	1,185.6	1,192.5	1,190.9	1,201.7	1,188.4	1,222.4
with LULUCF3)	JNGI2010	1,080.0	1,082.1	1,090.9	1,081.0	1,139.5	1,152.5	1,160.3	1,155.7	1,119.7	1,154.2	1,174.0	1,157.7	1,194.1	1,189.8	1,189.6	1,199.8	1,184.8	1,218.8
	difference	1.04%	0.34%	0.37%	0.22%	0.15%	0.48%	0.11%	0.08%	0.08%	0.05%	0.00%	-0.03%	0.71%	-0.23%	-0.11%	-0.16%	-0.31%	-0.30%
CO ₂	JNGI2009	1,143.2	1,152.6	1,160.8	1,153.6	1,213.5	1,226.6	1,238.9	1,234.9	1,198.9	1,233.9	1,254.6	1,238.8	1,276.7	1,283.9	1,282.5	1,287.3	1,270.2	1,303.8
without LULUCF	JNGI2010	1,143.4	1,152.8	1,160.9	1,153.6	1,213.4	1,226.5	1,238.8	1,234.6	1,198.6	1,233.6	1,254.3	1,238.3	1,276.0	1,281.6	1,281.5	1,286.0	1,266.7	1,300.6
	difference	0.02%	0.02%	0.01%	0.00%	-0.01%	-0.01%	-0.01%	-0.02%	-0.02%	-0.03%	-0.03%	-0.04%	-0.05%	-0.18%	-0.08%	-0.11%	-0.27%	-0.25%
CH ₄	JNGI2009	32.6	32.4	32.1	31.9	31.2	30.2	29.6	28.5	27.7	27.0	26.4	25.6	24.7	24.2	23.8	23.4	23.0	22.6
with LULUCF	JNGI2010	31.9	31.7	31.4	31.1	30.5	29.5	28.9	27.8	27.0	26.4	25.8	25.0	24.1	23.5	23.1	22.7	22.3	21.7
	difference	-2.23%	-2.24%	-2.23%	-2.23%	-2.26%	-2.31%	-2.31%	-2.35%	-2.37%	-2.37%	-2.19%	-2.36%	-2.52%	-2.80%	-3.12%	-3.22%	-3.36%	-3.80%
CH ₄	JNGI2009	32.6	32.4	32.1	31.8	31.1	30.2	29.6	28.5	27.7	27.0	26.4	25.6	24.7	24.2	23.8	23.4	23.0	22.6
without LULUCF	JNGI2010	31.9	31.7	31.4	31.1	30.4	29.5	28.8	27.8	27.0	26.4	25.8	25.0	24.0	23.5	23.1	22.7	22.3	21.7
	difference	-2.23%	-2.24%	-2.23%	-2.24%	-2.26%	-2.31%	-2.41%	-2.47%	-2.40%	-2.39%	-2.22%	-2.41%	-2.60%	-2.82%	-3.17%	-3.26%	-3.37%	-3.80%
N ₂ O	JNGI2009	32.1	31.5	31.6	31.3	32.5	32.9	33.9	34.6	33.1	26.8	29.3	25.8	25.5	25.2	25.3	24.9	24.7	23.8
with LULUCF	JNGI2010	31.6	31.1	31.2	30.8	32.0	32.4	33.4	34.1	32.6	26.1	28.7	25.3	24.5	24.2	24.3	23.9	23.9	22.6
	difference	-1.49%	-1.49%	-1.32%	-1.60%	-1.54%	-1.51%	-1.60%	-1.45%	-1.71%	-2.28%	-1.95%	-2.14%	-3.65%	-3.90%	-3.88%	-4.03%	-3.56%	-5.11%
N ₂ O	JNGI2009	32.0	31.5	31.5	31.3	32.5	32.8	33.9	34.6	33.1	26.8	29.3	25.8	25.5	25.2	25.3	24.9	24.7	23.8
without LULUCF	JNGI2010	31.5	31.0	31.1	30.8	31.9	32.3	33.4	34.0	32.5	26.1	28.7	25.3	24.5	24.2	24.3	23.8	23.9	22.6
	difference	-1.57%	-1.57%	-1.39%	-1.67%	-1.59%	-1.56%	-1.75%	-1.57%	-1.82%	-2.40%	-2.05%	-2.24%	-3.75%	-3.98%	-3.95%	-4.09%	-3.61%	-5.15%
HFCs	JNGI2009	NE	NE	NE	NE	NE	20.3	19.9	19.9	19.4	19.9	18.8	16.2	13.7	13.8	10.6	10.6	11.6	13.2
	JNGI2010	NE	NE	NE	NE	NE	20.3	19.9	19.9	19.4	19.9	18.8	16.2	13.7	13.8	10.6	10.6	11.7	13.3
PFCs	difference JNGI2009	NA NE	NA NE	NA NE	NA NE	NA NE	0.00%	0.00%	0.00%	0.00%	0.00%	<u>0.00%</u> 9.7	0.00%	0.00%	0.00%	0.00%	-0.36% 7.1	0.98%	0.48%
FFUS	JNGI2009 JNGI2010	NE	NE	NE	NE	NE	14.4	14.9	16.5	13.5	10.8	9.7	7.9	7.3	7.5	7.5	7.0	7.4	6.4
	difference	NA	NA	NA	NA	NA	-0.86%	-0.74%	-0.75%	-0.88%	-1.78%	-1.50%	-2.11%	-1.44%	-1.08%	-0.92%	-0.80%	-0.94%	-1.10%
SF ₆	JNGI2009	NE	NE	NE	NE	NE	17.0	17.5	15.0	13.6	9.3	7.3	6.0	5.7	5.4	5.3	4.6	5.1	4.4
510	JNGI2010	NE	NE	NE	NE	NE	17.0	17.5	15.0	13.6	9.3	7.2	6.0	5.6	5.3	5.1	4.5	4.9	4.4
	difference	NA	NA	NA	NA	NA	0.00%	0.00%	-0.33%	-0.15%	-0.40%	-0.92%	-1.31%	-2.44%	-2.87%	-4.11%	-2.25%	-4.59%	0.51%
Total	JNGI2009	1,133.5	1,142.3	1,150.7	1.141.8	1,201.4	1,261.7	1,274.9	1,269.0	1,226.2	1,247.2	1,265.4	1,239.7	1,262.7	1,268.4	1,263.4	1,272.3	1,260.4	1,292.9
with LULUCF	JNGI2009	1,143.5	1,144.8	1,153.5	1,143.0	1,202.0	1,265.9	1,274.8	1,268.6	1,225.7	1,246.4	1,264.0	1,238.0	1,269.3	1,263.7	1,260.1	1,268.4	1,254.9	1,287.2
	difference	0.88%	0.22%	0.25%	0.11%	0.04%	0.33%	-0.01%	-0.03%	-0.04%	-0.07%	-0.11%	-0.14%	0.53%	-0.37%	-0.26%	-0.30%	-0.43%	-0.44%
Total	JNGI2009	1,207.8	1,216.5	1,224.5	1,216.7	1,277.1	1,341.2	1,354.8	1,349.2	1,306.3	1,327.5	1,346.0	1,320.5	1,353.8	1,359.8	1,355.0	1,357.9	1,342.1	1,374.3
without LULUCF	JNGI2010	1,206.8	1,215.4	1,223.4	1,215.4	1,275.8	1,339.8	1,353.2	1,347.5	1,304.6	1,325.7	1,344.3	1,318.6	1,351.2	1,355.5	1,352.0	1,354.5	1,336.8	1,369.0
	difference	-0.08%	-0.09%	-0.09%	-0.10%	-0.10%	-0.11%	-0.11%	-0.12%	-0.13%	-0.14%	-0.13%	-0.15%	-0.19%	-0.31%	-0.23%	-0.25%	-0.40%	-0.38%

Table 10-1 Comparison of emissions and removals in the inventories submitted in 2009 and 2010

10.3. Implication for Emission Trends, including Time Series Consistency

Table 10-2 shows the changes made to the emission trends due to the recalculations indicated in "Section 10.1. Explanation and Justification for Recalculations". The comparison between the 2009 submission (JNGI 2009) and the 2010 submission (JNGI 2010) applies the comparison values between the base year and FY2007.

The actual emissions of HFCs, PFCs, and SF_6 prior to CY1995 are not reported; hence, the comparison between JNGI 2009 and JNGI 2010 of these emissions applies the comparison values between CY1995 and CY2007.

Total emissions excluding LULUCF sector in the 2010 submission decreased by approximately 4.2 million tons (in CO_2 equivalents) and increased by 0.3 points, compared to the data reported in the previous submission.

		Tr	end [Mt CO ₂ ec] .]		Trend (%)					
		JNGI2009	JNGI2010	Difference	JNGI2009	JNGI2010	Difference				
CO ₂	1)	127.0	123.3	-3.7	11.1%	10.8%	-0.3%				
CH_4	1)	-9.6	-9.6	0.0	-29.4%	-30.2%	-0.8%				
N_2O	1)	-7.2	-7.6	-0.4	-22.6%	-24.2%	-1.6%				
HFCs	2)	-8.6	-8.5	0.1	-42.6%	-42.1%	0.6%				
PFCs	2)	-7.0	-6.9	0.1	-48.6%	-48.6%	0.0%				
SF ₆	2)	-11.8	-12.1	-0.2	-69.7%	-71.0%	-1.4%				
Total	3)	82.7	78.5	-4.2	6.6%	6.2%	-0.3%				

Table 10-2Comparison of increase and decrease from the base year, between the inventories
submitted in 2009 and 2010 excluding LULUCF sector

1) Comparison of emissions between FY1990 and FY2007

2) Comparison of emissions between CY1995 and CY2007

3) Comparison of emissions between the base year of the Kyoto Protocol (CO₂, CH₄, N₂O: FY1990, HFCs, PFCs, SF₆: CY1995) and 2007

10.4. Recalculations, including in response to the review process, and planned improvements to the inventory

10.4.1. Improvements from inventory submitted in 2009

The major improvements carried out since submission of the 2009 inventory are listed below.

10.4.1.1. Methodology for estimating emissions and removals of GHGs

Changed calculation methods are as follows. See each category for details.

- 1. For "1.A. Fuel Combustion (CO₂)", the emission factor for LPG since FY 2005 were changed because of the revision of the emission factor with the revision of the gross calorific value for each fuel type since FY 2005 reported in the *General Energy Statistics*.
- 2. For "1.A. Fuel Combustion (N₂O)", new data for normal pressure fluidized-bed furnace (boiler) since FY 1990 were adapted, because of changed estimation method for solid fuel consumption to statistical value from estimated figure.
- 3. For "1.A.3.a. Mobile Combustion (CH₄, N₂O) Car", new CH₄ and N₂O emission factors for car (e.g. Gasoline Passenger Vehicle) were provided and were used for its estimation.
- 4. The emission factors for "1.B.2.b.iv Fugitive Emissions from Natural Gas Distribution" were changed to the values of fiscal years from the values of calendar years since FY 2005.
- 5. A country-specific emission factor was adopted for domestically produced Soda Ash, under "2.A.4. Use of Soda Ash."
- 6. Based on a new survey conducted on the CO_2 emission factor, the country-specific emission factor was renewed for "2.B.5. Ethylene."
- 7. Coke production volume and CH4 emissions from coke production provided by the Japan Iron and Steel Federation has been reviewed for years 2000-2007, under "2.B.5 Coke."
- 8. Under "2.C Metal Production," "2.E Production of halocarbons and SF₆," and "2.F Consumption of halocarbons and SF₆," for both data obtained through associations and through the Greenhouse Gas Accounting and Reporting System etc, the emission data for halocarbons and SF₆ were reviewed.
- 9. It is now understood that a part of the total amount of liquid PFC shipment is used in railway rectifiers, therefore this is subtracted from the total shipment to yield PFC emissions, under "2.F.5 Solvents."
- 10. With the state of emissions under "2.F.6 Other applications using ODS substitutes" better understood, emissions are reported as "IE."
- 11. PFC emissions from disposal of railway rectifiers is newly accounted for, under "2.F.9 Other."
- 12. For 2006 and beyond, the amount of N₂O collected in three domestic hospitals equipped with Laughing Gas Destruction Facilities is subtracted from the medical N₂O shipment amount to yield emissions under "3.D.1 Laughing Gas."
- 13. For "4.B. Manure Management", new emission factor was developed by result of research, and emission factors for swine, hen and broiler were updated. In conjunction with that update, the activity data of "4.D.3. Indirect Emissions (atmospheric deposition, nitrogen leaching and runoff): N₂O" were changed.
- 14. For "4.C. Rice Cultivation", new data for proportion of area by soil types and for proportion of organic mulch management were used for estimation.
- 15. For "4.D.1. Synthetic Fertilizer" and "4.D.1. Organic Fertilizer", estimation method was changed

into account of upland rice which had not been included in the estimation until now.

- 16. For "4.D.1. Crop Residue", data for amount of crop residue plowed into soil for rice and for proportion of crop residue plowed into soil for wheat and barley were discovered. Therefore, these data were used for its estimation.
- 17. For "4.D.1. Crop Residue", detail checking for amount of crop residue plowed into soil for tea was conducted, and estimation method was changed in accordance with current condition in Japan.
- 18. For "4.D.1. Plowing of Organic Soil", new data for percentage of organic soil was used for estimation.
- 19. For "4.F. Field Burning of Agricultural Residues", amount of rice straw and rice husk on crop field and proportion burned on field for wheat, barley, rye and oats were changed.
- 20. For "5.A. Forest land", areas of "Forest land remaining Forest land" and "Land converted to Forest land" were recalculated because the method of categorizing their areas was revised.
- 21. For "5.A. Forest land", carbon stock changes in living biomass in Land converted to Forest land came to be included in those in Forest land remaining Forest land; therefore, the carbon stock changes were recalculated.
- 22. For "5.A. Forest land", carbon stock changes in dead organic matter and soil in Land converted to Forest land were recalculated because they came to be estimated separately from those in Forest land remaining Forest land.
- 23. For "5.B. Cropland", reporting carbon stock changes in dead organic matter in Cropland remaining Cropland was changed from "NE" to "NA".
- 24. For "5.B. Cropland", reporting carbon stock changes in soils in Cropland remaining Cropland was changed from "NA" to "NE".
- 25. For "5.B. Cropland", areas of organic soils had been regarded as being included in those of mineral soils and reported as "IE"; however, the areas were reported from the 2010 submission.
- 26. For "5.B. Cropland", areas of "Forest land converted to Cropland" were recalculated due to change of the method of determining areas of Forest land converted to other land-use categories.
- 27. For "5.B. Cropland", carbon stock changes in dead organic matter in Forest land converted to Cropland were recalculated because of revising the estimation method.
- 28. For "5.B. Cropland", carbon stocks in living biomass before conversion in Forest land converted to Cropland were revised. As a result, carbon stock changes in living biomass in the category were recalculated.
- 29. For "5.B. Cropland", carbon stocks per area in soil in forests before conversion were revised because forest areas were revised. As a result, the carbon stock changes in soil in Forest land converted to Cropland were recalculated.
- 30. For "5.C. Grassland", areas of "Forest land converted to Grassland" were recalculated due to change of the method of determining areas of Forest land converted to other land-use categories.
- 31. For "5.C. Grassland", carbon stock changes in dead organic matter in Forest land converted to Grassland were recalculated because of revising the estimation method.
- 32. For "5.C. Grassland", carbon stocks in living biomass before conversion in Forest land converted to Grassland were revised. As a result, carbon stock changes in living biomass in the category were recalculated.
- 33. For "5.C. Grassland", carbon stocks per area in soil in forests before conversion were revised because forest areas were revised. As a result, the carbon stock changes in soil in Forest land converted to Grassland were recalculated.

- 34. For "5.D. Wetlands", carbon stocks in living biomass before conversion in Forest land converted to Wetlands were revised. As a result, carbon stock changes in living biomass in the category were recalculated.
- 35. For "5.D. Wetlands", carbon stock changes in dead organic matter in Forest land converted to Wetlands were recalculated because of revising the estimation method.
- 36. For "5.E. Settlements", areas of "Settlements remaining Settlements" and "Land converted to Settlements" were recalculated because the method of categorizing their areas was revised.
- 37. For "5.E. Settlements", areas of "Forest land converted to Settlements" were recalculated due to change of the method of determining areas of Forest land converted to other land-use categories.
- 38. For "5. E. Settlements", carbon stock changes in dead organic matter in Forest land converted to Settlements were recalculated because of revising the estimation method.
- 39. For "5. E. Settlements", carbon stocks in living biomass before conversion in Forest land converted to Settlements were revised. As a result, carbon stock changes in living biomass in the category were recalculated.
- 40. For "5. F. Other land", areas of "Forest land converted to Other land" were recalculated due to change of the method of determining areas of Forest land converted to other land-use categories.
- 41. For "5.F. Other land", carbon stocks in living biomass before conversion in Forest land converted to Other land were revised. As a result, carbon stock changes in living biomass in the category were recalculated.
- 42. For "5. F. Other land", carbon stock changes in dead organic matter in Forest land converted to Other land were recalculated because of revising the estimation method.
- 43. For "5.(III). N₂O emissions from disturbance associated with land-use conversion to Cropland", areas of "Forest land converted to Cropland" were recalculated due to change of the method of determining areas of Forest land converted to other land-use categories. As a result, N₂O emissions from this category were also recalculated.
- 44. For "5.(IV)". CO₂ emissions from agricultural lime application", the emission in FY 2007 of this category was recalculated because the activity data for FY 2007 were updated.
- 45. For "5.(V). Biomass burning", reporting non-CO₂ emissions from wildfire in Cropland was change from "NE" to "NO" because it came to be clarified that occurrence of wildfire was regarded as negligible small under the cropland management style in Japan.
- 46. For "5.(V). Biomass burning", reporting emissions resulting from control burning in Forest land was changed from "IE" to "NO" based on the actual situation.
- 47. For "6.A.1. Emissions from Managed Landfill Sites", the carbon content of water works sludge was updated due to the result of new scientific findings and research.
- 48. For "6.A.1. Emissions from Managed Landfill Sites", the emission estimates for sewage sludge were distinctively conducted by digested sewage sludge and other sewage sludge.
- 49. For "6.B.2.b Domestic Sewage Treatment Plant (mainly septic tanks)", the emission factor for community plant was updated due to the result of new scientific findings and research.
- 50. For "6.C.1. Municipal Solid Waste Incineration", the carbon content of waste plastics was updated due to the result of new scientific findings and research.
- 51. For "6.C.1. Municipal Solid Waste Incineration", the emission factors for CH_4 and N_2O were updated due to the result of new scientific findings and research.
- 52. For "6.C.2. Industrial Waste Incineration and 1.A.2. Emissions from industrial waste (waste plastics, waste oil, waste wood) used as raw material or alternative fuels", the amount of biogenic-origin waste oil was subtracted from the activity data of CO₂ emissions because the

percentage of incinerated waste oil from plant and animal origin with energy recovery was indentified.

- 53. For "6.C.2. Industrial Waste Incineration", the emissions from sewage sludge incinerated was partially re-allocated due to the revision of the energy recovery fraction for this source.
- 54. For "6.C.2. Industrial Waste Incineration", the emission factors for CH_4 and N_2O were updated due to the result of new scientific findings and research.
- 55. For "6.D.1. Emissions from Composting of Organic Waste", the addition of the activity data for the new emission sources for human waste and food waste were made.
- 56. For "1.A.2. Emissions from industrial waste (waste plastics, waste oil, waste wood) used as raw material or alternative fuels", the addition of the activity data for the new emission sources from chemical industry, paper industry, and automobile manufacturer were made.
- 57. For "1.A.1 and 1.A.2. Emissions from waste tires used as raw materials and alternative fuels", the calorific values of waste tires for FY 2005 and after were updated.
- 58. For "1.A.2. Incineration of refuse-based solid fuels (RDF and RPF)", the addition of the activity data for the new emission sources for chemical industry and petroleum product manufacturer was made.

10.4.1.2. National Greenhouse Gas Inventory Report

- The outcomes of QA procedures conducted for the GHG Inventory Quality Assurance Working Group (QA-WG) due to the changes in QA/QC plan are summarized in Annex 6. Additional Information to be Considered as Part of the NIR Submission or Other Useful Reference Information.
- 2. Japan's Information Required under Article 7, Paragraph 1 of the Kyoto Protocol, which had been submitted separately, is now included as Annex 10 in the National Greenhouse Gas Inventory Report of Japan.
- 3. Supplementary Information on LULUCF activities under Article 3, Paragraphs 3 and 4 of the Kyoto Protocol, which had been submitted separately, is now included as Annex 11 in the National Greenhouse Gas Inventory Report of Japan.

10.4.2. Planned Improvements

The main planned improvements are as follows.

1. Review of estimation methods, activity data, emission factors and other elements

Japan will hold meetings of a Committee for Greenhouse Gas Emission Estimation Methods and will consider improvements of estimation methods, activity data, emission factors and other elements used in the current inventory. When it will implement the consideration, Japan will prioritize highly important issues such as those relevant to key-categories and those pointed out in the past review reports.

2. Improvement of transparency

Japan will further improve transparency of the inventory by examining descriptions of methodologies, assumptions, data, and other elements in NIR, and by adding necessary information to NIR.

Annex 1. Key Categories

1.1. Outline of Key Category Analysis

The UNFCCC Inventory Reporting Guidelines¹ require the application of the Good Practice Guidance (2000), and the key category analysis² given in the Guidance. The guidelines for national system under Article 5 of the Kyoto Protocol also require countries, in compiling their inventories, to follow the method given in Chapter 7 of the Good Practice Guidance (2000) and identify the key categories.

The key category analyses were done for both data of FY 2008 and of FY 1990, the base year for the $UNFCCC^3$. Their results are presented here.

1.2. Results of Key Category Analysis

1.2.1. Key Categories

Key categories were assessed in accordance with the *Good Practice Guidance (2000)* assessment methods (Tier 1 level assessment, Tier 1 trend assessment, Tier 2 level assessment and Tier 2 trend assessment).

The key category for Land use, land use change and forestry (LULUCF) sector were assessed in accordance with *GPG-LULUCF*. The key categories were identified for the inventory excluding LULUCF first, and then the key category analysis was repeated for the full inventory including the LULUCF categories.

As a result, 38 and 34 sources and sinks were detected as the key source categories for FY 2008 and FY 1990, respectively (Table 1 and 2).

¹ Guidelines for the preparation of national communications by Parties included in Annex I to the Convention, Part I: UNFCCC reporting guidelines on annual inventories (following incorporation of the provisions of decision 14/CP.11) (FCCC/SBSTA/2006/9)

² The IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry (2003), which was welcomed in COP9, extends the key source analysis to LULUCF categories. In the latest UNFCCC reporting guidelines (FCCC/SBSTA/2004/8), the term "key source category" was revised to "key category".

³ With respect to HFCs, PFCs, SF₆, the data used for this analysis were the FY 1995 values.

	A IPCC Category		B Direct GHGs	L1	T1	L2	T2
#1	1A Stationary Combustion	Solid Fuels	CO2	#	1 #2	#2	#7
#2	1A Stationary Combustion	Liquid Fuels	CO2	#	2 #1	#8	#8
#3	1A3 Mobile Combustion	b. Road Transportation	CO2	#	3 #9	#5	
#4	1A Stationary Combustion	Gaseous Fuels	CO2	#	4 #3		
#5	5A Forest Land	1. Forest Land remaining Forest Land	CO2	#	5 #12	#4	#20
#6	2A Mineral Product	1. Cement Production	CO2	#	6 #5	#7	#10
#7	1A Stationary Combustion	Other Fuels	CO2	#	7 #13	#6	#9
#8	6C Waste Incineration		CO2	#	8		
#9	1A3 Mobile Combustion	d. Navigation	CO2	#	9		
#10	2A Mineral Product	3. Limestone and Dolomite Use	CO2	#1	0	#11	
#11	2F(a) Consumption of Halocarbons and SF6	1. Refrigeration and Air Conditioning Equipment	HFCs	#1	1 #7	#3	#1
#12	1A3 Mobile Combustion	a. Civil Aviation	CO2	#1	2 #16		
#13	2A Mineral Product	2. Lime Production	CO2	#1	3	#19	
#14	4A Enteric Fermentation		CH4			#22	
#15	4C Rice Cultivation		CH4			#17	#22
#16	4B Manure Management		N2O			#10	#19
#17	1A Stationary Combustion		N2O			#16	#14
#18	6A Solid Waste Disposal on Land		CH4		#14		
#19	2F(a) Consumption of Halocarbons and SF6	7. Semiconductor Manufacture	PFCs			#13	
#20	4D Agricultural Soils	1. Direct Soil Emissions	N2O			#9	#12
#21	4D Agricultural Soils	3. Indirect Emissions	N2O			#12	#17
#22	1A3 Mobile Combustion	b. Road Transportation	N2O			#14	#11
#23	4B Manure Management	•	CH4			#15	#18
#24	2B Chemical Industry	1. Ammonia Production	CO2				#24
#25	2F(a) Consumption of Halocarbons and SF6	5. Solvents	PFCs		#8		#3
#26	2E Production of Halocarbons and SF6	2. Fugitive Emissions	SF6		#15	#18	#4
#27	2F(a) Consumption of Halocarbons and SF6	7. Semiconductor Manufacture	SF6			#23	
#28	5E Settlements	2. Land converted to Settlements	CO2		#11		#21
#29	2F(a) Consumption of Halocarbons and SF6	8. Electrical Equipment	SF6		#6		#2
#30	6D Other	••	CO2			#21	
#31	2B Chemical Industry	3. Adipic Acid	N2O		#10		#15
	5B Cropland	2. Land converted to Cropland	CO2				#16
	2E Production of Halocarbons and SF6	1. By-product Emissions (Production of HCFC-22)	HFCs		#4		#13
	1A3 Mobile Combustion	a. Civil Aviation	N2O	1	1	#1	#5
	1A3 Mobile Combustion	d. Navigation	N2O	1	1	#20	
	5A Forest Land	2. Land converted to Forest Land	CO2		1		#25
	1B Fugitive Emission	1a i. Coal Mining and Handling (under gr.)	CH4		#17		#6
	5F Other Land	2. Land converted to Other Land	CO2	1	1		#23

Table 1 Japan's Key Categories (FY2008)

N.B. Figures recorded in the Level and Trend columns indicate the ranking of individual level and trend assessments.

A IPCC Category		B Direct GHGs	L1	L2
#1 1A Stationary Combustion	Liquid Fuels	CO2	#1	#7
#2 1A Stationary Combustion	Solid Fuels	CO2	#2	#3
#3 1A3 Mobile Combustion	b. Road Transportation	CO2	#3	#6
#4 1A Stationary Combustion	Gaseous Fuels	CO2	#4	
#5 5A Forest Land	1. Forest Land remaining Forest Land	CO2	#5	
#6 2A Mineral Product	1. Cement Production	CO2	#6	#9
#7 2E Production of Halocarbons and SF6	1. By-product Emissions (Production of HCFC-22)	HFCs	#7	#23
#8 1A3 Mobile Combustion	d. Navigation	CO2	#8	
#9 6C Waste Incineration		CO2	#9	
#10 2A Mineral Product	3. Limestone and Dolomite Use	CO2	#10	#18
#11 2F(a) Consumption of Halocarbons and SF6	8. Electrical Equipment	SF6	#11	#5
#12 2F(a) Consumption of Halocarbons and SF6	5. Solvents	PFCs	#12	#8
#13 1A Stationary Combustion	Other Fuels	CO2	#13	#14
#14 4A Enteric Fermentation		CH4	#14	#24
#15 6A Solid Waste Disposal on Land		CH4	#15	
#16 2B Chemical Industry	3. Adipic Acid	N2O	#16	#29
#17 2A Mineral Product	2. Lime Production	CO2	#17	#20
#18 1A3 Mobile Combustion	a. Civil Aviation	CO2	#18	
#19 4C Rice Cultivation		CH4		#19
#20 4B Manure Management		N2O		#13
#21 2E Production of Halocarbons and SF6	2. Fugitive Emissions	SF6		#2
#22 4D Agricultural Soils	1. Direct Soil Emissions	N2O		#10
#23 1A3 Mobile Combustion	b. Road Transportation	N2O		#12
#24 4D Agricultural Soils	3. Indirect Emissions	N2O		#15
#25 2B Chemical Industry	1. Ammonia Production	CO2		#26
#26 2F(a) Consumption of Halocarbons and SF6	7. Semiconductor Manufacture	PFCs		#16
#27 4B Manure Management		CH4		#17
#28 1B Fugitive Emission	1a i. Coal Mining and Handling (under gr.)	CH4		#11
#29 2F(a) Consumption of Halocarbons and SF6	7. Semiconductor Manufacture	SF6		#28
#30 2B Chemical Industry	other products except Anmonia	CO2		#25
#31 2E Production of Halocarbons and SF6	2. Fugitive Emissions	PFCs		#27
#32 6D Other		CO2		#22
#33 1A3 Mobile Combustion	d. Navigation	N2O		#21
#34 1A3 Mobile Combustion	a. Civil Aviation	N2O		#1

N.B. Figures recorded in the Level columns indicate the ranking of individual level assessments.

The data of HFCs, PFCs and SF_6 utilized for this analysis are the 1995 values.

1.2.2. Level Assessment

Level assessment involves an identification of categories as a key by calculating the proportion of emissions and removals in each category to the total emissions and removals. The calculated values of proportion are added from the category that accounts for the largest proportion, until the sum reaches 95% for Tier 1, 90% for Tier 2. Tier 1 level assessment uses emissions and removals from each category directly and Tier 2 level assessment analyzes the emissions and removals of each category, multiplied by the uncertainty of each category.

The key category analysis was first conducted for the inventory excluding LULUCF and the key categories for source sectors were identified (1). Then the key category analysis was repeated again for the full inventory including the LULUCF categories and key categories for LULUCF sector were identified (2). In accordance with the *GPG-LULUCF*, a source category, which was identified as key

in (1) but not in (2), was still regarded as key; while a source category, which was not identified as key in (1) but was done in (2), was not regarded as key (gray rows in tables below).

Tier 1 level assessment of the latest emissions and removals (FY 2008) gives the following 13 sub-categories as the key categories (Table 3). Tier 2 level assessment of the latest emissions and removals (FY 2008) gives the following 23 sub-categories as the key categories (Table 4).

A IPCC Category		B Direct GHGs	D Current Year Estimate [Gg CO2 eq.]	E Level Assessment	F % Contribution to Level	Cumulative
#1 1A Stationary Combustion	Solid Fuels	CO2	451,548.43	0.310	31.0%	31.0%
#2 1A Stationary Combustion	Liquid Fuels	CO2	325,918.08	0.224	22.4%	53.4%
#3 1A3 Mobile Combustion	b. Road Transportation	CO2	214,087.49	0.147	14.7%	68.1%
#4 1A Stationary Combustion	Gaseous Fuels	CO2	203,273.46	0.140	14.0%	82.1%
#5 5A Forest Land	1. Forest Land remaining Forest Land	CO2	82,803.92	0.057	5.7%	87.8%
#6 2A Mineral Product	1. Cement Production	CO2	30,076.22	0.021	2.1%	89.8%
#7 1A Stationary Combustion	Other Fuels	CO2	14,407.93	0.010	1.0%	90.8%
#8 6C Waste Incineration		CO2	13,448.88	0.009	0.9%	91.7%
#9 1A3 Mobile Combustion	d. Navigation	CO2	12,169.96	0.008	0.8%	92.6%
#10 2A Mineral Product	3. Limestone and Dolomite Use	CO2	12,003.50	0.008	0.8%	93.4%
#11 2F(a) Consumption of Halocarbons	1. Refrigeration and Air Conditioning Equipment	HFCs	11,438.28	0.008	0.8%	94.2%
and SF6 (actual emissions - Tier 2)						
#12 1A3 Mobile Combustion	a. Civil Aviation	CO2	10,875.77	0.007	0.7%	94.9%
#13 2A Mineral Product	2. Lime Production	CO2	7,798.21	0.005	0.5%	95.5%

Table 3 Results of Tier 1 Level Assessment (FY 2008)

Table 4 Results of Tier 2 Level Assessment (FY 2008)

A IPCC Category		B Direct GHGs	D Current Year Estimate [Gg CO2 eq.]	Uncertinty	K Contribution to Total L2	Cumulative
#1 1A3 Mobile Combustion	a. Civil Aviation	N2O	103.18		14.4%	
#2 1A Stationary Combustion	Solid Fuels	CO2	420,523.44	2%	8.9%	
#3 2F(a) Consumption of Halocarbons	 Refrigeration and Air Conditioning 	HFCs	13,236.09	43%	8.0%	31.3%
#4 5A Forest Land	 Forest Land remaining Forest Land 	CO2	79,869.29	6%	7.0%	38.3%
#5 1A3 Mobile Combustion	b. Road Transportation	CO2	205,416.98	2%	6.6%	44.9%
#6 1A Stationary Combustion	Other Fuels	CO2	13,812.17	29%	5.6%	50.5%
#7 2A Mineral Product	1. Cement Production	CO2	27,996.35	10%	4.1%	54.6%
#8 1A Stationary Combustion	Liquid Fuels	CO2	290,150.45	1%	4.0%	58.5%
#9 4D Agricultural Soils	1. Direct Soil Emissions	N2O	3,112.07	90%	3.9%	62.4%
#10 4B Manure Management		N2O	4,767.61	48%	3.2%	65.6%
#11 2A Mineral Product	3. Limestone and Dolomite Use	CO2	12,148.48	17%	2.8%	68.5%
#12 4D Agricultural Soils	3. Indirect Emissions	N2O	2,924.89	63%	2.6%	71.1%
#13 2F(a) Consumption of Halocarbons	Semiconductor Manufacture	PFCs	2,756.49	64%	2.5%	73.5%
#14 1A3 Mobile Combustion	b. Road Transportation	N2O	2,494.53	71%	2.5%	76.0%
#15 4B Manure Management		CH4	2,327.53	64%	2.1%	78.1%
#16 1A Stationary Combustion		N2O	4,054.81	33%	1.9%	79.9%
#17 4C Rice Cultivation		CH4	5,613.73	23%	1.8%	81.8%
#18 2E Production of Halocarbons	2. Fugitive Emissions	SF6	1,288.21	100%	1.8%	83.6%
#19 2A Mineral Product	2. Lime Production	CO2	6,931.21	16%	1.5%	85.1%
#20 1A3 Mobile Combustion	d. Navigation	N2O	95.95	1000%	1.3%	86.4%
#21 6D Other		CO2	530.41	159%	1.2%	87.6%
#22 4A Enteric Fermentation		CH4	6,944.81	12%	1.1%	88.7%
#23 2F(a) Consumption of Halocarbons	7. Semiconductor Manufacture	SF6	952.48	64%	0.9%	89.6%
#24 1A Stationary Combustion	Gaseous Fuels	CO2	199,519.14	0%	0.8%	90.4%

Tier 1 level assessment of the latest emissions and removals (FY 1990) gives the following 18 sub-categories as the key categories (Table 2). Tier 2 level assessment of the latest emissions and removals (FY 1990) gives the following 26 sub-categories as the key categories (Table 5 and 6).

A IPCC Category		B Direct GHGs	C Base Year Estimate [Gg CO2 eq.]	E kevek Assessment	F % Contribution to Level	Cumulative
#1 1A Stationary Combustion	Liquid Fuels	CO2	435,168.99	0.324	32.4%	32.4%
#2 1A Stationary Combustion	Solid Fuels	CO2	308,620.23	0.230	23.0%	55.4%
#3 1A3 Mobile Combustion	b. Road Transportation	CO2	189,227.88	0.141	14.1%	69.5%
#4 1A Stationary Combustion	Gaseous Fuels	CO2	104,300.83	0.078	7.8%	77.3%
#5 5A Forest Land	1. Forest Land remaining Forest Land	CO2	72,020.59	0.054	5.4%	82.7%
#6 2A Mineral Product	1. Cement Production	CO2	37,966.28	0.028	2.8%	85.5%
#7 2E Production of Halocarbons	1. By-product Emissions	HFCs	16,965.00	0.013	1.3%	86.7%
and SF6	(Production of HCFC-22)					
#8 1A3 Mobile Combustion	d. Navigation	CO2	13,730.95	0.010	1.0%	87.8%
#9 6C Waste Incineration		CO2	12,262.95	0.009	0.9%	88.7%
#10 2A Mineral Product	3. Limestone and Dolomite Use	CO2	11,527.41	0.009	0.9%	89.5%
#11 2F(a) Consumption of Halocarbons and SF6 (actual emissions - Tier 2)	8. Electrical Equipment	SF6	11,004.99	0.008	0.8%	90.4%
#12 2F(a) Consumption of Halocarbons and SF6 (actual emissions - Tier 2)	5. Solvents	PFCs	10,263.55	0.008	0.8%	91.1%
#13 1A Stationary Combustion	Other Fuels	CO2	9,102.41	0.007	0.7%	91.8%
#14 4A Enteric Fermentation		CH4	7,676.61	0.006	0.6%	92.4%
#15 6A Solid Waste Disposal on Land		CH4	7,627.64	0.006	0.6%	92.9%
#16 2B Chemical Industry	3. Adipic Acid	N2O	7,501.25	0.006	0.6%	93.5%
#17 2A Mineral Product	2. Lime Production	CO2	7,321.64	0.005	0.5%	94.0%
#18 1A3 Mobile Combustion	a. Civil Aviation	CO2	7,162.41	0.005	0.5%	94.6%
#19 4C Rice Cultivation		CH4	6,959.68	0.005	0.5%	95.1%

Table 5 Results of Tier 1 Level Assessment (FY 1990)

Table 6 Results of Tier 2 Level Assessment (FY 1990)

	A IPCC Category		B Dire ct GHGs	C Base Year Estimate [Gg CO2eq.]	I Source/Sink Uncertinty	K Contribution to Total L2	Cumulative
#1	1A3 Mobile Combustion	a. Civil Aviation	N2O	69.75	10000%	8.3%	8.3%
#2	2E Production of Halocarbons	2. Fugitive Emissions	SF6	4,708.30	100%	5.6%	13.9%
#3	1A Stationary Combustion	Solid Fuels	CO2	308,620.23	2%	5.6%	19.5%
#4	5A Forest Land	1. Forest Land remaining Forest Land	CO2	72,020.59	6%	5.4%	24.9%
#5	2F(a) Consumption of Halocarbons	Electrical Equipment	SF6	11,004.99	40%	5.3%	30.2%
#6	1A3 Mobile Combustion	b. Road Transportation	CO2	189,227.88	2%	5.2%	35.4%
#7	1A Stationary Combustion	Liquid Fuels	CO2	435,168.99	1%	5.1%	40.4%
#8	2F(a) Consumption of Halocarbons	5. Solvents	PFCs	10,263.55	40%	4.9%	45.3%
#9	2A Mineral Product	1. Cement Production	CO2	37,966.28	10%	4.7%	50.0%
#10	4D Agricultural Soils	1. Direct Soil Emissions	N2O	4,098.51	90%	4.4%	54.4%
#11	1B Fugitive Emission	1a i. Coal Mining and Handling (under gr.)	CH4	2,785.23	114%	3.8%	58.2%
#12	1A3 Mobile Combustion	b. Road Transportation	N2O	3,901.71	71%	3.3%	61.5%
#13	4B Manure Management		N2O	5,533.01	48%	3.2%	64.7%
#14	1A Stationary Combustion	Other Fuels	CO2	9,102.41	29%	3.1%	67.8%
#15	4D Agricultural Soils	3. Indirect Emissions	N2O	3,730.52	63%	2.8%	70.6%
#16	2F(a) Consumption of Halocarbons	Semiconductor Manufacture	PFCs	3,144.23	64%	2.4%	73.0%
#17	4B Manure Management		CH4	3,094.12	64%	2.4%	75.4%
#18	2A Mineral Product	3. Limestone and Dolomite Use	CO2	11,527.41	17%	2.3%	77.7%
#19	4C Rice Cultivation		CH4	6,959.68	23%	1.9%	79.6%
#20	2A Mineral Product	2. Lime Production	CO2	7,321.64	16%	1.4%	81.0%
#21	1A3 Mobile Combustion	d. Navigation	N2O	111.58	1000%	1.3%	82.3%
#22	6D Other		CO2	702.83	159%	1.3%	83.6%
#23	2E Production of Halocarbons	1. By-product Emissions	HFCs	16,965.00	5%	1.1%	84.7%
#24	4A Enteric Fermentation		CH4	7,676.61	12%	1.1%	85.8%
#25	2B Chemical Industry	other products except Anmonia	CO2	1,045.76	77%	1.0%	86.7%
#26	2B Chemical Industry	1. Ammonia Production	CO2	3,384.68	23%	0.9%	87.7%
#27	2E Production of Halocarbons	2. Fugitive Emissions	PFCs	762.85	100%	0.9%	88.6%
#28	2F(a) Consumption of Halocarbons	7. Semiconductor Manufacture	SF6	1,128.66	64%	0.9%	89.4%
#29	2B Chemical Industry	3. Adipic Acid	N2O	7,501.25	9%	0.8%	90.3%

1.2.3. Trend Assessment

The difference between the rate of change in emissions and removals in a category and the rate of change in total emissions and removals is calculated. The trend assessment is calculated by multiplying this value by the ratio of contribution of the relevant category to total emissions and removals. The calculated results, regarded as trend assessment values, are added from the category of which the proportion to the total of trend assessment values is the largest, until the total reaches 95%

for Tier 1, 90% for Tier 2. At this point, these categories are defined as the key categories. Tier 1 level assessment uses emissions and removals from each category directly and Tier 2 level assessment analyzes the emissions and removals of each category, multiplied by the uncertainty of each category.

The key category analysis was first conducted for the inventory excluding LULUCF and the key categories for source sectors were identified (1). Then the key category analysis was repeated again for the full inventory including the LULUCF categories and key categories for LULUCF sector were identified (2). In accordance with the *GPG-LULUCF*, a source category, which was identified as key in (1) but not in (2), was still regarded as key; while a source category, which was not identified as key in (1) but was done in (2), was not regarded as key (gray rows in tables below).

Tier 1 trend assessment of the latest emissions and removals (FY 2008) gives the following 17 sub-categories as the key categories (Table 7). Tier 2 trend assessment of the latest emissions and removals (FY 2008) gives the following 25 sub-categories as the key categories (Table 8).

	A IPCC Category		B Direct GHGs		D Current Year Estimate [Gg CO2 eq.]	Contribution to Trend	Cumulative
#1	1A Stationary Combustion	Liquid Fuels	CO2	435,169	325,918	30.1%	30.1%
#2	1A Stationary Combustion	Solid Fuels	CO2	308,620	451,548	24.1%	54.2%
#3	1A Stationary Combustion	Gaseous Fuels	CO2	104,301	203,273	18.6%	72.8%
#4	2E Production of Halocarbons and SF6	1. By-product Emissions (Production of HCFC-22)	HFCs	16,965	218	3.7%	76.5%
#5	2A Mineral Product	1. Cement Production	CO2	37,966	30,076	2.3%	78.8%
#6	2F(a) Consumption of Halocarbons and SF6 (actual emissions - Tier 2)	8. Electrical Equipment	SF6	11,005	922	2.3%	81.1%
#7	2F(a) Consumption of Halocarbons and SF6 (actual emissions - Tier 2)	 Refrigeration and Air Conditioning Equipment 	HFCs	840	11,438	2.2%	83.3%
#8	2F(a) Consumption of Halocarbons and SF6 (actual emissions - Tier 2)	5. Solvents	PFCs	10,264	1,927	1.9%	85.2%
#9	1A3 Mobile Combustion	b. Road Transportation	CO2	189,228	214,087	1.8%	87.0%
#10	2B Chemical Industry	3. Adipic Acid	N2O	7,501	271	1.6%	88.6%
#11	5E Settlements	2. Land converted to Settlements	CO2	5,362	995	1.0%	89.6%
#12	5A Forest Land	1. Forest Land remaining Forest Land	CO2	72,021	82,804	1.0%	90.6%
#13	1A Stationary Combustion	Other Fuels	CO2	9,102	14,408	0.9%	91.5%
#14	6A Solid Waste Disposal on Land		CH4	7,628	3,909	0.9%	92.4%
#15	2E Production of Halocarbons and SF6	2. Fugitive Emissions	SF6	4,708	1,199	0.8%	93.2%
#16	1A3 Mobile Combustion	a. Civil Aviation	CO2	7,162	10,876	0.6%	93.9%
#17	1B Fugitive Emission	1a i. Coal Mining and Handling (under gr.)	CH4	2,785	40	0.6%	94.5%
#18	1A3 Mobile Combustion	d. Navigation	CO2	13,731	12,170	0.6%	95.0%

Table 7 Results of Tier 1 Trend Assessment (FY 2008)

	A IPCC Category		B Direct GHGs	C Base Year Estimate [Gg CO2 eq.]	Estimate	I Source/Sink Uncertinty	M Contribution to Total T2	Cumulative
#1	2F(a) Consumption of Halocarbons	 Refrigeration and Air Conditioning 	HFCs	840.40	13,236.09	43%	13.0%	13.0%
#2	2F(a) Consumption of Halocarbons	Electrical Equipment	SF6	11,004.99	868.06	40%	10.2%	23.2%
#3	2F(a) Consumption of Halocarbons	5. Solvents	PFCs	10,263.55	1,318.27	40%	8.9%	32.1%
#4	2E Production of Halocarbons	2. Fugitive Emissions	SF6	4,708.30	1,288.21	100%	8.6%	40.7%
#5	1A3 Mobile Combustion	a. Civil Aviation	N2O	69.75	103.18	10000%	7.9%	48.5%
#6	1B Fugitive Emission	1a i. Coal Mining and Handling (under gr.)	CH4	2,785.23	32.57	114%	7.8%	56.3%
#7	1A Stationary Combustion	Solid Fuels	CO2	308,620.23	420,523.44	2%	3.9%	60.2%
#8	1A Stationary Combustion	Liquid Fuels	CO2	435,168.99	290,150.45	1%	3.6%	63.9%
#9	1A Stationary Combustion	Other Fuels	CO2	9,102.41	13,812.17	29%	3.2%	67.1%
#10	2A Mineral Product	1. Cement Production	CO2	37,966.28	27,996.35	10%	2.7%	69.8%
#11	1A3 Mobile Combustion	b. Road Transportation	N2O	3,901.71	2,494.53	71%	2.5%	72.3%
#12	4D Agricultural Soils	1. Direct Soil Emissions	N2O	4,098.51	3,112.07	90%	2.3%	74.7%
#13	2E Production of Halocarbons	1. By-product Emissions	HFCs	16,965.00	469.17	5%	2.2%	76.9%
#14	1A Stationary Combustion		N2O	2,053.31	4,054.81	33%	1.6%	78.5%
#15	2B Chemical Industry	3. Adipic Acid	N2O	7,501.25	759.45	9%	1.5%	80.0%
#16	5B Cropland	2. Land converted to Cropland	CO2	2,579.15	223.33	25%	1.5%	81.5%
#17	4D Agricultural Soils	3. Indirect Emissions	N2O	3,730.52	2,924.89	63%	1.3%	82.8%
#18	4B Manure Management		CH4	3,094.12	2,327.53	64%	1.3%	84.1%
#19	4B Manure Management		N2O	5,533.01	4,767.61	48%	1.0%	85.1%
#20	5A Forest Land	1. Forest Land remaining Forest Land	CO2	72,020.59	79,869.29	6%	1.0%	86.1%
#21	5E Settlements	2. Land converted to Settlements	CO2	5,362.15	1,601.42	9%	0.9%	87.0%
#22	4C Rice Cultivation		CH4	6,959.68	5,613.73	23%	0.8%	87.8%
#23	5F Other Land	2. Land converted to Other Land	CO2	1,585.53	387.51	28%	0.8%	88.7%
#24	2B Chemical Industry	1. Ammonia Production	CO2	3,384.68	1,989.83	23%	0.8%	89.5%
#25	5A Forest Land	2. Land converted to Forest Land	CO2	406.91	65.00	91%	0.8%	90.2%

Table 8 Results of Tier 2 Trend Assessment (FY 2008)

Data utilized for the key category analysis are shown in Table 9 and 10 as references.

A IPCC Category		B Direct	C Base Year	D Current Year	E Level	F % Contribution	G Trend	H %	I Source/Sink	J Level	K Contribution	L Trend	M Contribution
		GHGs	Estimate [Gg CO2eq.]	Estimate [Gg CO2eq.]	Assessment		Assessment	Contribution to Trend		Uncertainty (x 1000)		Uncertainty (x 1000)	to Total T2
	Liquid Fuels Solid Fuels	CO2 CO2	435,168.99 308,620.23	290,150.45 420,523.44	0.212 0.308	21.2%	0.1099	31.4%	2%	2.07 4.68	0.04	1.07	0.04
	Gaseous Fuels Other Fuels	CO2 CO2	104,300.83 9,102.41	199,519.14 13,812.17	0.146	14.6%	0.0672	19.2%	0% 29%	0.43	0.01	0.20	0.01
1A Stationary Combustion 1A Stationary Combustion		CH4 N2O	533.48 2,053.31	560.10 4,054.81	0.000	0.0%	0.0000	0.0%	47%	0.19	0.00	0.01	0.00
1A Stationary Combustion 1A Stationary Combustion		CH4 N2O	49.20 385.38	85.58 360.39	0.000	0.0%	0.0000	0.0%	116%	0.07	0.00	0.03	0.00
1A3 Mobile Combustion	a. Civil Aviation b. Road Transportation	CO2 CO2	7,162.41 189,227.88	10,277.14 205.416.98	0.008	0.8%	0.0021	0.6%	3%	0.19	0.00	0.05	0.00
1A3 Mobile Combustion	c. Railways	C02 C02	932.45 13,730.95	623.69 11.662.26	0.000	0.0%	0.0092 0.0002 0.0017	0.1%		0.01	0.07	0.01	0.00
1A3 Mobile Combustion	d. Navigation a. Civil Aviation	CH4	2.94	4.69	0.000	0.0%	0.0000	0.0%	200%	0.01	0.00	0.00	0.00
1A3 Mobile Combustion 1A3 Mobile Combustion	b. Road Transportation c. Railways	CH4 CH4	266.66 1.18	160.81	0.000	0.0%	0.0001	0.0%	64% 14%	0.08	0.00	0.05	0.00
1A3 Mobile Combustion 1A3 Mobile Combustion	d. Navigation a. Civil Aviation	CH4 N2O	26.45 69.75	22.75 103.18	0.000	0.0%	0.0000	0.0%	200%	0.03	0.00	0.01	0.00
1A3 Mobile Combustion 1A3 Mobile Combustion	b. Road Transportation c. Railways	N20 N20	3,901.71 121.38	2,494.53 79.82	0.002	0.2%	0.0011	0.3%	71%	1.29	0.02	0.75	0.03
1A3 Mobile Combustion	d. Navigation la i. Coal Mining and Handling (under gr.)	N2O CH4	111.58 2,785.23	95.95 32.57	0.000	0.0%	0.0000	0.0%	1000% 114%	0.70	0.01	0.13	0.00
1B Fugitive Emission	la ii. Coal Mining and Handling (under gr.) la ii. Coal Mining and Handling (surface) 2a. Oil	CH4 CO2	21.20	13.26	0.000	0.0%	0.0000	0.0%	185%	0.02	0.00	0.01	0.00
1B Fugitive Emission	2a. Oil	CH4	28.32	27.68	0.000	0.0%	0.0000	0.0%	17%	0.00	0.00	0.00	0.00
1B Fugitive Emission	2a. Oil 2b. Natural Gas	N2O CO2	0.00	0.00	0.000	0.0%	0.0000	0.0%	27% 25%	0.00	0.00	0.00	0.00
	2b. Natural Gas 2c. Venting & Flaring	CH4 CO2	187.94 36.23	322.17 37.28	0.000	0.0%	0.0001	0.0%	23%	0.05	0.00	0.02	0.00
	2c. Venting & Flaring 2c. Venting & Flaring	CH4 N2O	14.45	12.73	0.000	0.0%	0.0000	0.0%	20%	0.00	0.00	0.00	0.00
	Cement Production Lime Production	C02 C02	37,966.28 7,321.64	27,996.35 6,931.21	0.020	2.0%	0.00077	2.2%	10%	2.14	0.04	0.80	0.03
2A Mineral Product	3. Limestone and Dolomite Use	CO2	11,527.41	12,148.48	0.009	0.9%	0.0003	0.1%	17%	1.48	0.03	0.05	0.00
2B Chemical Industry	4. Soda Ash Production and Use 1. Ammonia Production the production	CO2 CO2	581.44 3,384.68	308.04 1,989.83	0.000	0.0%	0.0002	0.1%	16% 23%	0.04	0.00	0.03	0.00
	other products except Anmonia 2. Nitric Acid	CO2 N2O	1,045.76 765.70	754.23 502.71	0.001	0.1%	0.0002	0.1%	77%	0.43	0.01	0.17	0.01
2B Chemical Industry	3. Adipic Acid 4. Carbide Production	N2O CH4	7,501.25 0.42	759.45	0.001	0.1%	0.0049	1.4%	9% 100%	0.05	0.00	0.46 0.00	0.02
2B Chemical Industry	 Carbon Black, Ethylene, Ethylene Dichloride, Styrene, Methanol, Coke 	CH4	337.80	105.80	0.000	0.0%	0.0002	0.0%	90%	0.07	0.00	0.15	0.01
	1 Iron and Steel Production 1 Iron and Steel Production	CO2 CH4	356.09 15.47	155.77 12.72	0.000	0.0%	0.0001	0.0%	5% 163%	0.01	0.00	0.01	0.00
2C Metal Production 2C Metal Production	Aluminium Production	CH4 PFCs	3.89 69.74	2.31	0.000	0.0%	0.0000	0.0%	163%	0.02	0.00	0.00	0.00
	4. SF6 Used in Aluminium and Magnesium	SF6	119.50	652.47	0.000	0.0%	0.0004	0.1%	5%	0.00	0.00	0.01	0.00
2E Production of Halocarbons	0 I. By-product Emissions	HFCs	16,965.00	469.17	0.000	0.0%	0.0121	3.5%	5%	0.02	0.00	0.65	0.02
	(Production of HCFC-22) 2. Fugitive Emissions	HFCs	480.12	232.24	0.000	0.0%	0.0002	0.1%	100%	0.17	0.00	0.19	0.01
and SF6 2E Production of Halocarbons	2. Fugitive Emissions	PFCs	762.85	523.80	0.000	0.0%	0.0002	0.1%	100%	0.39	0.01	0.18	0.01
and SF6	2. Fugitive Emissions	SF6	4,708.30	1,288.21	0.001	0.1%	0.0025	0.7%	100%	0.95	0.02	2.53	0.09
and SF6	1. Refrigeration and Air Conditioning	HFCs	840.40	13,236.09	0.010	1.0%	0.0089	2.5%	43%	4.17	0.08	3.83	0.13
and SF6 (actual emissions - Tier 2)	Equipment												
and SF6 (actual emissions - Tier 2)	2. Foam Blowing	HFCs	451.76	286.38	0.000	0.0%	0.0001	0.0%	50%	0.10	0.00	0.06	0.00
and SF6 (actual emissions - Tier 2)	3. Fire Extinguishers	HFCs	0.00	6.35	0.000	0.0%	0.0000	0.0%	64%	0.00	0.00	0.00	0.00
2F(a) Consumption of Halocarbons and SF6 (actual emissions - Tier 2)	4. Aerosols/ Metered Dose Inhalers	HFCs	1,365.00	889.52	0.001	0.1%	0.0004	0.1%	29%	0.19	0.00	0.10	0.00
	5. Solvents	PFCs	10,263.55	1,318.27	0.001	0.1%	0.0066	1.9%	40%	0.39	0.01	2.63	0.09
2F(a) Consumption of Halocarbons and SF6 (actual emissions - Tier 2)	7. Semiconductor Manufacture	HFCs	157.89	145.68	0.000	0.0%	0.0000	0.0%	64%	0.07	0.00	0.01	0.00
2F(a) Consumption of Halocarbons	7. Semiconductor Manufacture	PFCs	3,144.23	2,756.49	0.002	0.2%	0.0003	0.1%	64%	1.29	0.02	0.20	0.01
	7. Semiconductor Manufacture	SF6	1,128.66	952.48	0.001	0.1%	0.0001	0.0%	64%	0.45	0.01	0.09	0.00
	8. Electrical Equipment	SF6	11,004.99	868.06	0.001	0.1%	0.0074	2.1%	40%	0.26	0.00	3.00	0.10
and SF6 (actual emissions - Tier 2) 2F(a) Consumption of Halocarbons	9. Other - Railway Silicon Rectifiers	PFCs	0.00	2.79	0.000	0.0%	0.0000	0.0%	40%	0.00	0.00	0.00	0.00
	Using Laughing Gas in Hospital	N2O CH4	287.07 7,676.61	160.44 6,944.81	0.000	0.0%	0.0001	0.0%	5% 12%	0.01	0.00	0.00	0.00
4B Manure Management 4B Manure Management		CH4 N2O	3,094.12 5,533.01	2,327.53 4,767.61	0.002	0.2%	0.0006	0.2%	64% 48%	1.09	0.02	0.38 0.30	0.01
4C Rice Cultivation	1. Direct Soil Emissions	CH4 N2O	6,959.68 4,098.51	5,613.73 3,112.07	0.004	0.4%	0.0011	0.3%	23% 90%	0.96	0.02	0.25	0.01
4D Agricultural Soils	2. Pasture, Range and Paddock Manure	N2O	11.91	13.12	0.000	0.0%	0.0000	0.0%	133%	0.01	0.00	0.00	0.00
4F Field Burning of Agricultural Residues	3. Indirect Emissions	N2O CH4	3,730.52	2,924.89 73.84	0.002	0.2%	0.0006	0.2%	63% 164%	1.36	0.03	0.40	0.01
	1. Forest Land remaining Forest Land	N2O CO2	97.28 72,020.59	67.29 79,869.29	0.000	0.0%	0.0000	0.0%	6%	0.11 3.69	0.00	0.05	0.00
5A Forest Land	2. Land converted to Forest Land	CO2 CH4	406.91 8.31	65.00 21.52	0.000	0.0%	0.0003	0.1%		0.04	0.00	0.23 0.01	0.01
5A Forest Land 5B Cropland	1. Cropland remaining Cropland	N2O CO2	0.84	2.18	0.000	0.0%	0.0000	0.0%	114%	0.00	0.00	0.00	0.00
	2. Land converted to Cropland	CO2 CH4	2,579.15	223.33 0.00	0.000	0.0%	0.0017	0.5%	25%	0.04	0.00	0.43	0.01
5B Cropland 5C Grassland	1. Grassland remaining Grassland	N20 C02	92.52	7.38	0.000	0.0%	0.0001	0.0%	74%	0.00	0.00	0.05	0.00
5C Grassland 5 5C Grassland 5 5C Grassland	2. Land converted to Grassland	C02 C02 CH4	563.16 0.00	743.73	0.000	0.0%	0.0000	0.0%	42%	0.00	0.00	0.00	0.00
5C Grassland		N2O	0.00	0.00	0.000	0.0%	0.0000	0.0%	0%	0.00	0.00	0.00	0.00
5D Wetlands 5D Wetlands	1. Wetlands remaining Wetlands 2. Land converted to Wetlands	CO2 CO2	0.00 89.63	0.00 92.06	0.000	0.0%	0.0000	0.0%	0% 26%	0.00	0.00	0.00	0.00
5D Wetlands 5D Wetlands		CH4 N2O	0.00	0.00	0.000	0.0%	0.0000	0.0%	0% 0%	0.00	0.00	0.00 0.00	0.00
5E Settlements 5E Settlements	Settlements remaining Settlements Land converted to Settlements	CO2 CO2	636.29 5,362.15	770.91	0.001	0.1%	0.0001	0.0%	76%	0.43	0.01	0.07	0.00
5E Settlements 5E Settlements		CH4 N2O	0.00	0.00	0.000	0.0%	0.0000	0.0%	0%	0.00	0.00	0.00	0.00
5F Other Land	1. Other Land remaining Other Land 2. Land converted to Other Land	CO2 CO2	0.00	0.00 387.51	0.000	0.0%	0.0000	0.0%	0%	0.00	0.00	0.00 0.24	0.00
5F Other Land	2. Lana converteu to ottler Lanu	CH4	0.00	0.00	0.000	0.0%	0.0000	0.0%	0%	0.00	0.00	0.00	0.00
5F Other Land 5G Other	CO2 emissions from agricultural lime	N2O CO2	0.00	0.00 305.63	0.000	0.0%	0.0000	0.0%	0%	0.00	0.00	0.00	0.00
6A Solid Waste Disposal on Land	application	CH4	7,627.64	3,591.44	0.003	0.3%	0.0030	0.9%	0%	0.00	0.00	0.00	0.00
6B Wastewater Handling 6B Wastewater Handling		CH4 N2O	2,120.57 1,289.65	1,338.06 1,163.27	0.001	0.1%	0.0006	0.2%	0% 0%	0.00	0.00	0.00	0.00
6C Waste Incineration 6C Waste Incineration		CO2 CH4	12,262.95	11,600.29	0.008	0.8%	0.0006	0.2%	0%	0.00	0.00	0.00	0.00
6C Waste Incineration		N2O	1,519.44	1,785.41	0.001	0.1%	0.0002	0.0%	0%	0.00	0.00	0.00	0.00
6D Other 6D Other		CO2 CH4	702.83	530.41 16.50	0.000	0.0%	0.0001	0.0%	159% 25%	0.62	0.01	0.21	0.01
6D Other		N2O	12.83	14.62	0.000	0.0%	0.0000	0.0%	74%	0.01	0.00	0.00	0.00
TOTAL			1,342,173.85	1,365,909.90	1.00	100.0%	0.35	100.0%		52.47	1.00	29.50	1.00

Table 9 Data used for the key category analysis (FY 2008)

A IPCC Category		B Direct	C Base Year	E Level	F % Contribution	I Source/Sink	J Level	K Contribution
		GHGs	Estimate [Gg CO2 eq.]	Assesslent	to Level	Uncertinty	Uncertainty (x 1000)	to Total L2
1A Stationary Combustion 1A Stationary Combustion	Liquid Fuels Solid Fuels	CO2 CO2	435,168.99 308,620.23	0.324 0.230	32.4% 23.0%	1%	3.16	0.05
1A Stationary Combustion 1A Stationary Combustion	Gaseous Fuels Other Fuels	CO2 CO2	104,300.83 9,102.41	0.078	7.8%	0%	0.23	0.00
1A Stationary Combustion 1A Stationary Combustion		CH4 N2O	533.48 2,053.31		0.0%	47%	0.19	0.00
1A Stationary Combustion		CH4	49.20	0.000	0.0%	116%	0.04	0.00
1A Stationary Combustion 1A3 Mobile Combustion	a. Civil Aviation	N2O CO2	385.38 7,162.41	0.005	0.0%	37% 3%		0.00
1A3 Mobile Combustion 1A3 Mobile Combustion	b. Road Transportation c. Railways	CO2 CO2	189,227.88 932.45	0.141 0.001	14.1%	2% 2%	3.24 0.02	0.05
1A3 Mobile Combustion 1A3 Mobile Combustion	d. Navigation a. Civil Aviation	CO2 CH4	13,730.95	0.010	1.0%	2% 200%	0.24 0.00	0.00
1A3 Mobile Combustion	b. Road Transportation	CH4	266.66	0.000	0.0%	64%	0.13	0.00
1A3 Mobile Combustion 1A3 Mobile Combustion	c. Railways d. Navigation	CH4 CH4	1.18 26.45	0.000	0.0%	14% 200%	0.00	0.00
1A3 Mobile Combustion 1A3 Mobile Combustion	a. Civil Aviation b. Road Transportation	N2O N2O	69.75 3,901.71	0.000	0.0%	10000%	5.20	0.08
1A3 Mobile Combustion 1A3 Mobile Combustion	c. Railways d. Navigation	N2O N2O	121.38 111.58	0.000	0.0%	11% 1000%	0.01	0.00
1B Fugitive Emission 1B Fugitive Emission	la i. Coal Mining and Handling (under gr.) la ii. Coal Mining and Handling (surface)	CH4 CH4	2,785.23 21.20		0.2%	114% 185%	2.36	0.04
1B Fugitive Emission	2a. Oil	CO2	0.14	0.000	0.0%	21%	0.00	0.00
1B Fugitive Emission 1B Fugitive Emission	2a. Oil 2a. Oil	CH4 N2O	28.32 0.00	0.000	0.0%	17% 27%	0.00	0.00
1B Fugitive Emission 1B Fugitive Emission	2b. Natural Gas 2b. Natural Gas	CO2 CH4	0.25	0.000	0.0%	25%	0.00	0.00
1B Fugitive Emission 1B Fugitive Emission	2c. Venting & Flaring 2c. Venting & Flaring	CO2 CH4	36.23 14.45	0.000	0.0%	18% 20%	0.00	0.00
1B Fugitive Emission	2c. Venting & Flaring	N2O	0.11	0.000	0.0%	18%	0.00	0.00
2A Mineral Product 2A Mineral Product	1. Cement Production 2. Lime Production	CO2 CO2	37,966.28 7,321.64		2.8%	10%	2.95	0.05
2A Mineral Product 2A Mineral Product	3. Limestone and Dolomite Use 4. Soda Ash Production and Use	CO2 CO2	11,527.41 581.44	0.009	0.9%	17%	1.43	0.02
2B Chemical Industry 2B Chemical Industry	1. Ammonia Production other products except Anmonia	C02 C02	3,384.68 1,045.76	0.003	0.3%	23% 77%	0.58	0.01
2B Chemical Industry	2. Nitric Acid	N2O	765.70	0.001	0.1%	46%	0.26	0.00
2B Chemical Industry 2B Chemical Industry	3. Adipic Acid 4. Carbide Production	N2O CH4	7,501.25	0.006	0.6%	9% 100%	0.52	0.01
2B Chemical Industry	5. Carbon Black, Ethylene, Ethylene Dichloride, Styrene, Methanol, Coke	CH4	337.80	0.000	0.0%	90%	0.23	0.00
2C Metal Production 2C Metal Production	1 Iron and Steel Production 1 Iron and Steel Production	CO2 CH4	356.09	0.000	0.0%	5% 163%	0.01	0.00
2C Metal Production 2C Metal Production 2C Metal Production	2. Ferroalloys Production	CH4	3.89	0.000	0.0%	163%	0.00	0.00
2C Metal Production 2C Metal Production	Aluminium Production SF6 Used in Aluminium and Magnesium	PFCs SF6	69.74 119.50	0.000	0.0%	33% 5%	0.02	0.00
2E Production of Halocarbons	oundries 1. By-product Emissions	HFCs	16,965.00	0.013	1.3%	5%	0.68	0.01
and SF6 2E Production of Halocarbons	(Production of HCFC-22) 2. Fugitive Emissions	HFCs	480.12	0.000	0.0%	100%	0.36	0.01
and SF6 2E Production of Halocarbons	2. Fugitive Emissions	PFCs	762.85	0.000	0.1%	100%	0.50	0.01
and SF6	÷							
2E Production of Halocarbons and SF6	2. Fugitive Emissions	SF6	4,708.30	0.004	0.4%	100%	3.53	0.06
2F(a) Consumption of Halocarbons and SF6 (actual emissions - Tier 2)	 Refrigeration and Air Conditioning Equipment 	HFCs	840.40	0.001	0.1%	43%	0.27	0.00
2F(a) Consumption of Halocarbons and SF6 (actual emissions - Tier 2)	2. Foam Blowing	HFCs	451.76	0.000	0.0%	50%	0.17	0.00
2F(a) Consumption of Halocarbons	3. Fire Extinguishers	HFCs	0.00	0.000	0.0%	64%	0.00	0.00
and SF6 (actual emissions - Tier 2) 2F(a) Consumption of Halocarbons	4. Aerosols/ Metered Dose Inhalers	HFCs	1,365.00	0.001	0.1%	29%	0.29	0.00
and SF6 (actual emissions - Tier 2) 2F(a) Consumption of Halocarbons	5. Solvents	PFCs	10,263.55	0.008	0.8%	40%	3.06	0.05
and SF6 (actual emissions - Tier 2) 2F(a) Consumption of Halocarbons	7. Semiconductor Manufacture	HFCs	157.89	0.000	0.0%	64%	0.08	0.00
and SF6 (actual emissions - Tier 2)		PFCs				64%	1.50	0.02
2F(a) Consumption of Halocarbons and SF6 (actual emissions - Tier 2)	7. Semiconductor Manufacture		3,144.23	0.002	0.2%			
2F(a) Consumption of Halocarbons and SF6 (actual emissions - Tier 2)	 Semiconductor Manufacture 	SF6	1,128.66	0.001	0.1%	64%	0.54	0.01
2F(a) Consumption of Halocarbons and SF6 (actual emissions - Tier 2)	 Electrical Equipment 	SF6	11,004.99	0.008	0.8%	40%	3.31	0.05
2F(a) Consumption of Halocarbons	9. Other - Railway Silicon Rectifiers	PFCs	0.00	0.000	0.0%	40%	0.00	0.00
3 Solvent & Other Product Use 4A Enteric Fermentation	Using Laughing Gas in Hospital	N2O CH4	287.07 7,676.61	0.000	0.0%	5% 12%	0.01	0.00
4B Manure Management 4B Manure Management		CH4 N2O	3,094.12 5,533.01	0.002	0.2%	64% 48%	1.48 2.00	0.02
4C Rice Cultivation 4D Agricultural Soils	1. Direct Soil Emissions	CH4 N2O	6,959.68 4,098.51	0.005	0.5%	23%	1.21	0.02
4D Agricultural Soils	2. Pasture, Range and Paddock Manure 3. Indirect Emissions	N2O N2O	11.91 3.730.52	0.000	0.0%	133%	0.01	0.00
4D Agricultural Soils 4F Field Burning of Agricultural Residues	3. Indirect Emissions	CH4	113.13	0.000	0.0%	164%	0.14	0.00
4F Field Burning of Agricultural Residues 5A Forest Land	1. Forest Land remaining Forest Land	N2O CO2	97.28 72,020.59	0.000	0.0%	221%	0.16	0.00
5A Forest Land 5A Forest Land	2. Land converted to Forest Land	CO2 CH4	406.91 8.31		0.0%	91% 89%	0.28	0.00
5A Forest Land	L Combad convining Combad	N2O	0.84	0.000	0.0%	114%	0.00	0.00
5B Cropland 5B Cropland	1. Cropland remaining Cropland 2. Land converted to Cropland	CO2 CO2	0.00 2,579.15	0.000	0.0%	0% 25%	0.00	0.00
5B Cropland 5B Cropland		CH4 N2O	0.00 92.52	0.000	0.0%	0% 74%	0.00	0.00
5C Grassland 5C Grassland	1. Grassland remaining Grassland 2. Land converted to Grassland	CO2 CO2	0.00	0.000	0.0%	0%	0.00	0.00
5C Grassland	2. Land Convence to Christiand	CH4 N2O	0.00	0.000	0.0%	0%	0.00	0.00
5C Grassland 5D Wetlands	1. Wetlands remaining Wetlands	CO2	0.00	0.000	0.0%	0%	0.00	0.00
5D Wetlands 5D Wetlands	2. Land converted to Wetlands	CO2 CH4	89.63 0.00	0.000	0.0%	26% 0%	0.02	0.00
5D Wetlands 5E Settlements	1. Settlements remaining Settlements	N2O CO2	0.00 636.29	0.000	0.0%	0% 76%	0.00	0.00
5E Settlements	2. Land converted to Settlements	CO2	5,362.15	0.004	0.4%	9%	0.36	0.01
5E Settlements 5E Settlements		CH4 N2O	0.00	0.000	0.0%	0%	0.00	0.00
5F Other Land 5F Other Land	1. Other Land remaining Other Land 2. Land converted to Other Land	CO2 CO2	0.00 1,585.53	0.000	0.0%	0% 28%	0.00	0.00
5F Other Land 5F Other Land		CH4 N2O	0.00	0.000	0.0%	0%	0.00	0.00
5G Other	CO2 emissions from agricultural lime application	CO2	550.22	0.000	0.0%	51%	0.21	0.00
6A Solid Waste Disposal on Land		CH4	7,627.64	0.006	0.6%	0%	0.00	0.00
6B Wastewater Handling 6B Wastewater Handling		CH4 N2O	2,120.57 1,289.65	0.002	0.2%	0%	0.00	0.00
6C Waste Incineration 6C Waste Incineration		CO2 CH4	12,262.95	0.009	0.9%	0%	0.00	0.00
6C Waste Incineration 6D Other		N2O CO2	1,519.44 702.83		0.1%	0%	0.00	0.00
6D Other		CH4	14.48	0.000	0.0%	25%	0.00	0.00
6D Other		N2O	12.83		0.0%	74%	0.01	0.00
TOTAL			1,342,173.85	1.00	100.0%		62.63	1.00

Table 10 Data used for	the key category	analysis (FY 1990)
------------------------	------------------	--------------------

1.2.4. Qualitative Analysis

Key categories identified in the qualitative analysis include the categories in which: mitigation techniques have been employed, significant variance of emissions and removals has been confirmed, a high uncertainty exists due to the solo implementation of the Tier 1 analysis of key categories, and unexpectedly high or low estimates are identified.

In Japan, the categories in which mitigation techniques have been employed, emissions and removals have been newly estimated, and estimation methods have been changed, were identified as key in terms of the qualitative analysis. In this year, the key categories were identified only based on the quantitative results of the level and trend assessments, including both Tier 1 and Tier 2.

Annex 2. Detailed Discussion on Methodology and Data for Estimating CO₂ Emissions from Fossil Fuel Combustion

2.1. Discrepancies between the figures reported in the CRF tables and the IEA statistics

In the report of the individual review of the greenhouse gas inventory of Japan submitted in 2006 (FCCC/ARR/2006/JPN), which was conducted from January to February 2007, the ERT (Expert Review Team) recommended that in the next NIR submission Japan provide a clear explanation for the discrepancies found between the data in the CRF tables and the IEA statistics.

In summary, these discrepancies occurred because (a) Japan and the IEA treat international aviation and marine bunker fuels differently in their respective energy balances and (b) because of the different classifications of fuel oil A. The IEA energy balances include fuel consumption by international flights and international marine; whereas the energy balances of Japan do not include them as these are not regarded as domestic consumption. Consequently, the data for the bonded exports and imports of jet kerosene and fuel oil C are differently accounted for. With respect to fuel oil A, Japan includes it under Residual Fuel Oil in its energy balances but reports it to the IEA under Gas/Diesel Oil according to the classifications used in Europe and the United States. The changes in the stock data were caused by the difference in the classification of fuel oil A as well as by circumstances specific to individual items.

Fuel oil A has a flash point of more than 60 °C, kinematic viscosity of 20 m m²/s below, carbon residue content of 4% below and sulfur content of 2.0 % below. Fuel oil B has a flash point of more than 60 °C, kinematic viscosity of 50 m m²/s below, carbon residue content of 8% below and sulfur content of 3.0 % below. Fuel oil B is rarely used in Japan, for this reason, fuel oil B is treated as fueloil B/C in a statistics. Fuel oil C has a flash point of more than 70 °C, kinematic viscosity of less than 1000 m m²/s and sulfur content of less than 3.5%.

Further explanations are provided below for each of the discrepancies noted by the ERT.

The IEA statistical data used in the Reference tables below were extracted from the Energy Statistics of OECD Countries 2004–2005 (CD-ROM version), 2007 Edition, OECD/IEA.

a) Differences in exports of jet kerosene and residual fuel oil

<ERT findings>

Exports of liquid fuels are between 40 and 70 per cent lower in the IEA data; the differences are due in particular to differences in the figures for jet kerosene and residual fuel oil, with the largest errors occurring in recent years.

<Explanation 1: Exports of jet kerosene>

The figures for jet kerosene exports reported in the CRF tables are different from those in the IEA statistics because the CRF figures include bonded exports whereas the export figures in the IEA statistics do not. The IEA statistics accounted the final consumption of jet kerosene by

international aviation as an aggregate of the bonded exports and imports. (See Chapter 3, for bonded exports and imports.)

<reference:< th=""><th>Exports</th><th>of jet</th><th>kerosene</th><th>in</th><th>2005></th></reference:<>	Exports	of jet	kerosene	in	2005>
---	---------	--------	----------	----	-------

A Statistics
ports: 667×10^{3} t 51.28×10^{3} kL (exports excluding bonded exports) × 7834 (specific gravity) = 667×10^{3} t] emarks> ernational aviation: $6,825 \times 10^{3}$ t $5,837.68 \times 10^{3}$ kL (bonded exports) + $2,874.92 \times$ 3 kL (bonded imports)* = $8,712.60 \times 10^{3}$ kL; $,712.60 \times 10^{3}$ kL × 0.7834 (specific gravity) = $6,825 \times$ 3 t] * The bonded imports in the 2005 statistics were revised to $2,821.84 \times 10^{3}$ kL in the 2006 statistics.

<Explanation 2: Exports of residual fuel oil>

The figures for exports of residual fuel oil reported in the CRF tables are different from those in the IEA statistics because the CRF figures for residual fuel oil include the bonded exports, whereas the export figures for heavy fuel oil in the IEA statistics do not. The bonded exports portion of the heavy fuel oil was reported in the IEA statistics as an aggregate of the bonded exports and imports of heavy fuel oil under International Marine Bunkers. (See Chapter 3, for bonded exports and imports.)

Further, the figures for exports of residual fuel oil reported in the CRF include fuel oil A, whereas the figures reported under Heavy Fuel Oil in the IEA statistics do not. The IEA reports fuel oil A together with gas oil under Gas/Diesel Oil in its statistics. Because fuel oil A, which is treated as a fuel oil that is distinguished from gas oil in Japan, is grouped together with gas oil in Europe and the United States, the fuel oil A data have been included in the gas oil data in Japan's report to the IEA.

<reference: 2005="" exports="" fuel="" in="" of="" oil="" residual=""></reference:>

CRF Table 1.A(b)	IEA Statistics/Heavy Fuel oil
Exports: $10,035.13 \times 10^3$ kL	Exports: $3,018 \times 10^3$ t
$[167.98 \times 10^3$ kL (fuel oil A) + 9,867.15 ×	[3,352.98×10 ³ kL (exports of fuel oils B and C
10^3 kL (fuel oils B and C) = 10,035.13 ×	excluding bonded exports) × 0.9 (specific
10^3 kL]	gravity) = $3,018 \times 10^3$ t]

<breakdown> Exports of fuel oil A: 167.98×10³ kL Exports excluding bonded exports: 0 Bonded exports: 167.98×10³ kL</breakdown>	<remarks> International marine bunkers: $5,889 \times 10^3$ t [6,514.17×10³ kL (bonded exports of fuel oils B and C) + 29.48×10³ kL (bonded imports of fuel oils B and C) = 6,543.65×10³ kL;</remarks>
Exports of fuel oils B and C: 9,867.15×10 ³ kL Exports excluding bonded exports: 3,352.98×10 ³ kL Bonded exports: $6,514.17 \times 10^3$ kL	$6,543.65 \times 10^3 \text{ kL} \times 0.9 \text{ (specific gravity)} = 5,889 \times 10^3 \text{ t]}$

b)

c) Differences in imports of jet kerosene and gas/diesel oil

<ERT findings>

Imports of jet kerosene have been reported to the IEA, but are shown as zero in the CRFs for the years 1990–1997, while imports of gas/diesel oil are systematically about 80 per cent lower in the CRF tables than in the IEA figures.

<Explanation 1: Imports of jet kerosene>

The figures for jet kerosene imports reported in the CRF tables are different from those in the IEA statistics because the CRF figures do not include bonded imports while the IEA statistics do. (See Chapter 3, for bonded exports and imports.)

Reference. Set Refosence imports in 19902				
CRF Table 1.A(b)	IEA Statistics			
Imports: NO <jet imports="" kerosene=""> Imports excluding bonded imports: 0 Bonded imports: 4,446.44×10³ kL</jet>	Imports: $3,483 \times 10^3$ t [4,446.44×10 ³ kL (imports including bonded imports) × 0.7834 (specific gravity) = $3,483 \times 10^3$ t]			

<Reference: Jet kerosene imports in 1990>

<Explanation 2: Imports of gas/diesel oil>

The figures for imports of gas/diesel oil reported in the CRF tables are different from those in the IEA statistics because the CRF figures (excluding bonded imports) do not include fuel oil A while the figures for imports of gas/diesel oil in the IEA statistics are the aggregate of imports of gas oil and fuel oil A, both of which included the bonded imports. (See a) above.)

CRF Table 1.A(b)	IEA Statistics
Imports: $4,953.85 \times 10^3$ kL <imports gas="" of="" oil=""> Imports excluding bonded imports: $4,953.85 \times 10^3$ kL Bonded imports: 32.90×10^3 kL</imports>	Imports: $5,450 \times 10^3$ t [4,986.75×10 ³ kL (imports of gas oil including bonded imports) + 1,663.52×10 ³ kL (imports of fuel oil A including bonded imports) = 6,650.27× 10 ³ kL; 6,650.27×10 ³ kL × 0.843 (specific gravity) = 5,606×10 ³ t]
	<remarks> The imports calculated by the formula in the brackets above differ from the imports reported in the IEA statistics due to an omission of bonded imports from the imports of fuel oil A. The correction (to 5,606 kt) was reported to the IEA in April 2008.</remarks>

<Reference: Imports of gas/diesel oil in 1990>

d) Differences in imports of coking coal

<ERT findings>

Furthermore, the figures for imports of coking coal are systematically lower in the CRF tables than those in the IEA statistics, with the largest discrepancy occurring in 1999.

<Explanation: Imports of coking coal>

The figures for imports of coking coal reported in the CRF tables are the same as the figures reported in the IEA statistics.

<Reference: Imports of coking coal in 1999>

CRF Table 1.A(b)	IEA Statistics
Imports: $54,880.04 \times 10^3$ t	Imports: $54,880 \times 10^3 \text{ t}$

e) Differences in stock changes in liquid and gaseous fuels

<ERT findings>

In addition, the data on stock changes are not consistent for liquid and gaseous fuels.

<Explanation 1: Changes in crude oil stock>

The difference between the CRF table and the IEA statistics with respect to changes in crude oil stock occurred because the figures reported in the CRF were calculated using the stock of crude oil after customs clearance (or more precisely, after inspection in the presence of customs officers). The stock

changes reported in the IEA statistics were calculated based on stock that included crude oil carried by oil tankers in Japanese territorial waters but which was yet to clear customs as well as the crude oil in the national stockpile. This discrepancy arose because the UNFCCC and the IEA had different objectives.

<reference. 20<="" changes="" crude="" in="" of="" off="" stock="" th=""><th colspan="2"><reference. 2005="" <="" changes="" crude="" in="" of="" on="" stock="" th=""></reference.></th></reference.>	<reference. 2005="" <="" changes="" crude="" in="" of="" on="" stock="" th=""></reference.>	
CRF Table 1.A(b)	IEA Statistics	
Stock changes: -673×10^3 kL	Stock changes: 276×10^3 t	

<Reference: Changes of crude oil stock in 2005>

<Explanation 2: Changes in NGL stock>

Stock changes concerning NGL were reported in the CRF. The NGL stock changes reported in the IEA statistics were zero because the NGL stock figure in the Monthly Oil Statistics (MOS) of the IEA was zero. This discrepancy resulted from the direction given by the IEA that the figures in the IEA statistics must be consistent with the MOS figures.

Furthermore, the figures for "stock changes" required by the CRF tables are not included in the MOS. On the other hand, the MOS requires figures for Opening Stock and Closing Stock, but Japan does not collect such statistical data for NGL. As a result, Japan reported zero values to the IEA for both Opening Stock and Closing Stock data for the MOS. In light of the fact that no statistical data exists for stock changes in NGL, even though the stock actually existed, with respect to the CRF tables changes in NGL stock were estimated by a method developed for the calculation of estimates from the production, imports, and shipment data, etc, for NGL in order to minimize error in the energy and carbon balances with respect to oil refining for the years 1990 to 2003.

<Reference: Changes in NGL stock in 2005>

CRF Table 1.A(b)	IEA Statistics
Stock changes: $3,430.63 \times 10^3$ kL	Stock changes: 0

<Explanation 3: Changes in gasoline stock>

The figures for changes in gasoline stock reported in the CRF tables are the same as the figures in the IEA statistics.

<Reference: Changes in gasoline stock in 2005>

CRF Table 1.A(b)	IEA Statistics
Stock changes: 76.92× 10 ³ kL	Stock changes in motor gasoline: 57×10^3 t [76.92×10 ³ kL × 0.737 (specific gravity) = = 57×10^3 t] Stock changes in white spirit: 0

<Explanation 4: Changes in jet kerosene stock>

The figures for changes in jet kerosene stock reported in the CRF tables are the same as the figures in the IEA statistics.

<Reference: Changes in jet kerosene stock in 2005>

CRF Table 1.A(b)	IEA Statistics
Stock changes: 97.17×10^3 kL	Stock changes: 76×10^3 t [97.17×10 ³ kL (0.7834 (specific gravity) = 76×10^3 t]

<Explanation 5: Changes in kerosene stock>

The figures for changes in kerosene stock reported in the CRF tables are the same as the figures in the IEA statistics.

<Reference: Changes in kerosene stock in 2005>

CRF Table 1.A(b)	IEA Statistics
Stock changes: 537.28×10 ³ kL	Stock changes: 437×10^{3} t [537.28×10 ³ kL × 0.814 (specific gravity) = 437×10^{3} t]

<Explanation 6: Changes in gas/diesel oil stock>

The figures for gas/diesel stock reported in the CRF tables were different from those in the IEA statistics because the CRF figures did not include stock changes in fuel oil A while the IEA statistics did.

<Reference: Changes in gas/diesel oil stock in 2005>

CRF Table 1.A(b)	IEA Statistics
Stock changes: 321.21× 10 ³ kL	Stock changes: 402×10^{3} t [321.21×10 ³ kL × 0.843 (specific gravity) = 270.78×10 ³ t (stock changes in gas oil); 155.30×10 ³ kL × 0.843 (specific gravity) = 130.92×10 ³ t (stock changes in fuel oil A); 270.78 + 130.92 = 402×10 ³ t]

<Explanation 7: Changes in residual fuel oil stock>

The figures for residual fuel oil stock reported in the CRF tables were different from those in the IEA statistics because the CRF figures included changes in fuel oil A stock, whereas stock change data

under Heavy Fuel Oil in the IEA statistics did not include fuel oil A. (See the explanation for the gas/diesel oil data above.)

<Reference: Changes in residual fuel oil stock in 2005>

CRF Table 1.A(b)	IEA Statistics/Heavy Fuel oil
Stock changes: 74.59×10 ³ kL <breakdown> Stock changes in fuel oil A: 155.30× 10³ kL Stock changes in fuel oil C: - 80.71×10³ kL</breakdown>	Stock changes: -72×10^3 t [- 80.71×10 ³ kL (stock changes in fuel oil C) × 0.900 (specific gravity) = -72.64×10^3 t]

<Explanation 8: Changes in LPG stock>

The figures for changes in LPG stock reported in the CRF tables are the same as the figures in the IEA statistics.

<Reference: Changes in LPG stock in 2005>

CRF Table 1.A(b)	IEA Statistics
Stock changes: 310.88×10^3 t	Stock changes: 310×10^3 t

<Explanation 9: Changes in naphtha stock>

The figures for changes in naphtha stock reported in the CRF tables are the same as the figures in the IEA statistics.

<Reference: Changes in naphtha stock in 2005>

CRF Table 1.A(b)	IEA Statistics
Stock changes: -53.55×10^3 kL	Stock changes: -39×10^{3} t [- 53.55×10 ³ kL × 0.737 (specific gravity) = -39×10^{3} t]

<Explanation 10: Changes in bitumen stock>

The figures for changes in bitumen stock reported in the CRF tables were slightly different from the figures reported under Bitumen in the IEA statistics because the Bitumen data in the CRF tables included asphalt and other heavy oil and paraffin products. The IEA statistics reported figures for only asphalt under Bitumen, and the figures for other heavy oil and paraffin products reported in the CRF tables under Bitumen were included in the figures reported under Paraffin Waxes in the IEA statistics.

CRF Table 1.A(b)	IEA Statistics
Stock changes: -20.03×10 ³ t <breakdown></breakdown>	Stock changes in bitumen: -19×10^3 t
Asphalt: -19.37×10^3 t Other heavy oils and paraffin products: -0.66×10^3 t	<remarks> In the IEA statistics, the figures for other heavy oil and paraffin products (which were reported under Bitumen in the CRF tables) are reported under Paraffin Waxes.</remarks>

<Reference: Changes in bitumen stock in 2005>

<Explanation 11: Changes in lubricants stock>

The figures for changes in lubricants stock reported in the CRF tables are the same as the figures in the IEA statistics.

<Reference: Changes in lubricating oil stock in 2005>

CRF Table 1.A(b)	IEA Statistics
Stock changes: -7.94× 10 ³ kL	Stock changes: -7×10^3 t [-7.94×10 ³ kL × 0.891 (specific gravity) = -7×10^3 t]

<Explanation 12: Changes in oil coke stock>

The figures for changes in oil coke stock reported in the CRF tables are the same as the figures in the IEA statistics.

<Reference: Changes in oil coke stock in 2005>

CRF Table 1.A(b)	IEA Statistics
Stock changes: 5×10^3 t	Stock changes: 5×10^3 t

<Explanation 13: Changes in refinery feedstock stock>

The figures for changes in refinery feedstock stock reported in the CRF were different from those in the IEA statistics because the IEA statistics included the figures for stock changes in slack wax and slack coke in addition to the semi-refined products reported in the CRF tables.

The changes in slack wax and coke stocks were not reported in the CRF tables because the both items were solids used as raw materials for the production of paraffin and oil coke, and unlikely to be returned to oil refining processes. In addition, shipments of paraffin and oil coke produced using slack wax and slack coke were separately accounted for.

CRF Table 1.A(b)	IEA Statistics						
Stock changes: 502.16×10^3 kL	Stock changes: 416×10^3 t						
 	<breakdown> Slack gasoline: -42.74× 10³ kL Slack kerosene: 78.26× 10³ kL Slack diesel oil or gas oil: 359.83× 10³ kL Slack fuel oil: 139.32× 10³ kL Slack lubricant: -39.97× 10³ kL Slack wax: -4.53× 10³ kL Slack coke: -5.04× 10³ kL Each of the above figures is multiplied by its specific gravity for conversion to weight for reporting purposes.</breakdown>						
<remarks> The differences between monthly statistics and changes of stock of slack gasoline between the the supply and stock of oil in the IEA statistics of compiled by the IEA. The report to the IEA for monthly data may be adjusted for the yearly statistics</remarks>	CRF tables and the IEA statistics. The figures for use the figures in the Monthly Oil Statistics the MOS is submitted on a monthly basis. The						

<Reference: Changes in refinery feedstock stock in 2005>

<Explanation 14: Changes in natural gas stock>

The figures for changes in natural gas stock (imported LNG and domestic natural gas) reported in the CRF tables were different from those in the IEA statistics because of the differences in the methods used for estimation of changes in the imported LNG stock. Although the same figure for the domestic natural gas stock was reported in the CRF and the IEA statistics because the statistical data existed in Japan, data were estimated for the imported LNG due to the lack of stock statistics.

The figures for changes in LNG stock reported in the CRF tables were estimated as the difference between the LNG imports and the consumption. The figures for stock changes reported to the IEA were the difference between the stock of imported LNG at the end of the previous year and the stock at the end of the current year, with the former calculated as one-half of the LNG import in March of the previous year, and the latter as one-half of the LNG import in March of the current year.

CRF Table 1.A(b)	IEA Statistics
Changes in LNG stock: $-1,933.17 \times 10^3$ t Changes in domestic natural gas stock: 3.23×10^6 m ³	Stock changes: -4,846 TJ-gross <remarks> The figures for LNG and natural gas were combined under Natural Gas as the IEA statistics do not separate them.</remarks>

<Reference: Changes in natural gas stock in 2005>

2.2. General Energy Statistics

2.2.1. General Energy Statistics Overview

The data given in the *General Energy Statistics* compiled by the Agency for Natural Resources and Energy were used for the activity data of fuel combustion in energy sector.

The *General Energy Statistics* (Energy Balance Table) provides a comprehensive overview of domestic energy supply and demand to grasp what are converted from energy sources, such as coal, oil, natural gas and others, provided in Japan and what are consumed in what sectors. The supply/conversion and consumption data in *General Energy Statistics* use official statistics and are structured with the minimum of estimation and adjustment.

General Energy Statistics (Energy Balance Table) indicates an overview of domestic energy supply and demand, shows the main energy sources used in Japan as "Columns" and the supply, conversion and consumption sectors as "Rows", in a matrix. Specifically, columns comprise 11 major categories (coal [code \$100], coal products [code \$150], oil [code \$200], oil products [code \$250], natural gas [code \$400], town gas [code \$450], new and renewable energy [code \$500], large-scale hydropower [code \$550], nuclear power [code \$600], electricity [code \$700], and heat [code \$800]) and the necessary sub-categories and a more detailed breakdown of the sub-categories. *General Energy Statistics* supply and demand sectors (rows) comprise 3 major sectors — primary energy supply (primary supply) [code #1000], energy conversion (conversion) [code #2000], and final energy consumption (final consumption) [code #5000] — plus the necessary sub-categories and a more detailed breakdown of the sub-categories and a more detailed breakdown of the sub-categories and a more detailed breakdown of the sub-categories and a more

The *General Energy Statistics* (complete Energy Balance Tables) for the years since FY 1990 are available on the following internet site:

http://www.enecho.meti.go.jp/info/statistics/jukyu/result-2.htm

The following is the energy balance simplified table (Table A 2-1 - Table A 2-5).

			Energy			-					-						
90FY		ance simplified table>		150 Coal Product	200 Dil	250 Oil Producte	400 Natural Gas	450 Town Gee	500 Penewshie i		600 Nuclear Ene	700 Fleateinity	800 Heat		900 Total	910 Energy Total	
	Action By Date	<pre> (<energy <="" pre="" units))=""></energy></pre>	TJ		TJ				TJ	TJ	TJ	TJ	TJ		TJ	TJ	TJ
le nnn	Primary Ener	en Sualu	3345244	15352	9164033	2354044	2059168	0	524099	833304	1887390	0	(1	20182635	18632722	154
000	Primary Che	rgy Supply	5343244	10002	9104033	2004044	2037100	U	JZ4099	033304	1007 370	U	l	J	20102033	10032122	104
100		Indigenous Production	187036	0	24484	0	89203	0	524099		1887390	0	-		3545517		
200 500	TPES	Import Total Primary Energy Supply	3158208 3345244	15352 15352	9139549 9164033	2354044 2354044	1969965 2059168	0	0 524099	-	0 1887390	0			16637118 20182635		
600	11 20	Export	-53	-56644	0	-302130	0	0	524077		007370	0	-	·	-358828		
700		Stockpile Change	1669	1951	-190171	-22710	42651	0	0		0	0	-		-166610		
900	DPES	Domestic Primary Energy Supply	3346859	-39341	8973862	2029203	2101819	0	524099	833304	1887390	0	() supply side consumption side	19657197 e 19785779		15 15
)00	Energy Trans	sformation & Own use	-3039243	1595040	-9032036	5785908	-2039503	629852	-470769	-833304	-1887390	2698536	696058		-5896853	-5865031	-
100		Power Genertion	-673045	-204274	-874209	-1055765	-1531630	0	-19259	-767173	-1879280	2691329	()	-4313307	-4313307	
200		Auto Power Generation	-116820	-96004	0	-399646	-5054	-12280	-170874		-8110				-570897		
300		Industrial Steam Generation	-123177	-69991	0	-444065	-2693	-15028	-278052						-148448		
350 100		District Heat Supply Town Gas Production	-824 0	0 -19178	0	-2633 -142210	0 -503865	-6169 664661	-2028 -546		0				-4419 -1139		
+00 500		Coal Products	-2142396	2081208	0	-38206	-303003	004001	-040		0	-			-99394		
600		Oil Products	0	0	-8143167	8175984	5121	0	Ŭ		Ű				-56212		
700		Other Conversions & Blending	30171	2880	0	-18897	0	18897	0		0				33051	0	
800	TC	Total Conversion	-3026090	1694639	-9017376	6074562	-2038122	650081	-470758	-833304	-1887390	2994122	698872	2	-5160764	-5137603	
900		Own Use & Loss	-3015	-101777	-1017	-301251	-1738	-20230	0		0				-727428		
000	01	Other Imput/Output	0	0	0	12924	0	0	0		0				12924		
00	FS	Stock Change	-10138	2177	-13642	-327	357	0	-10	0	0	0	()	-21584	0	
000	DC	Stastical Discrepancy	-75007	0	-58202	3856	769	0	0	0	0	2	()	-128582	-128582	
000	Final Energy	Consumption	382623	1555699	28	7811256	61547	629852	53330	0	0	2698534	696058	}	13888926	12370836	15
00	Industry		365162	1532019	28	3019423	57690	110593	0	0	0	1220265	687697	1	6992876	5516717	14
00		Non-Manufacturing	263	1141	28	759211	3757	20677	0		0		(806329		1
i00	MFC	Manufacturing	364899	1530877	0	2260212	53933	89916	0		0				6186547		
i20 i50		Pulp & Paper Chemical	126 5443	0 46803	0	27726 1356286	2 26599	1272 1028	0		0				400009		1
i70		Cement & Ceramics	235223	40003	0	104386	20377	743	0		0				467168		
80		Iron & Steel	143931	1103634	0	119268	25030	8746	0	0	0	265486			1759011		
600		Machinery	15	16700	0	85879	2132	22135	0		0				339776		
00 00		Duplication Adjustment Other Industries & SMEs	- <u>36513</u> 1164	-8421 320931	0	-56803 354525	-3000 2014	-2137 31396	0		0				-178742 1067184		
••	D		17//1	22/00	0	1/1/070	2057	510050	53330			1/17755	00/1		0/70/7/	2/77/0/	
00 00	ResCom RES	Residential	17461 0	23680 2880	0	1634972 594332	3857 0	519258 342157	53330 51488		0				3678676 1655075		
50	NLO	HokkaidoTohoku.Hokuriku	0	2000	0	214484	0	41416	01400		0				359948		
60		Kantou, Toukai, Kansai	0	0	0	285397	0	337114	0	0	0				1039026		
70		Chuugoku,Shikoku,Kyushu,Okinaw		0	0	119753	0	48044	0		0				311012		
00	COM	Commercial & Others	17461	20801	0	1040640	3857	177101	1842		0	754822			2023601		
10 40		Water supply, Sewage & Waste Dispos Telecommunication & Broadcasting	al 262 0	0	0	73615 9009	0	3295 2257	0		0				144872 30666		
00		Trade & Finance Service	0	0	0	259263	0	25973	0		0				476143		
00		Public Service	12038	0	0	274167	0	49255	0		0				551508		
10		Commercial Service	235	261	0	97285	0	4358	0		0				158265		
50		Retail Service	2406	1906	0	219818	0	67360	0	0	0	135481	1576		428547	428547	
00	Transporta		0	0	0	3156861	0	0	0		0				3217375		
00	PAS	Passenger	0	0	0	1614051	0	0	0		0				1670661		
10 20		Car Rail	0	0	0	1375786 11264	0	0	0		0				1375786 67874		
30		Ship	0	0	0	67628	0	0	0		0				67628		
40		Air	0	0	0	88429	0	0	0	0	0	0	()	88429		
)()	FRT	Freight	0	0	0	1542810	0	0	0		0				1546714		
0		Truck & Lorry Rail	0	0	0	1391105	0	0	0		0				1391105		
20 10		Ship	0	0	0	2638 130812	0	0	0	-	0				6543 130812		
10		Air	0	0	0	18256	0	0	0		0				18256		
00	FEEC	Final Energy Consumption	382112	1538556	28	6324859	47544	629814	53330	0	0	2698534	696058	}	12370836	12370836	
	Non-Energy		511	17143	0	1486397	14003	38	0		0				1518091		
00		Industry	511	17143	0	1444465	14003	38	0	-	0				1476159		
300		ResCom & others Transport	0	0	0	1180 40752	0	0	0		0				1180 40752		

Table A 2-1	Energy balance	ce simplified table	e (General En	ergy Statistics,	FY1990)
-------------	----------------	---------------------	---------------	------------------	---------

995FY		Code		150	200	250	400	450		550	600				900	910	92
	<energy bal<="" th=""><th>lance simplified table> <<energy units="">></energy></th><th>Coal TJ</th><th>Coal Product</th><th>Oil TJ</th><th>Oil Products TJ</th><th>Natural Gas TJ</th><th>Town Gas TJ</th><th>Renewable E TJ</th><th>Hydraulic TJ</th><th>Nuclear Ene TJ</th><th>r Electricity TJ</th><th>Heat TJ</th><th>Total TJ</th><th></th><th>Energy Total TJ</th><th>Non-Energ TJ</th></energy>	lance simplified table> < <energy units="">></energy>	Coal TJ	Coal Product	Oil TJ	Oil Products TJ	Natural Gas TJ	Town Gas TJ	Renewable E TJ	Hydraulic TJ	Nuclear Ene TJ	r Electricity TJ	Heat TJ	Total TJ		Energy Total TJ	Non-Energ TJ
ode 1000	Primary Ene	rev Sunniv	3732254	18016	10204290	2225292	2479453	0	564207	761329	2700257	(0) 22	2685097	20955245	172985
																	112700
1100 1200		Indigenous Production Import	149495 3582759	0 18016	32455 10171835	0 2225292	95250 2384203	0		761329		(4302993 3382105	0	
1500		Total Primary Energy Supply	3732254	18016	10204290	2225292	2479453	0				(-		2685097	20955245	172985
1600		Export	-75	-103811	0	-733696	0	0		0		(-837582	0	
1700 1900		Stockpile Change Domestic Primary Energy Supply	-2710 3729468	-6113 -91908	-30486 10173804	134344 1625939	58576 2538029	0		0 761329		(153611 2001126	0 20271274	172985
								823061				3090955		consumption side 21	1947773	20217921	172985
		sformation & Own use	-3286798	1395073	-10108952	7217919	-2474669								5629583		-307
2100 2200		Power Generation Auto Power Generation	-1072304 -150687	-210723 -115758	-669401 -880	-838649 -459430	-1750818 -5691	-32050		-700065 -61264	-2687729 -12528	3071160 364710			4895399 -672935	-4895399 -672935	
2300		Industrial Steam Generation	-133278	-60234	-328	-446810	-2879	-30180							-167044	-167044	
2350		District Heat Supply	-638	0	0	- 1638	0					-2548			-4079	-4079	
2400		Town Gas Production	0	-12205	0	-157821	-723643	892307				(,	-1400	-1400	
2500 2600		Coal Products Oil Products	-1963775 0	1893360 0	0 -9421404	-30083 9490043	0 5773	0		0		(-100498 -28847	-100498 -0	
2700		Other Conversions & Blending	36411	1637	0	-22539	0			0		(0)	38047	0	3804
2800	TC	Total Conversion	-3284272	1496077	-10092012	7533073	-2477258	841515	-518897	-761329	-2700257	3433322	697882	2 -{	5832154	-5841355	920
2900		Own Use & Loss	-2978	-93780	-1058	-321669	-1261	-18454							-785158	-785158	007
3000 3500		Other Imput/Output Stock Change	0 452	0 -7224	0 -15882	9078 -2563	0 3850	0							9078 -21348	0	907 -2134
4000		Stastical Discrepancy	-7652	0	64852	-8469	4622	0	-0	0	0	(0		53353	53353	
5000	Final Energy	Consumption	450322	1303165	0	8852328	58738	823061	45329	0	0	3090955	694292	2 18	5318190	13591408	172678
6000		Non Manufacturing	428876	1299570	0	3267149	56329	163883							7164096	5471642	169245
6100 6500		Non-Manufacturing Manufacturing	191 428685	528 1299042	0	735650 2531499	1776 54553	26151 137733		0			-		784760 5379336	557911 4913731	22684 146560
6520		Puip & Paper	0	0	0	30072	5								408718	408718	110000
6550		Chemical	6176	34647	0	1705864	21627	6650		0					2167901	799104	136879
6570 6580		Cement & Ceramics Iron & Steel	235274 201778	37704 958301	0	118517 114033	341 26245	628 20866		0					485615 1670781	475539 1670574	1007
6600		Machinery	201776	14083	0	89461	3476	32517		0					376331	376331	20
6700		Duplication Adjustment	-26421	-5593	0	-81902	-1529	-3384	0	0		-49200	-20224	I .	-188251	-182224	-602
6900		Other Industries & SMEs	1841	250502	0	261747	2608	40947	0	0	0	244492	104443	}	906581	814028	9255
7000			21446	3594	0	1846240	2409	659177							4347637	4345809	182
7100		Residential	0	1637	0	700079	0	398516							1972720	1972720	
7150 7160		HokkaidoTohoku,Hokuriku Kantou, Toukai, Kansai	0	0	0	245943 330756	0	46561 367163		0					428467 1238924	428467 1238924	
7170		Chuugoku,Shikoku,Kyushu,Okinawa	°.	0	0	145241	0	50323		0					382789	382789	
7500		Commercial & Others	21446	1958	0		2409	260662							2374918	2373090	182
7510 7540		Water supply, Sewage & Waste Disposa Telecommunication & Broadcasting	426	0	0	113365 10732	0	4750 2438							182210 35764	182210 35764	
7600		Trade & Finance Service	0		0	269831	0								518593	518593	
7700		Public Service	16599	0	0	364499	0			0			1960)	735608	735608	
7810		Commercial Service	330	254	0	98680	0								171435	171435	
7850		Retail Service	3820	1682	0	261577	0	154955	0	0	0	160825	3268	3	586127	586127	
8000			0	0	0	3738939	0			-					8806457	3773957	3250
8100		Passenger	0	0	0	2044897	0								2108573	2083686	2488
8110 8120		Car Rail	0	0	0	1787686 9759	0			0					1787686 73435	1762915 73319	2477
8130		Ship	0	0	0	79258	0	0		0		03070			79258	79258	
8140		Air	0	0	0	128698	0	0	0	0	0	(0)	128698	128698	
8500		Freight	0	0	0	1694042	0			0					1697884	1690271	761
8510 8520		Truck & Lorry Rail	0	0	0	1566432 2400	0								1566432 6242	1562452 6130	398 11
8520 8530		Kall Ship	0	0	0	131840	0			-					6242 131840	128319	352
8540		Air	0	0	0	24397	0						-		24397	24397	
9000	FEEC	Final Energy Consumption	449885	1291322	0	7149862	46702	823061	45329	0	0	3090955	694292	2 13	3591408	13591408	
	Non-Energy		437	11843	0	1702466	12036	0					-		1726782	0	172678
9600		Industry BasCam # athese	437	11843	0	1668138	12036	0			0				1020	0	169245
9800 9850		ResCom & others Transport	0		0	1828 32500	0	0							1828 32500	0	

Table A 2-2Energy balance simplified table (General Energy Statistics, FY1995)

)00FY		Co lance simplified table>		150 Ocal Deadward	200	250	400 Natural Can	450	500 Denovemble F	550 Ukudaanila	600 Nucleas Franc	700 Flastalaitu			00 910	
	KEnergy bai	ance simplified table> >	Coal TJ	Coal Product	TJ	TJ	Natural Gas TJ	Town Gas Tj	Renewable E TJ	TJ	Nuclear Ener TJ	Electricity TJ	Heat TJ	Total TJ	Energy Tota TJ	TJ
de	Data and Data	0	1010010	7/010	07/10/5	221/21/	20/0///	0	(1/005	770.417	0070100			20/02	10 0171057	10000
1000	Primary Ene	rgy Supply	4210040	76219	9761365	2246246	3060666	0	616335	778417	2873130	0	() 236224	118 21719570	0 19028
1100		Indigenous Production	66013	0	28034	0	106340	0	616335	778417	2873130	C	() 4468	269 C	0
1200		Import	4144027	76219	9733330	2246246	2954327	0		0		0	-			
1500		Total Primary Energy Supply	4210040	76219	9761365 0	2246246	3060666	0		778417 0	2873130 0	C				
1600 1700		Export Stockpile Change	-112 -2958	-78077 -1963	-116285	-627862 -106335	0 72387	0		0			-			
1900		Domestic Primary Energy Supply	4206970	-3821	9645079	1512049	3133054	0		778417	2873130	Ŭ) supply side 227612		
														consumption side 22790		
2000	Energy Trans	sformation & Own use	-3736666	1287540	-9721175	7518258	-3072804	986782	-562115	-778417	-2873130	3396151	739685	5 -68150	-6685083	3 -1308
2100		Power Genertion	-1515218	-212244	-301245	-548677	-2131672	-1447	-46226	-711603	-2866777	3333294	() -50018	-5001815	5
2200		Auto Power Generation	-199734	-148205	-99	-425144	-9644	-38900	-211258	-66814	-6353	423092			-683058	B
2300		Industrial Steam Generation	-191460	-34306	-119	-428955	-6984	-30434	-298304	0		0				
2350 2400		District Heat Supply Town Gas Production	-708 0	0 -9573	0	-1725 -126581	0 -925315	-14515 1061122		0		-3940 C			135 - 3735 377 - 377	
2400 2500		Coal Products	-1816696	1790538	0	- 120301	-920010	1001122		0						
2600		Oil Products	0		-9431042	9467009	6972	0		0		0				
2700		Other Conversions & Blending	17846	0	0	-23232	0	23232		0		(-			
2800	TC	Total Conversion	-3705970	1386210	-9732505	7873214	-3066643	999058	-562094	-778417	-2873130	3752445	743767	-5964	65 -5887523	3 -765
2900		Own Use & Loss	-4240	-93659	-518	-325749	-743	-12276	0	0	0	-356294	-4082	2 -797	61 -797561	1
3000		Other Imput/Output	0		0	-32610	0	0		0		(_
3500	FS	Stock Change	-26456	-5012	11849	3404	-5418	0	-21	0	0	(() -21	54 (0 -2165
4000	DC	Stastical Discrepancy	43208	0	-76095	-6521	9637	0	0	0	0	(() -29	172 -29772	2
4000	DC	Stastical Discrepancy	43200	U	-70093	-0321	9037	U	U	U	U	U	l	-27	12 -29112	2
5000	Final Energy	Consumption	427096	1283719	0	9036828	50613	986782	54220	0	0	3396151	739685	5 159750	14203053	3 177204
6000	Industry		402587	1281740	0	3284658	49960	159109	18388	0	0	1307620	717036	5 72210	198 5490897	7 173020
6100		Non-Manufacturing	178	603	0	608480	1930	25527	0	0		17223				
6500		Manufacturing	402409	1281136	0	2676177	48030	133583	18388	0		1290397	717036			
6520		Pulp & Paper	0		0	20792	70	563		0		132838				
6550 6570		Chemical	19		0	1809648	23095	3181 489	6235	0		179582				
6570 6580		Cement & Ceramics Iron & Steel	184710 223836	23143 977757	0	85120 100256	175 22175	489		0		79974 253494				
6600		Machinery	0		0	37273	945	18502		0		262650				
6700		Duplication Adjustment	-12253	-1231	0	-27736	-176	-676		0		-40768				
6900		Other Industries & SMEs	1927	227946	0	423747	0	46382	0	0	0	266689	124234	1090	1006819	9 8410
7000	ResCom		24509	1979	0	1891287	653	827673	35833	0	0	2021667	22648	3 48262	49 4818571	1 76
7100	RES	Residential	0	0	0	731171	0	418454	34912	0	0	928274	1306	5 2114	17 2114117	1
7150		Hokkaido Tohoku, Hokuriku	0	•	0	258987	0	52403		0	-	166607				
7160 7170		Kantou, Toukai, Kansai Chuugoku,Shikoku,Kyushu,Okinav	0 Va 0		0	339898 147430	0	417463 50550		0		624718 210400				
7500	COM	Commercial & Others	24509		0	1160116	653	409219	921	0		1093394		1001		
7510		Water supply, Sewage & Waste Dispo		0	0	100189	0	7316		0	0	76046				
7540		Telecommunication & Broadcasting	0		0	18618	0	5698		0		36920				
7600 7700		Trade & Finance Service Public Service	0 17507	0	0	258854 419901	0		0	0		230281 363562				
7810		Commercial Service	464		0	106094	0	8911	0	0		88762				
7850		Retail Service	4658		0		0			0		196235				
0000	Transporta		0	0	0	3860884	0	0	0	0	0	66864	() 3927	48 3893585	5 2/1
8000 8100		Passenger	0		0	2283876	0	0		0		63385				
8110		Car	0		0	2086803	0			0		00000				
B120		Rail	0		0	8598	0	0		0		63385				
3130		Ship	0		0	78498	0	0		0	-	0	-			
8140 8500		Air Freight	0	-	0	134790 1577008	0	0		0		0 3479				
8510		Truck & Lorry	0		0	1558126	0	0		0	•	J4/7 (
3520		Rail	0	0	0	1878	0	0		0	0	3479			857 5274	4
530		Ship	0		0	137346	0			0		0				
3540 2000	FEEC	Air Final Energy Consumption	0 427096	0	0	24246	42088	986782		0		3396151				
000		- mar chergy consumption	42/090	1200239	U	1200112	42000	700702	J4ZZU	U	U	3340131	1 37000	14203	uuuuuuuuuuuuuu	
	Non-Energy		0		0	1748057	8525	0		0		0				
9600 9800		Industry ResCom & others	0		0	1706216 7678	8525 0	0		0		0			201 C 578 C	
0000		Transport	0		0		0			0						

Table A 2-3	Energy balan	ce simplified	table (General	Energy Statistics	s, FY2000)
-------------	--------------	---------------	----------------	-------------------	------------

2005FY		Code		150	200	250	400	450		550		700)	900	910	
		ance simplified table> < <energy units="">></energy>	Coal TJ	Coal Produc TJ	tOil TJ	Oil Products TJ	Natural Gas TJ	Town Gas TJ	Renewable E TJ	E Hydraulic TJ	Nuclear Ene TJ	r Electricity TJ	Heat TJ		Total TJ	Energy Total TJ	Non-Energ
ode	Delesson Franc		1717/50	01014	050/000	0105107	2200.407		/7/ //2	(71747	2/7/050			\ \	22202074	017/7/00	201/5
1000	Primary Ener	rgy Supply	4747650	81314	9506203	2135196	3288496	C	676443	671713	2676958	(()	23783974	21767429	201654
1100		Indigenous Production	0	0	33051	0		0				(-		4192776		
1200 1500		Import Total Primary Energy Supply	4747650 4747650	81314 81314	9473152 9506203	2135196 2135196	3153885 3288496	0				(19591198 23783974		
1600		Export	-85	-49279	0	-897381	0200170					(-946745		
1700		Stockpile Change	0	-16228	-96075	-73435	105352	0		-	-	(-80386		
1900	DPES	Domestic Primary Energy Supply	4747565	15807	9410128	1164381	3393848	0	676443	671713	2676958	() supply side consumption sid	22756843 le 23025347		
2000	Energy Trans	sformation & Own use	-4380236	1328905	-9637342	7534806	-3318058	1206465	-645344	-671713	-2676958	3515694	714918	3	-7028862	-6832682	-18886
2100		Power Genertion	-2146038	-186507	-301537	-546923	-1912210	-58869				3440416			-5071412		
2200 2300		Auto Power Generation Industrial Steam Generation	-225239 -201817	-138544 -33452	-24 -33	-396248 -364073	- 18506 - 10580	-67598 -53178							-686246		
2350		District Heat Supply	-633	-33432			- 10300								- 143207		
2400		Town Gas Production	0	-1994	0	-76818	-1315225	1391962					-		-2121		
2500 2600		Coal Products Oil Products	-1852761 0	1802622 0	0 -9331018	- 19827 9324886	0 8203	0			-	(-		-69966 -137714		
2700		Other Conversions & Blending	18933	0		-22505	0203	22505							18933		
2800	TC	Total Conversion	-4407555	1442124	-9632613	7897434	-3248318	1216719	-645232	-671713	-2676958	3901270	719033	3	-6105809	-5979711	-11878
2900		Own Use & Loss	-6994	-94841	-85	-309370	-41736	-10254							-852972		
3000 3500		Other Imput/Output Stock Change	0 34314	0 -18378	0 -4644	-53184 -73	-28004	C					-		-53184 -16897	0	
4000	DC	Stastical Discrepancy	-48131	0	-227214	-2538	9378	0	-0	0	0	((1	-268505	-261187	
5000	Final Energy	Consumption	415460	1344712	0	8701725	66413	1206465	31099	(0	3515694	714918	8	15996485	14168802	182768
6000 6100	Industry	Non-Manufasturias	394168	1342658 191	0	3142673	65661	191539 30491							7064470		
6100 6500		Non-Manufacturing Manufacturing	100 394067	1342467	0	503751 2638922	2758 62903	161049							548178 6516292		
6520		Pulp & Paper	0	0	0	18699	119	762							389447		
6550		Chemical	4351	37042	0	1880133	31475	5702			-				2372528		
6570		Cement & Ceramics	161134	20463	0	75555	185	842							351627		
6580 6600		Iron & Steel Machinery	248848	971128 5255	0		25945 3007	47754 25317							1729825 355752		
6700		Duplication Adjustment	-24479	3233	0		-500	-754		(-157052		
6900		Other Industries & SMEs	1409	299506	0	386675	0	28603	0	0	0	191277	129120)	1036590		8378
7000	ResCom		21292	2054	0	1872067	751	1014925	24769	(0	2215492	25072	2	5176423	5174228	219
7100	RES	Residential	0	0	0	701600	0			(2181864		
7150 7160		HokkaidoTohoku,Hokuriku Kantou, Toukai, Kansai	0	0	0	252024 329849	0			0		182318 705199			492311 1507215		
7170		Chuugoku, Shikoku, Kyushu, Okinawa	0	0	0	151797	0					243104			450396		
7500	COM	Commercial & Others	21292	2054	0	1170467	751	579108		C	0	1196404		5	2994559		
7510		Water supply, Sewage & Waste Disposal		0		97018									185689		
7540 7600		Telecommunication & Broadcasting Trade & Finance Service	0	0			0								58094		
7700		Public Service	15580	0											925981		
7810		Commercial Service	785	220			0								181659		
7850		Retail Service	2159	1798	0	264254	0	238811	0	(0	193168	2954	4	703145	703145	
8000	Transportat	tion	0	0	0	3686985	0	C	0	(0	68607	()	3755592	3721430	3416
8100	PAS	Passenger	0	0			0								2307984		
8110 8120		Car Rail	0	0			0								1968839 72862		
8130		Ship	0	0			0								72002		
8140		Air	Û	Ű			0								137208		
8500	FRT	Freight	0	0			0								1447608		
8510		Truck & Lorry	0	0			0								1333297		
8520 8530		Rail Ship	0	0											5296 117819		
8540		Air	0	0			0						-		23641		
9000	FEEC	Final Energy Consumption	415460	1329123	0	6905897	50146	1206465	31099	(0	3515694	714918	B	14168802	14168802	!
	Non-Energy		0	15589	0		16266	C							1827683		
9600		Industry ReaCom & adhese	0	15589	0										1791326		
9800 9850		ResCom & others Transport	0	0))	2195 34162		

Table A 2-4Energy balance simplified table (General Energy Statistics, FY2005)

008FY		Code	100	150	200	250	400	450	500	550	600	700	800		900	910	9
		ance simplified table> < <energy units="">></energy>	Coal TJ	Coal Product	Oil TJ	Oil Products	: Natural Gas TJ	Town Gas TJ	Renewable I TJ	E Hydraulic TJ	Nuclear Ene TJ	r Electricity TJ	Heat TJ		Total TJ	Energy Total TJ	l Non-Ener TJ
ode 1000	Primary Ener	rev Sunniv	4933813	44471	8929142	1846694	3882643	0	668610	665851	2248233	0		0	23219458	21190830	2028
1100 1200		Indigenous Production Import	0 4933813	0 44471	33808 8895334	0 1846694	165667 3716977	0						0	3782169 19437290		-
1500	TPES	Total Primary Energy Supply	4933813	44471	8929142	1846694	3882643	0	668610	665851	2248233	0		0	23219458	21190830	2028
1600 1700		Export Stockpile Change	-73 0	-27929 -28617	0 -369277	-1355560 -9457	0 136189	0						0	-1383562 -271161		
1900		Domestic Primary Energy Supply	4933740	-12075	8559866	481678		0) supply side	21564736	19536107	202
2000	Energy Trans	sformation & Own use	-4424179	1276775	-8989787	7002963	-3960972	1373393	-642939	-665851	-2248233	3471138	65050	consumption side	21882945 -7157190		
2100		Power Genertion	-2086529	-161565	-315523	-585619	-2257789	-59204	-70878						-4964638		
2200 2300		Auto Power Generation Industrial Steam Generation	-232224 -211133	-123225 -40943	-52 -70	-312871 -282011	-21618 -15570	-71667 -63987	-246405 -319395						-633474 -160446		
2350		District Heat Supply	-554	0	0	-405			-6022						-2713		
2400		Town Gas Production	0	0	0		-1569679	1607992	0					5	-10031		
2500 2600		Coal Products Oil Products	-1764797 0	1731268	0 -8661679	-15467 8573514	0 7280	0	0	-					-48996 -222704		
2700		Other Conversions & Blending	18022	0	0001077	-20539	0		0	-					18022		
2800	TC	Total Conversion	-4277216	1405535	-8977324	7308257	-3857376	1417079	-642699	-665851	-2248233	3852453	65578	9	-6029585	-5820298	-20
2900		Own Use & Loss	-20495	-108230	-121	-268588	-97150	-43686	0	-					-924872		
3000 3500		Other Imput/Output Stock Change	0 -126468	0 -20530	0 -12342	-25727 -10978	0 -6446	0)	-25727 -177005		
4000	DC	Stastical Discrepancy	129198	0	-429921	-10562	-6938	0	C	() 0	13		0	-318210	-313605	
5000	Final Energy	Consumption	380362	1264700	0	7495204	64799	1373393	25671	0	0	3471125	650502	2	14725756	13104542	162
6000	Industry		359808	1262501	0		64073	218769	4304						6272810		
6100		Non-Manufacturing	92 359717	191 1262310	0		3549	33287	4304					5	451047		
6500 6520	MPG	Manufacturing Pulp & Paper	309/17	1202310	0		60524 431	185481 1559	4304						5821762 357770		
6550		Chemical	21	43451	Û		32416		0						2126332		
6570		Cement & Ceramics	148913	18858	0		208	1598	4245						328063		
6580 6600		Iron & Steel Machinery	222796 0	924407 4471	0		21049 3223	63621 29552	0	-					1628072 359139		
6700		Duplication Adjustment	-15073	0	0		-550		0		-				-135467		
6900		Other Industries & SMEs	1159	262122	0	275713	0	17806	C	() 0	89548	11421	B	760566	676144	1
7000	ResCom		20554	2199	0		726		21366						4978271		
7100	RES	Residential	0	0	0		0		20631						2057925		
7150 7160		HokkaidoTohoku,Hokuriku Kantou, Toukai, Kansai	0	0	0		0		0						446932 1455929		
7170		Chuugoku,Shikoku,Kyushu,Okinawa			Û		0		C					D	424879		
7500	COM	Commercial & Others	20554	2199	0		726		736						2920347		
7510 7540		Water supply, Sewage & Waste Disposal Telecommunication & Broadcasting	762	0	0				0						148308 51398		
7600		Trade & Finance Service	0	0			0		0	-					889789		
7700		Public Service	13947	0	0				0						805807		
7810 7850		Commercial Service Retail Service	1045 2241	157 2005	0 0		0		0		-				161594 674710		
8000	Transporta	tion	0	0	0	3406890	0	0	C) () 0	67784		0	3474674	3440512	
8100		Passenger	0	0	0	2069644	0	0	C	() 0	64374)	2134019	2108270	
8110		Car	0	0	0		0							0	1865594		
B120 B130		Rail Ship	0	0	0									0	71992 61490		
3140		Air	0	0							-			0	129969		
3500		Freight	0											D	1340656		
8510 8520		Truck & Lorry Rail	0											0	1294942 5052		
3520 3530		Ship	0	0	0									0	108706		
3540		Air	0	0	0						-		-	0	23109		
		Final Energy Consumption	380362	1247530	0	5907391	48568	1373393	25671	() 0	3471125	65050	2	13104542	13104542	
	Non-Energy	Teductor.	0		0									0	1621214		
9600 9800		Industry ResCom & others	0		0		16230 0							0	1587051 0		
9850		Transport	0											0	34162		

Table A 2-5	Energy balance simplified table (General Energy Statistics, FY2008)

2.2.2. General Energy Statistics and CRF

In order to report CO_2 emissions in CRF, emissions reported under the sectors in *General Energy Statistics* (Energy Balance Table) were reported under each sector in CRF as indicated in Table A 2-6 and Table A 2-7.

Values subtracting energy consumption reported under 'Non-energy' [#9500] from energy consumption reported under 'Energy Conversion & Own use' [#2000], 'Industry' [#6000], 'Residential' [#7100], 'Commercial & Others' [#7500], and 'Transportation' [#8000] in *General Energy Statistics* (Energy Balance Table) are used for activity data (Figure 3). Because energy consumption reported under 'Non-energy' [#9500] was used for the purposes other than combustion and was considered not emitting CO₂, these values were deducted. However, out of this amount deducted as feedstocks and non-energy use, the emissions from what is used or collected as energy during waste incineration are separately estimated and reported.

The *Revised 1996 IPCC Guidelines* requires carbon dioxide emitted from auto power generation, etc., to be counted in the corresponding sector. In Japan's Energy Balance Table (*General Energy Statistics*), fuel consumption used for auto power generation and industrial steam generation are presented under 'Auto Power Generation' [#2200], 'Industrial Steam Generation' [#2300] in the Energy Conversion Sector. However, auto power generation and industrial steam generation actually belong to industrial sector. Hence, carbon dioxide emissions from "Auto Power Generation" and "Industrial Steam Generation" are allocated to each section of '1.A.2 Manufacturing Industries and Construction'.

		CRF	General Energy Statistics
14	1	Energy Industries	
			#2110 Power Generation, General Electric Utilities
			#2911 Own use, General Electric Utilities
	1 4 1 6	Public Electricity and Heat	#2150 Power Genertion, Independent Power Producing
	1A1a	Production	#2912 Own use, Independent Power Producing
			#2350 District Heat Supply
			#2913 Own use, District Heat Supply
	1A1b	Detroloum Defining	#2916 Own use, Oil Refinary
	IAID	Petroleum Refining	
		Manufacture of Solid Fuels and	#2914 Own use, Town Gas
	1A1c	Other Energy Industries	#2915 Own use, Steel Coke
		e mer znergy measures	#2917 Own use, Other Conversion
12	2	Manufacturing Industries and	
			#2217 Auto: Iron & Steel
	1.4.2.		#2307 Steam Generation: Iron & Steel
	1A2a	Iron and Steel	#6580 Final Energy Consumption, Iron & Steel
			#9680 Non-Energy, Iron & Steel
			#2218 Auto: Non-Ferrous Metal
	1A2b	Non-Ferrous Metals	#2308 Steam Generation: Non-Ferrous Metal
			#6590 Final Energy Consumption, Non-Ferrous Metal
			#9690 Non-Energy, Non-Ferrous Metal
			#2212 Auto: Chemical Textiles
			#2302 Steam Generation: Chemical Textiles
			#6530 Final Energy Consumption, Chemical Textiles
			#9630 Non-Energy, Chemical Textiles
	1A2c	Chemicals	#2214 Auto: Chemical
			#2304 Steam Generation: Chemical
			#6550 Final Energy Consumption, Chemical
			#9650 Non-Energy, Chemical
			#2211 Auto: Pulp & Paper
	1 4 0 1		#2301 Steam Generation: Pulp & Paper
	1A2d	Pulp, Paper and Print	#6520 Final Energy Consumption, Pulp & Paper
			#9620 Non-Energy, Pulp & Paper
		Food Processing, Beverages	#6510 Final Energy Consumption, Food
	1A2e		
		and Tobacco	#9610 Non-Energy, Non-Manufacturing Industry (Food)
		Other	
		Mining	#6120 Final Energy Consumption, Mining
		g	#9610 Non-Energy, Non-Manufacturing Industry (Mining)
		Construction	#6150 Final Energy Consumption, Construction
		Construction	#9610 Non-Energy, Non-Manufacturing Industry (Construction)
			#2213 Auto: Oil products
			#2303 Steam Generation: Oil products
		Oil Products	
			#6540 Final Energy Consumption, Oil products
			#9640 Non-Energy, Oil products
			#2215 Auto: Glass Wares
		Glass Wares	#2305 Steam Generation: Glass Wares
			#6560 Final Energy Consumption, Glass Wares
			#0500 Final Energy Consumption, Glass wates
			#9660 Non-Energy, Glass Wares
	1A2f		#9660 Non-Energy, Glass Wares #2216 Auto: Cement & Ceramics
	1A2f	Cement&Ceramics	#9660 Non-Energy, Glass Wares #2216 Auto: Cement & Ceramics #2306 Steam Generation: Cement & Ceramics
	1A2f		#9660 Non-Energy, Glass Wares #2216 Auto: Cement & Ceramics #2306 Steam Generation: Cement & Ceramics #6570 Final Energy Consumption, Cement & Ceramics
	1A2f		#9660 Non-Energy, Glass Wares #2216 Auto: Cement & Ceramics #2306 Steam Generation: Cement & Ceramics #6570 Final Energy Consumption, Cement & Ceramics #9670 Non-Energy, Cement & Ceramics
	1A2f		#9660Non-Energy, Glass Wares#2216Auto: Cement & Ceramics#2306Steam Generation: Cement & Ceramics#6570Final Energy Consumption, Cement & Ceramics#9670Non-Energy, Cement & Ceramics#2219Auto: Machinery & Others
	1A2f	Cement&Ceramics	#9660 Non-Energy, Glass Wares #2216 Auto: Cement & Ceramics #2306 Steam Generation: Cement & Ceramics #6570 Final Energy Consumption, Cement & Ceramics #9670 Non-Energy, Cement & Ceramics
	1A2f		#9660Non-Energy, Glass Wares#2216Auto: Cement & Ceramics#2306Steam Generation: Cement & Ceramics#6570Final Energy Consumption, Cement & Ceramics#9670Non-Energy, Cement & Ceramics#2219Auto: Machinery & Others#2309Steam Generation: Machinery & Others
	1A2f	Cement&Ceramics	#9660Non-Energy, Glass Wares#2216Auto: Cement & Ceramics#2306Steam Generation: Cement & Ceramics#6570Final Energy Consumption, Cement & Ceramics#9670Non-Energy, Cement & Ceramics#2219Auto: Machinery & Others#2309Steam Generation: Machinery & Others#6600Final Energy Consumption, Machinery
	1A2f	Cement&Ceramics	#9660Non-Energy, Glass Wares#2216Auto: Cement & Ceramics#2306Steam Generation: Cement & Ceramics#6570Final Energy Consumption, Cement & Ceramics#9670Non-Energy, Cement & Ceramics#2219Auto: Machinery & Others#2309Steam Generation: Machinery & Others#6600Final Energy Consumption, Machinery#9700Non-Energy, Machinery
	1A2f	Cement&Ceramics	#9660Non-Energy, Glass Wares#2216Auto: Cement & Ceramics#2306Steam Generation: Cement & Ceramics#6570Final Energy Consumption, Cement & Ceramics#9670Non-Energy, Cement & Ceramics#2219Auto: Machinery & Others#2309Steam Generation: Machinery & Others#6600Final Energy Consumption, Machinery#9700Non-Energy, Machinery#2220Auto: Duplication Adjustment
	1A2f	Cement&Ceramics Machinery	#9660Non-Energy, Glass Wares#2216Auto: Cement & Ceramics#2306Steam Generation: Cement & Ceramics#6570Final Energy Consumption, Cement & Ceramics#9670Non-Energy, Cement & Ceramics#2219Auto: Machinery & Others#2309Steam Generation: Machinery & Others#6600Final Energy Consumption, Machinery#9700Non-Energy, Machinery#2220Auto: Duplication Adjustment#2310Steam Generation: Duplication Adjustment
	1A2f	Cement&Ceramics	#9660Non-Energy, Glass Wares#2216Auto: Cement & Ceramics#2306Steam Generation: Cement & Ceramics#6570Final Energy Consumption, Cement & Ceramics#9670Non-Energy, Cement & Ceramics#2219Auto: Machinery & Others#2309Steam Generation: Machinery & Others#6600Final Energy Consumption, Machinery#9700Non-Energy, Machinery#2220Auto: Duplication Adjustment#2310Steam Generation: Duplication Adjustment#6700Final Energy Consumption, Duplication Adjustment
	1A2f	Cement&Ceramics Machinery	#9660Non-Energy, Glass Wares#2216Auto: Cement & Ceramics#2306Steam Generation: Cement & Ceramics#6570Final Energy Consumption, Cement & Ceramics#9670Non-Energy, Cement & Ceramics#2219Auto: Machinery & Others#2309Steam Generation: Machinery & Others#6600Final Energy Consumption, Machinery#9700Non-Energy, Machinery#2220Auto: Duplication Adjustment#2310Steam Generation: Duplication Adjustment
	1A2f	Cement&Ceramics Machinery	#9660Non-Energy, Glass Wares#2216Auto: Cement & Ceramics#2306Steam Generation: Cement & Ceramics#6570Final Energy Consumption, Cement & Ceramics#9670Non-Energy, Cement & Ceramics#2219Auto: Machinery & Others#2309Steam Generation: Machinery & Others#6600Final Energy Consumption, Machinery#9700Non-Energy, Machinery#2220Auto: Duplication Adjustment#2310Steam Generation: Duplication Adjustment#6700Final Energy Consumption, Duplication Adjustment
	1A2f	Cement&Ceramics Machinery	#9660Non-Energy, Glass Wares#2216Auto: Cement & Ceramics#2306Steam Generation: Cement & Ceramics#6570Final Energy Consumption, Cement & Ceramics#9670Non-Energy, Cement & Ceramics#2219Auto: Machinery & Others#2309Steam Generation: Machinery & Others#6600Final Energy Consumption, Machinery#9700Non-Energy, Machinery#2220Auto: Duplication Adjustment#2310Steam Generation: Duplication Adjustment#6700Final Energy Consumption, Duplication Adjustment#9710Non-Energy, Duplication Adjustment

Table A 2-6	Correspondence between sector	s of General Energy	Statistics (Miner Secto	r) and of the CRF
-------------	-------------------------------	---------------------	-------------------------	-------------------

		CRF	General Energy Statistics
1A3	3	Transport	
			#8140 Final Energy Consumption, Passenger Air
	1A3a	Civil Aviation	#8540 Final Energy Consumption, Freight Air
			#9850 Non-Energy, Transportation (Air)
			#8110 Final Energy Consumption, Passenger Car
			#8510 Final Energy Consumption, Freight Freight, Truck & Lorry
	1A3b	Road Transportation	#8115 Final Energy Consumption, Passenger Bus
	1A50	Road Transportation	#8190 Final Energy Consumption, Passenger, Transportation fraction estimation
			#8590 Final Energy Consumption, Freight, Transportation fraction estimation error.
			#9850 Non-Energy, Transportation (Car, Truck & Lorry, Bus)
			#8120 Final Energy Consumption, Passenger Rail
	1A3c	Railways	#8520 Final Energy Consumption, Freight Rail
			#9850 Non-Energy, Transportation (Rail)
			#8130 Final Energy Consumption, Passenger Ship
	1A3d	Navigation	#8530 Final Energy Consumption, Freight Ship
			#9850 Non-Energy, Transportation
	1A3e	Other Transportation	
1A4	4	Other Sectors	
	1A4a	Commercial/Institutional	#7500 Final Energy Consumption, Commercial & Others
	1A4a	Commercial/institutional	#9800 Non-Energy, ResCom & others (Commercial & Others)
	1A4b	Residential	#7100 Final Energy Consumption, Residential
	1A40	Kesidelitiai	#9800 Non-Energy, ResCom & others (Residential)
	1A4c	Agriculture/Forestry/Fisheries	#6110 Final Energy Consumption, Agruculture, Forestry & Fishery
	IA4C	Agriculture/Forestry/Fisheries	#9610 Non-Energy, Non-Manufacturing Industry
1A:	5	Other	
	1A5a	Stationary	
	1A5b	Mobile	

 Table A 2-7
 Correspondence between sectors of General Energy Statistics (Miner Sector) and of the CRF (cont.)

In 'Energy Conversion & Own use', 'Power Generation' [#2100], 'Auto Power Generation' [#2200], 'Industrial Steam Generation' [#2300], 'District Heat Supply' [#2350], 'Coal Products' [#2500], and 'Own Use & Loss' [#2900] are calculated, and other sectors ('Town Gas Production', 'Oil Products', 'Other Conversions & Blending', 'Other Input/Output' and 'Stock Change') are excluded from calculations.

Energy consumptions reported under 'Town Gas Production' are feedstocks of town gas production, and was not used to purposes combustion. Therefore, they are excluded from calculations. Meanwhile, CO_2 emissions from carbon contained in these feedstocks are calculated with town gas consumption in final energy consumption sector (industry, residential, commercial & others and transportation).

The energy consumption recorded under coal products corresponds to the difference between the coke-making carbon input and carbon output. This is the portion that is oxidized in the atmosphere (burned) from the time that red-hot coke is extruded from a coke oven until it enters the coke dry quenching facility. It was considered appropriate to count this as CO_2 emissions, and it was calculated as carbon emissions from this sector.

Energy consumptions reported under 'Oil Products' are feedstocks for oil products, and was not used for the purpose of combustion. Meanwhile, CO_2 emissions from carbon contained in these feedstocks are calculated with each kind of energy consumption in energy conversion sector and final energy consumption sector (industry, residential, commercial & others and transportation).

2.2.3. Duplication adjustment for Energy Balance Table

The data set of the manufacturing sector indicated in Japan's Energy Balance Table (*General Energy Statistics*) and used as the reference of activity data are based on the Ministry of Economy, Trade and Industry's *Yearbook of the Current Survey of Energy Consumption*. *The Yearbook of the Current Survey of Energy Consumption* is a statistical survey on factories and business institutions of key manufacturing. Factories and business institutions which produce items indicated in Table A 2-8 are surveyed.

In Japan, it is rare that single factory or business institution produces single item. Most factories and business institutions produce various items extending across categories of industry utilizing by-products and surplus business resources. For example, most integrated steelworks produce not only steel products falling into iron & steel industry but also coke and slag cement falling into cement & ceramics industry and chemical products delivered from coal tar and industrial gas falling into chemical industry; i.e. one factory can conduct three different categories of industries and produces many kinds of items at the same time.

Because single factory may report duplicated energy consumption data which can not be classified to certain sector or item, total energy consumption summed up by sector or by item can be larger than actual total energy consumption when totalizing by sector or by item is conducted under the *Yearbook of the Current Survey of Energy Consumption*.

Hence, to avoid duplication adjustment and to adjust the data in the *Yearbook of the Current Survey of Energy Consumption*, the following steps were taken: (1) to calculate total energy consumption by factory and business institution, (2) to calculate total energy consumption by sector and by item including duplication among sectors and items, (3) to express the difference between total energy consumption by sector and item and total energy consumption by factory and business as negative values as "duplication adjustment".

In the *Yearbook of the Current Survey of Energy Consumption*, the adjustment stated above is applied indicating values for "duplication adjustment" when total energy consumption is calculated by sector or by item for Auto Power Generation, Industrial Steam Generation, and Manufacturing.

Calculation method for duplication adjustment

Values of duplication adjustment $=E_p - E_t$

 E_p : Total energy consumption of designated sectors and items by factories and business institutions

 E_t : Total energy consumption by factories and business institutions

Subjects to be surveyed to obtain the data for the *Yearbook of the Current Survey of Energy Consumption* were changed in December, 1997. As shown in Table A 2-8, the survey for the industries of Dyeing, Rubber Product, and Non-ferrous Metals has been discontinued since 1998. Also, since 1998, business institutions or designated items to be surveyed for the industries of Chemical Ceramics,

Clay and Stone Products, Glass Products, Iron and Steel, Non-ferrous Metals, and Machinery has been changed. Therefore, energy consumption for the said industries during 1990-1997 is chronologically inconsistent comparing to that from 1998 and onward. Also, the classification of industries was revised during this period. Because of these changes, energy consumption for duplication adjustment, other industries, and small-to-medium-sized manufacturing significantly fluctuates.

	from 1990 to 19	97	after 1997				
Surveyed industry	Products	Scope of survey	Products	Scope of survey			
	* Pulp	All	* Pulp	All			
	•	Establishments with 50 or	1	Establishments with 50 or			
Pulp and paper industry	* Paper	more employees	* Paper	more employees			
	* Sheet paper	Establishments with 50 or	* Sheet paper	Establishments with 50 or			
		more employees	* *	more employees			
	* Petrochemical products	All	* Petrochemical products				
	* Ammonia and amonia-derived products	All	* Ammonia and amonia-derived products				
	* Soda industries chemicals	All	* Soda industries chemicals				
	* U' 1	All (except high pressure					
Chemical industry (except	* High pressure gas (O ₂ , N ₂ , Ar)	gas products by air fraction		All			
chemical fiber industry)		method(gas container))					
	* Inorganic chemicals and colorant						
	(titanic oxide, active char,	All					
	chinese white, iron oxide)						
		Establishments with 30 or					
	* Oil and fat products and surfactant	more employees					
		more employees					
	* Characteria I Charac	Establishments with 30 or	* Classical Class	Establishments with 30 or			
Chemical fiber industry	* Chemical fibers	more employees	* Chemical fibers	more employees			
	* Petroleum products		* Petroleum products				
Petroleum products industry	(except grease)	All	(except grease)	All			
	* Cement	All	* Cement	All			
Ceramics, clay and stone	* Sheet glass	All	* Sheet glass	All			
products industry (except	* Lime	Establishments with 30 or	* Lime	Establishments with 30 or			
glass product industry, with	Line	more employees	Line	more employees			
the exception of sheet glass	* Fire brick	Establishments with 30 or					
industry)	* Carbon products	more employees All					
Glass product industry		Establishments with 10 or		Establishments with 100 or			
(except sheet glass industry)	* Glass products	more employees	* Glass products	more employees			
· · · · ·	Manufacturers of pig iron, ferroalloys,		Manufacturers of pig iron, ferroalloys,				
	crude steel, semi-finished steel products,		crude steel, semi-finished steel products,				
	forged steel products, cast steel products,		forged steel products, cast steel products,				
	general steel and hot-rolled steel		general steel and hot-rolled steel				
Toon and steel in deaters	materials, cold-rolled wide steel strips,	All	materials, cold-rolled wide steel strips,	All			
Iron and steel industry	cold-rolled electrical steel strips, plated	All	cold-rolled electrical steel strips, plated	All			
	steel materials, special steel hot-rolled		steel materials, special steel hot-rolled				
	steel materials, steel pipes (except cold		steel materials, steel pipes (except cold				
	working steel pipes), or cast iron tubes.		working steel pipes), or cast iron tubes.				
	Iron and steel.		Iron and steel.				
			* Copper	All			
			* Lead	All			
Non-ferrous metal industry	* Non-ferrous metals	All	* Zinc	All			
rion terrous metal maisiry	rion ferrous metals		* Aluminum	All			
			* Alminum secondary ground metal	Establishments with 30 or			
				more employees			
			* Civil engineering machinery, tractors,				
		Eventilitation of the second	metal working and metal processing	Establishments with 500 or			
	* Machinery and appliances		machinery, parts and accessories for	more employees which are			
Machinery industry		more employees Establishments with 100 or	communication and electrictronics equipment, electron tubes,	designated by the Minister			
	* cast and forged products	more employees	semiconductors, ICs, electronics applied	of International Trade and			
		more employees	equipment, automobiles and parts	Industry			
			(including motorcycles)				
	* Dyeing wool	Establishments with 20 or		Į			
Dyeing	* Dyeing fablic	more employees	demise				
D II		Establishments with 30 or					
Rubber product	* Tires and tube	more employees	demise				
	* Copper and brass	All					
	* Flat-rolled aluminum	All					
Non-ferrous metal product	* Electric cable	Establishments with 30 or	demise				
		more employees Establishments with 30 or					
	* Alminum secondary bare metal	more employees					
		more employees					

Table A 2-8 Surveyed industries and products in Yearbook of the Current Survey of Energy Consumption

References

- 1. Environmental Agency, The Estimation of CO₂ Emissions in Japan, 1992
- 2. Research Institute of Economy, Trade & Industry, Kazunari Kaino, *Interpretation of General Energy Statistics*, 2009

Annex 3. Other Detailed Methodological Descriptions for Individual Source

or Sink Categories

3.1. Methodology for Estimating Emissions of Precursors

In addition to the greenhouse gases (e.g., CO_2 , CH_4 , N_2O , HFCs, PFCs, SF_6) reported under the Kyoto Protocol, Japan reports on the emissions of precursors (NOx, CO, NMVOC, SO₂) calculated by established methods. This section explains the source categories for which methodologies for estimating emissions have been provided.

Emissions from the source categories for which estimation methods have not been established are considered to be minimal, and accordingly reported as either "NO" or "NE" (or as "IE" as the case may be) based on the results of historical investigations.

3.1.1. Energy Sector

3.1.1.1. Stationary Combustion (1.A.1., 1.A.2., 1.A.4.: NO_x, CO, NMVOC, SO₂)

3.1.1.1.a. Facilities emitting soot and smokes

1) NO_x and SO_2

• Methodology for Estimating Emissions

General Survey of the Emissions of Air Pollutants by the Ministry of the Environment (MoE) was used as the basis for estimation of NO_x and SO_2 emitted from fixed sources (see Page 3.12 for details of the survey). So as to ensure consistency with the *Revised 1996 IPCC Guidelines* and the *IPCC Good Practice Guidance (2000)*, the following operation isolated the emissions from the energy sector from the emissions listed in the *General Survey of the Emissions of Air Pollutants*:

- 1. All emissions from the following facilities and operations are reported under Energy:
 - Facility: [0101–0103: Boilers]; [0601–0618: Metal rolling furnaces, metal furnaces, and metal forge furnaces]; [1101–1106: Drying ovens]; [2901–3202: Gas turbines, diesel engines, gas engines, and gasoline engines]
 - Operation: [A–D: Accommodation/eating establishments, health care/educational and academic institutions, pubic bathhouses, laundry services]; [F–L: Agriculture/fisheries, mining, construction, electricity, gas, heat distribution, building heating/other operations]
- 2. Emissions from the facilities and operations other than the above and [1301–1304: Waste incinerators], are reported under the Industrial Processes sector. Accordingly, the emissions from the specified sources, calculated by the following methods, are subtracted from the emissions listed in the *General Survey of the Emissions of Air Pollutants* to determine the emissions from the Energy sector.

 $\succ NO_x$

If raw material falls under either [44: Metallurgical coal] or [45: Metallurgical coke], the following equation is used:

<u>Calculation of NO_x emissions from metallurgical coal or coke (to be included in the Industrial</u> <u>Processes sector</u>)

NO_x emissions from metallurgical coal or coke [t-NO_x]

= NO_x emission factor per material [t- NO_x /kcal] × energy consumed per material [kcal]

 \times (1 – denitrification rate [%])

If raw material falls under either [41: Iron/ironstone] or [46: Other], the following equation is used:

<u>Calculation of NO_x emissions from iron/ironstone or other material (to be included in the</u> <u>Industrial Processes sector)</u> NO_x emissions from iron/ironstone or other material [t-NO_x]

= Nitrogen content per material $[t-NO_x] \times (1 - \text{denitrification rate } [\%])$

If, however, the emissions from the Industrial Processes sector calculated by the above equations exceed the emission volume listed in the *General Survey of the Emissions of Air Pollutants*, the total emissions listed in the Survey are considered to be the emissions from the Industrial Processes sector. Materials listed in the categories [42: Sulfide minerals] and [43: Non-ferrous metal ores] are excluded from the calculation due to the lack of data.

≻ SO₂

Emissions from the Industrial Processes sector is calculated from the consumption and sulfur contents of the materials in categories from [41: Iron/ironstone] to [46: Other materials], and subtracted from the emissions listed in the *General Survey of the Emissions of Air Pollutants* to determine SO₂ emissions in the energy sector.

<u>Calculation of SO_x emissions (in the Industrial Processes sector)</u> SO_x emissions [t-SO_x] = Sulfur content per material [t-SO_x] × (1 – desulphurization rate [%])

• Emission factors

> NO_x emission factors for metallurgical coal and coke

 NO_x emission factors for the materials used in the calculation of NO_x emissions from metallurgical coal and coke (in the Industrial Processes sector) were established for each facility and material type based on the *General Survey of the Emissions of Air Pollutants*.

> Denitrification rate

The denitrification rate was calculated by the following equation:

<u>Calculation of denitrification rate</u> Denitrification rate [%] = Denitrification efficiency [%] × (Hours of operation of denitrification unit [h/yr] / Hours of operation of furnace [h/yr]) × (Processing capacity of denitrification unit [m³/yr] / max exhaust gas emission [m³/yr])

The General Survey of the Emissions of Air Pollutants data were used for all items.

Denitrification efficiency: (NO_x volume before treatment – NO_x volume after treatment) / volume of smoke and soot

> Desulphurization rate

Desulphurization rate was calculated by the following equation:

Calculation of desulphurization rate

Desulphurization rate [%]

- = Desulphurization efficiency [%] × (Hours operation of desulphurization unit [h/yr] /
 - Hours operation of furnace [h/yr] × (Processing capacity of desulphurization unit $[m^3/yr]$ / max exhaust gas emission $[m^3/yr]$)

The General Survey of the Emissions of Air Pollutants data were used for all items.

Desulphurization efficiency: (SO₂ volume before treatment – SO₂ volume after treatment) / volume of smoke and soot

• Activity data

> Energy consumption of metallurgical coal or coke

The activity data was calculated by multiplying the consumption of materials (under [44: Metallurgical coal] and [45: Metallurgical coke]) provided in the *General Survey of the Emissions of Air Pollutants* by gross calorific value.

> Nitrogen content of iron/ironstone and other materials

The activity data was calculated by multiplying the weighted average of nitrogen content, calculated from the nitrogen content and consumption of the materials (under [41: Iron/ironstone] and [46: Other materials]) provided in the *General Survey of the Emissions of Air Pollutants*, by the consumption volume of the material.

Sulfur content of various materials

The activity data was calculated by multiplying the weighted average of sulfur content, calculated on the basis of sulfur content and consumption of the material (under [44: Metallurgical coal] through [46:Other materials]) provided in the *General Survey of the Emissions of Air Pollutants*, by the consumption volume of the material.

2) CO

• Methodology for Estimating Emissions

Emissions of CO from the specified sources were calculated by multiplying the energy consumption per facility type by Japan's own emission factor.

• Emission factors

CO emission factors were established based on the summary data in the *Reports on Greenhouse gas emissions estimation methodology* (Japan Sociality Atmospheric Environment, 1996).

• Activity data

Energy consumption according to facility type determined from General Energy Statistics was used for activity data.

3) NMVOC

• Methodology for Estimating Emissions

Emissions of NMVOC from the specified sources were calculated by multiplying the energy consumption per facility type by Japan's own emission factor.

• Emission factors

NMVOC emission factors were established by multiplying the CH₄ emission factor for each facility per fuel type by the ratio of NMVOC emission to CH₄ emission factor per fuel type. The CH₄ emission factors were established from the summary data provided in the *Reports on Greenhouse gas emissions estimation methodology* (Japan Sociality Atmospheric Environment, 1996), while the NMVOC/CH₄ emission factor ratios were determined from the *report on Screening Survey Regarding Measures to Counter Global Warming* (Japan Environmental Sanitation Center) and *Study of Establishment of Methodology for Estimation of Hydrocarbon Emissions* (Institute of Behavioral Science).

Activity data

Energy consumption according to facility type determined from General Energy Statistics (Agency for Natural Resources and Energy) was used for activity data.

3.1.1.1.b. Small facilities (commercial and other sector, manufacturing sector)

• Methodology for Estimating Emissions

 NO_x , CO, NMVOC, and SO_2 emitted by the specified sources were calculated by multiplying energy consumption per facility type by Japan's own emission factor.

• Emission factors

\succ NO_x and SO_x

Emission factors for NO_x and SO_x were established for each fuel type for [0102: Heating system boilers] for facilities listed in [L: Heating systems for buildings/other places of business] in the *General Survey of the Emissions of Air Pollutants* by aggregating emission and energy consumption per fuel type.

> CO

The emission factors established for [0102: Heating system boilers] based on the *Reports on Greenhouse gas emissions estimation methodology* (Japan Sociality Atmospheric Environment, 1996) were adopted as the CO emission factors.

> NMVOC

NMVOC emission factors were established by multiplying the CH₄ emission factors for [0102: Heating system boilers] by the ratio of NMVOC emission to CH₄ emission factor per fuel type. The CH₄ emission factors were established from the *Reports on Greenhouse gas emissions estimation methodology* (Japan Sociality Atmospheric Environment, 1996), while the NMVOC/CH₄ emission factor ratios were determined from the *report on Screening Survey Regarding Measures to Counter Global Warming* (Japan Environmental Sanitation Center) and *Study of Establishment of Methodology for Estimation of Hydrocarbon Emissions* (Institute of Behavioral Science).

Activity data

To determine NO_X and SO_X , energy consumption by small facilities per fuel type was calculated by subtracting energy consumption per fuel type, identified by the *General Survey of the Emissions of Air Pollutants*, from energy consumption per fuel type provided in the *General Energy Statistics* (Agency for Natural Resources and Energy). If the activity data shown in the *General Survey of the Emissions of Air Pollutants* exceeded the activity data provided in the *General Energy Statistics*, the activity data for the specified sources was deemed to be zero. The fuels covered were town gas, LPG, kerosene, and heating oil A. Energy consumption from General Energy Statistics (Agency for Natural Resources and Energy) was used for CO and NMVOCs.

3.1.1.1.c. Residential sector

• Methodology for Estimating Emissions

 NO_x , CO, NMVOC, and SO_2 emissions from the target source were calculated by multiplying energy consumed per facility type by Japan's own emission factor or the IPCC default emission factor.

• Emission factors

$\succ NO_X$

For solid fuels (steaming coal and coal briquettes), emission factors were established by converting the default values provided in the *Revised 1996 IPCC Guidelines* to gross calorific values.

For liquid (kerosene) and gaseous (LPG, town gas) fuels, the emission factors per usage per fuel type provided in the reports by Air Quality Management Bureau, Ministry of the Environment were used. This report calculated the emission factors by weighting the average concentration of NO_x emissions per source unit, obtained through questionnaires and interviews in the household gas appliances industry.

≻ CO

For solid fuels (steaming coal and coal briquettes), emission factors were established by converting the default values provided in the *Revised 1996 IPCC Guidelines* to gross calorific values.

For liquid (kerosene) and gaseous (LPG, town gas) fuels, the emission factors per usage per fuel type provided in the reports by Institute of Behavioral Science were used. This report tabulated the emission factors by usage and fuel using the actual values measured in Tokyo, Yokohama city and Chiba Prefecture.

> NMVOC

For all of the solid (steaming coal and coal briquettes), liquid (kerosene), and gaseous (LPG and town gas) fuels, emission factors were established by converting the default values provided in the *Revised 1996 IPCC Guidelines* to gross calorific values.

$\succ SO_2$

For solid fuels (steaming coal and coal briquettes), emission factors were established by converting the default values provided in the *Revised 1996 IPCC Guidelines* to gross calorific values.

For liquid fuel (kerosene), emission factors were calculated from energy consumption, specific gravity and sulfur content based on the fuel characteristics of kerosene described in information material compiled by the Petroleum Association of Japan.

• Activity data

Consumption by type of fuel for residential use in *General Energy Statistics* has been taken for the activity data. The fuels covered were steaming coal, coal briquettes, kerosene, LPG, and town gas. For the amount of residential fuel consumption by type of use, the ratio of consumption by energy source and by type of use per household, in the Handbook of Energy & Economic Statistics in Japan (The Energy Data and Modeling Center) is used.

3.1.1.1.d. Incineration of waste for energy purposes and with energy recovery

Emissions of NOx, CO, NMVOC and SO₂ from the incineration of waste for energy purposes and from the incineration of waste with energy recovery are reported in the data input cells for "Other Fuels" under the relevant subcategories of 1.A.1 and 1.A.2. Explanations for methodology for estimating emissions, emission factors, and activity data are all given in the section "3.1.5. Wastes".

3.1.1.2. Mobile Combustion (1.A.3: NO_x, CO, NMVOC, and SO₂)

3.1.1.2.a. Road Transportation (1.A.3.b.)

1) NO_x, CO, and NMVOC

• Methodology for Estimating Emissions

 NO_x , CO, and NMVOC emissions from the specified mobile sources were calculated by multiplying the distance traveled per year for each vehicle type per fuel by Japan's own emission factor.

• Emission factors

Emission factors were established from the measured values for each vehicle class per fuel type (Ministry of the Environment). The NMVOC emission factors, however, were calculated by multiplying the emission factor of total hydrocarbon (THC) (per Ministry of the Environment) by the percentage of NMVOC in the THC emission (per Ministry of the Environment).

• Activity data

The activity data used the travel distance per year for each vehicle class per fuel type, which were calculated by multiplying distances traveled in a year for each vehicle class per fuel type, provided in the *Statistical Yearbook of Motor Vehicle Transport* (Ministry of Land, Infrastructure, Transport and Tourism), by the percentage of the distances per fuel types calculated from fuel consumption and cost data.

	14010	115 110	× • • • • • • • •		10 101 40				
Fuel	Vehicle Type	Unit	1990	1995	2000	2005	2006	2007	2008
Gasoline	Light Vehicle	gNOx/km	0.230	0.159	0.157	0.079	0.071	0.057	0.045
	Passenger Vehicle (including LPG)	gNOx/km	0.237	0.203	0.199	0.080	0.072	0.059	0.047
	Light Cargo Truck	gNOx/km	0.873	0.658	0.375	0.200	0.181	0.154	0.128
	Small Cargo Truck	gNOx/km	1.115	0.897	0.478	0.087	0.074	0.056	0.042
	Regular Cargo Truck	gNOx/km	1.833	1.093	0.560	0.162	0.165	0.094	0.061
	Bus	gNOx/km	4.449	3.652	2.438	0.090	0.076	0.063	0.052
	Special Vehicle	gNOx/km	1.471	0.873	0.429	0.121	0.109	0.078	0.052
Diesel	Passenger Vehicle	gNOx/km	0.636	0.526	0.437	0.448	0.444	0.414	0.384
	Small Cargo Truck	gNOx/km	1.326	1.104	1.005	1.009	0.980	0.902	0.829
	Regular Cargo Truck	gNOx/km	5.352	4.586	4.334	4.497	4.430	4.235	4.028
	Bus	gNOx/km	4.226	3.830	3.597	4.070	3.967	3.724	3.502
	Special Vehicle	gNOx/km	3.377	2.761	2.152	3.626	3.555	3.358	3.164

Table A 3-1 NO_x emission factors for automobiles

Source: Ministry of the Environment

Fuel	Vehicle Type	Unit	1990	1995	2000	2005	2006	2007	2008
Gasoline	Light Vehicle	gCO/km	1.749	1.549	1.543	0.971	0.900	0.791	0.692
	Passenger Vehicle (including LPG)	gCO/km	2.325	2.062	2.034	0.936	0.867	0.763	0.667
	Light Cargo Truck	gCO/km	10.420	8.540	5.508	2.773	2.490	2.225	2.032
	Small Cargo Truck	gCO/km	9.656	10.079	8.309	2.075	1.745	1.330	1.013
	Regular Cargo Truck	gCO/km	12.624	10.601	8.950	3.616	3.403	2.155	1.601
	Bus	gCO/km	26.209	25.079	21.938	2.072	1.815	1.589	1.320
	Special Vehicle	gCO/km	12.466	10.666	8.924	2.298	2.015	1.528	1.138
Diesel	Passenger Vehicle	gCO/km	0.480	0.432	0.429	0.374	0.370	0.348	0.317
	Small Cargo Truck	gCO/km	0.975	0.896	0.808	0.601	0.559	0.483	0.413
	Regular Cargo Truck	gCO/km	3.221	2.988	2.440	2.042	1.905	1.670	1.437
	Bus	gCO/km	2.579	2.534	2.200	2.035	1.877	1.618	1.386
	Special Vehicle	gCO/km	2.109	1.893	1.297	1.601	1.480	1.273	1.075

Table A 3-2 CO emiss	sion factors	for automobiles
----------------------	--------------	-----------------

Source: Ministry of the Environment

Fuel	Vehicle Type	Unit	1990	1995	2000	2005	2006	2007	2008
Gasoline	Light Vehicle	gHC/km	0.128	0.050	0.048	0.043	0.039	0.033	0.027
		%	60%	60%	60%	60%	60%	60%	60%
		gNMVOC/km	0.077	0.030	0.029	0.026	0.023	0.020	0.016
	Passenger Vehicle	gHC/km	0.189	0.112	0.104	0.030	0.028	0.024	0.020
	(including LPG)	%	60%	60%	60%	60%	60%	60%	60%
		gNMVOC/km	0.113	0.067	0.062	0.018	0.017	0.014	0.012
	Light Cargo Truck	gHC/km	1.058	0.610	0.274	0.151	0.136	0.115	0.096
		%	60%	60%	60%	60%	60%	60%	60%
		gNMVOC/km	0.635	0.366	0.165	0.091	0.082	0.069	0.058
	Small Cargo Truck	gHC/km	1.188	0.882	0.346	0.068	0.056	0.041	0.030
		%	60%	60%	60%	60%	60%	60%	60%
		gNMVOC/km	0.713	0.529	0.208	0.041	0.034	0.025	0.018
	Regular Cargo Truck	gHC/km	1.658	0.959	0.471	0.103	0.107	0.064	0.043
		%	60%	60%	60%	60%	60%	60%	60%
		gNMVOC/km	0.995	0.575	0.283	0.062	0.064	0.039	0.026
	Bus	gHC/km	3.604	3.164	2.193	0.065	0.051	0.037	0.029
		%	60%	60%	60%	60%	60%	60%	60%
		gNMVOC/km	2.162	1.899	1.316	0.039	0.031	0.022	0.017
Spe	Special Vehicle	gHC/km	1.619	0.786	0.317	0.081	0.072	0.050	0.035
		%	60%	60%	60%	60%	60%	60%	60%
		gNMVOC/km	0.972	0.472	0.190	0.048	0.043	0.030	0.021
Diesel	Passenger Vehicle	gHC/km	0.109	0.098	0.097	0.089	0.088	0.084	0.078
		%	60%	60%	60%	60%	60%	60%	60%
		gNMVOC/km	0.065	0.059	0.058	0.053	0.053	0.051	0.047
	Small Cargo Truck	gHC/km	0.389	0.343	0.258	0.206	0.186	0.150	0.119
		%	60%	60%	60%	60%	60%	60%	60%
		gNMVOC/km	0.233	0.206	0.155	0.124	0.112	0.090	0.071
	Regular Cargo Truck	gHC/km	1.634	1.488	1.040	0.753	0.692	0.588	0.488
		%	60%	60%	60%	60%	60%	60%	60%
Bus		gNMVOC/km	0.980	0.893	0.624	0.452	0.415	0.353	0.293
	Bus	gHC/km	1.273	1.255	0.995	0.807	0.729	0.604	0.495
		%	60%	60%	60%	60%	60%	60%	60%
		gNMVOC/km	0.764	0.753	0.597	0.484	0.438	0.362	0.297
	Special Vehicle	gHC/km	1.101	0.965	0.526	0.575	0.521	0.431	0.350
		%	60%	60%	60%	60%	60%	60%	60%
		gNMVOC/km	0.661	0.579	0.316	0.345	0.312	0.259	0.210

Table A 3-3 NMVOC emission factors for automobiles

Top row: THC emission factors;

Middle row: Percentage of NMVOC in the THC emission;

Source: Ministry of the Environment

2) SO₂

• Methodology for Estimating Emissions

The emissions of SO_2 from these sources were calculated by multiplying fuel consumption by vehicle class and fuel types by Japan's own emission factor.

• Emission factor

Sulfur content (by weight) of each fuel type was used to establish emission factors.

	Tuble 115 + Bunul Content (by weight) by fuel type							
		1990	1995	2000	2005	2006	2007	2008
Gasoline	%	0.008%	0.008%	0.008%	0.008%	0.008%	0.008%	0.008%
Diesel	%	0.350%	0.136%	0.136%	0.136%	0.136%	0.136%	0.136%
LPG	%	0.002%	0.002%	0.002%	0.002%	0.002%	0.002%	0.002%

Table A 3-4 Sulfur content (by weight) by fuel type

Source: Gasoline/LPG – The Institute of Behavioral Science, Diesel oil – Petroleum Association of Japan

• Activity data

Activity data was calculated by multiplying fuel consumption for each vehicle class per fuel type by specific gravity of each fuel type, and converting the resultant values to weight. The fuel consumption data was reported in the *Statistical Yearbook of Motor Vehicle Transport* (Ministry of Land, Infrastructure, Transport and Tourism).

• Completeness

Emissions of NOx, CO, NMVOCs, and SO₂ from natural gas vehicles and motorcycles are reported as "NE".

3.1.1.2.b. Civil Aviation (1.A.3.a: NO_x, CO, NMVOC)

• Methodology for Estimating Emissions

NO_x, CO, and NMVOC emissions from the specified sources were calculated by multiplying the fuel consumption converted to net calorific value by the default emission factors provides in the *Revised 1996 IPCC Guidelines*.

• Emission factors

The default emission factors provided for the "Jet and Turboprop Aircraft" category in the *Revised* 1996 IPCC Guidelines were used.

Gas	EF [g/MJ]
NO _X	0.29
СО	0.12
NMVOC	0.018

Table A 3-5 IPCC default emission factors for civil aviation

Source: Revised 1996 IPCC Guidelines, Vol. 3; Page 1.90, Table 1-47

• Activity data

Figures for jet fuel consumption (for domestic scheduled flights and others [commuter, sightseeing and charter flights]) in the *Statistical Yearbook of Air Transport* (Ministry of Land, Infrastructure, Transport and Tourism) were converted to net calorific value for the calculation of activity data.

• Completeness

Emissions of NOx, CO, and NMVOCs from aviation fuel consumption are reported as "NE".

3.1.1.2.c. Navigation (1.A.3.d.: NO_x, CO, NMVOC)

• Methodology for Estimating Emissions

NO_x, CO, and NMVOC emissions from the specified sources were calculated by multiplying the fuel consumption converted to net calorific value by the default emission factors provided in the *Revised 1996 IPCC Guidelines*.

• Emission factors

The default emission factors provided for the "Ocean-Going Ships" category in the *Revised 1996 IPCC Guidelines* were used.

Gas	Emission factor [g/MJ]
NO _x	1.8
СО	0.18
NMVOC	0.052

Table A 3-6	IPCC	default	emission	factors f	for ocean-s	going ships

Source: Revised 1996 IPCC Guidelines, Vol. 3; Page 1.90, Table 1-48

Activity data

The marine fuel consumption data per fuel type (diesel, heating oil A, heating oil B, and heating oil C) provided in the *General Energy Statistics* (Agency for Natural Resources and Energy) were converted to net calorific value for the calculation of activity data. The consumption data were based on the statistical data on marine transport (coastal services [passenger and freight]) in the *The Survey on Transport Energy* (Ministry of Land and Transport).

3.1.1.2.d. Railways (1.A.3.c.: NO_x, CO, and NMVOC)

• Methodology for Estimating Emissions

 NO_x , CO, and NMVOC emissions from the specified sources were calculated by multiplying fuel consumption converted to net calorific value by the default emission factors provided in the *Revised 1996 IPCC Guidelines*.

• Emission factors

The default emission factors provided for the "Locomotives" category in the *Revised 1996 IPCC Guidelines* were used.

Table A 5-7 If CC default emission factors for focomotives				
Gas	Emission factor [g/MJ]			
NO _x	1.8			
СО	0.61			
NMVOC	0.13			

Table A 3-7 IPCC default emission factors for locomotives

Source: Revised 1996 IPCC Guidelines, Vol. 3; Page 1.89, Table 1-47

• Activity data

The diesel oil consumption by railways in the *General Energy Statistics* (Agency for Natural Resources and Energy) was used for the calculation of activity data.

3.1.1.3. Fugitive emissions from fuels (1.B.: NMVOC)

3.1.1.3.a. NMVOCs fugitive emissions at oil refinery

• Methodology for Estimating Emissions

NMVOC emissions from the specified sources were calculated by multiplying the capacity of oil refineries (BPSD: Barrels Per Served Day) by Japan's own emission factors and annual days of operation.

• Emission factor

Based on the *Study on the total system for prevention of HC-Vapor in petroleum industries* (Agency of Natural Resources and Energy, 1975), the emission factor was established as 0.05767 (g-NMVOC/BPSD). The number of days of operation for atmospheric distillation was established as 350 days.

• Activity data

Figures for the BPSD based on the results of surveys conducted by the Ministry of Economy, Trade and Industry, were used for the calculation of activity data.

3.1.1.3.b. NMVOCs emissions from lubricant oil production

Methodology for Estimating Emissions

NMVOC emissions from the specified sources were calculated by multiplying gross sales amount to consumers by Japan's own emission factors for toluene and methyl ethyl ketone.

• Emission factors

Based on internal documents of Yokohama city, emission factors were established for toluene and methyl ethyl ketone.

Table A 3-8 Toluene and methyl ethyl ketone emission factors in lubricant oil production

Gas	Emission factor (g/kL)
Toluene	333.2
Methyl ethyl ketone	415.5

Source: Yokohama city

• Activity data

Figures for gross sales amount to consumers, provided in the *Yearbook of Mineral Resources and Petroleum Production Statistics* (Ministry of Economy, Trade and Industry), were used for the calculation of activity data.

3.1.1.3.c. NMVOCs fugitive emissions at storage facilities

• Methodology for Estimating Emissions

NMVOC emissions from the specified sources were calculated on the assumption that yearly emissions were the same as the 1983 volume of losses from breathing and acceptance for cone-roof type storage tanks and shipping losses from floating-roof type storage tanks at refineries and storage tanks (Petroleum Association of Japan).

Emission factor

No emission factors were established.

• Activity data

No activity data were calculated.

3.1.1.3.d. NMVOCs fugitive emissions at shipping facilities

Methodology for Estimating Emissions

NMVOC emissions from specified sources were calculated by multiplying the 1983 figures for NMVOC emissions from ships and tank lorries/freight cars by the 1983 ratio of amount of shipment or that of sales to consumers.

• Emission factor

No emission factors were established.

• Activity data

Figures for shipment of crude oil not to be refined, gross sales amount of gasoline to consumers, export of gasoline, gross sales amount of naphtha to consumers, export of naphtha, gross sales amount of jet fuel to consumers and export of jet fuel provided in the *Yearbook of Mineral Resources and Petroleum Products Statistics* (Ministry of Economy, Trade and Industry) were used for the calculation of activity data. Table 9 shows the relationship between the NMVOC emission sources and activity data.

NMVOC er	nission source	Activity data used in calculation
	Crude oil	shipment of crude oil not to be refined
	Gasoline	gross sales amount of gasoline to consumers
	Gasoline	export of gasoline
Ships	Norhtho	gross sales amount of naphtha to consumers
1	Naphtha	export of naphtha
	Ist fuel	gross sales amount of jet fuel to consumers
	Jet fuel	export of jet fuel
Tank lorries	Gasoline	gross sales amount of gasoline to consumers
	Naphtha Jet fuel	gross sales amount of naphtha to consumers
/Freight cars		gross sales amount of jet fuel to consumers

Table A 3-9 Relationship between the NMVOC emission sources and activity data

3.1.1.3.e. NMVOCs fugitive emissions from gas stations

• Methodology for Estimating Emissions

NMVOC emissions from specified sources were calculated by multiplying amount of sales to consumers by Japan's own emission factors for oil accepting and providing, and subtracting the portion of fuels prevented from fugitive emissions by a vapor return facility.

• Emission factor

Emission factors were established for oil accepting and for oil providing, based on the *Study on the total system for prevention of HC-Vapor in petroleum industries* (Agency of Natural Resources and Energy, 1975).

	Emission factor (kg/kL)
Oil accepting	1.08
Oil providing	1.44

Table A 3-10 Emission factors at gas stations during oil accepting and providing

Source: Study on the total system for prevention of HC-Vapor in petroleum industries (Agency of Natural Resources and Energy, 1975)

• Activity data

Figures for sales amount of gasoline (for automobiles) in the *Yearbook of Mineral Resources and Petroleum Products Statistics* (Ministry of Economy, Trade and Industry) were used for the calculation of activity data.

Fugitive emissions prevented by a vapor return facility during oil accepting at gas stations were calculated by the following equation:

<u>Calculation of fugitive emissions prevented by vapor return facility during oil accepting</u> Fugitive emissions prevented by vapor return facility during fuel delivery [t]

- = $\Sigma_{\text{Prefecture}}$ {(gasoline sales per prefecture [ML] × emission factor for fuel delivery [kg/kL])
 - \times (No. of service stations with vapor return facility per prefecture
 - / No. of service stations per prefecture)}

Based on the data provided in the *Yearbook of Mineral Resources and Petroleum Products Statistics* (Ministry of Economy, Trade and Industry). For the number of service stations after FY 2001, the number of service stations registered under law was used.

3.1.2. Industrial Processes

3.1.2.1. Mineral Products, Chemical Industry, Metal Production, and Other Production (2.A., 2.B., 2.C., 2.D.,: NO_x, SO₂)

• Methodology for Estimating Emissions

 NO_x and SO_2 emissions from the specified sources were calculated for sources not included in the following facilities or operations by isolating the emissions from the Industrial Processes sector.

- Facility: [0101–0103: Boilers]; [0601–0618: Metal rolling furnaces, metal furnaces, and metal forge furnaces]; [1101–1106: Drying ovens]; [1301–1304: Waste incinerators]; [2901–3202: Gas turbines, diesel engines, gas engines, and gasoline engines]
- Operation: [A–D: Accommodation/eating establishments, health care/educational and academic institutions, pubic bathhouses, laundry services]; [F–L: Agriculture/fisheries, mining, construction, electricity, gas, heat distribution, building heating/other operations]

$\succ NO_X$

If raw material falls under either [44: Metallurgical coal] or [45: Metallurgical coke], the following equation is used:

<u>Calculation of NO_x emissions from metallurgical coal or coke (for Industrial Processes sector)</u> NO_x emissions from metallurgical coal or coke [t-NO_x]

- = NO_x emission factor per origin [t- NO_x /kcal] × energy consumed per material [kcal]
- \times (1 denitrification rate [%])

If raw material falls under either [41: Iron/ironstone] or [46: Other], the following equation is used:

Calculation of NO_x emissions from iron/ironstone or other material (for Industrial Processes sector)

NO_x emissions from iron/iron ore or other material [t-NO_x]

= Nitrogen content per material $[t-NO_x] \times (1 - denitrification rate [\%])$

If, however, the emissions from the Industrial Processes sector calculated by the above equations exceed the emission volume listed in the *General Survey of the Emissions of Air Pollutants*, the total emissions listed in the Survey are considered to be the emissions from the Industrial Processes sector. Materials listed in the categories [42: Sulfide minerals] and [43: Non-ferrous metal ores] are excluded from the calculation due to the lack of data.

≻ SO₂

Based on the consumption and sulfur contents of the materials in the categories from [41: Iron/ironstone] to [46: Other materials], SO_2 emissions from the Industrial Processes sector are calculated as follows:

<u>Calculation of SO_x emissions (in the Industrial Processes sector)</u> SO_x emissions [t-SO_x] = Sulfur content per material [t-SO_x] × (1 – desulphurization rate [%])

• Emission factor

> NO_x emission factors for metallurgical coal and coke

 NO_x emission factors for the materials used in calculation of NO_x emissions from metallurgical coal and coke (in the Industrial Processes sector) were established for each facility and material type based on the *General Survey of the Emissions of Air Pollutants*.

> Denitrification rate

The denitrification rate was calculated by the following equation:

Calculation of denitrification rate

Denitrification rate [%]

= Denitrification efficiency [%] \times (Hours of operation of denitrification unit [h/yr]

/ Hours of operation of furnace [h/yr]) \times (Processing capacity of denitrification unit [m³/yr]

/ max. exhaust gas emission [m³/yr])

The General Survey of the Emissions of Air Pollutants data were used for all items.

Denitrification efficiency: (NO_x volume before treatment – NO_x volume after treatment) / volume of smoke and soot

Desulphurization rate

The desulphurization rate was calculated by the following equation:

Calculation of desulphurization rate

Desulphurization rate [%]

= Desulphurization efficiency [%] × (Hours operation of desulphurization unit [h/yr]

/ Hours operation of furnace [h/yr] × (Processing capacity of desulphurization unit $[m^3/yr]$ / max. exhaust gas emission $[m^3/yr]$)

The General Survey of the Emissions of Air Pollutants data were used for all items.

Desulphurization efficiency: (SO₂ volume before treatment – SO₂ volume after treatment) / volume of smoke and soot

• Activity data

> Energy consumption of metallurgical coal or coke

The activity data was calculated by multiplying the consumption of materials (under [44: Metallurgical coal] and [45: Metallurgical coke]) provided in the *General Survey of the Emissions of Air Pollutants* by gross calorific value.

Nitrogen content of iron/ironstone and other materials

The activity data was calculated by multiplying the weighted average of nitrogen content, calculated from the nitrogen content and consumption of the materials (under [41: Iron/ironstone] and [46:Other raw materials]) provided in the *General Survey of the Emissions of Air Pollutants*, by the consumption

volume of the material.

> Sulfur content of various materials

The activity data was calculated by multiplying the weighted average of sulfur content, calculated on the basis of sulfur content and consumption of the material (under [41: Iron/ironstone] through [46: Other materials]) provided in the *General Survey of the Emissions of Air Pollutants*, by the consumption volume of the material.

3.1.2.2. Other (2.G.: NMVOC)

3.1.2.2.a. NMVOCs emissions from petrochemical manufacturing

• Methodology for Estimating Emissions

NMVOCs emissions from petrochemical manufacturing were calculated by multiplying the production volume per type of petrochemical product by Japan's own emission factors.

• Emission factors

Emission factors were established based on the *Basic Study on HC Sources* (Institute of Behavioral Science, 1987).

• Activity data

Figures in the petrochemical production volume by type in the *Yearbook of Mineral Resources and Petroleum Products Statistics* (Ministry of Economy, Trade and Industry) were used for the calculation of activity data.

Table A 5-11 NWV OC emission factors by performent product				
Petrochemical product	Emission factor (kg/t)			
Propylene oxide	0.828			
Vinyl chloride monomer	3.288			
Styrene monomer	0.529			
Vinyl acetate	1.299			
B.T.X.	0.080			
Ethylene oxide	0.421			
Acrylonitrile	1.035			
Butadiene	0.210			
Polyethylene (produced under middle-low pressure)	1.851			
Polyethylene (produced under high pressure)	1.088			
ABS, AS resins	1.472			
Synthetic rubber	0.248			
Acetaldehyde	0.016			
Terephthalic acid	0.534			
Polypropylene	2.423			
Ethylene and Propylene	0.016			

Table A 3-11 NMVOC emission factors by petrochemical product

Source: Basic Study on HC Sources (Institute of Behavioral Science, 1987).

3.1.2.2.b. NMVOCs emissions from storage facilities for chemical products

Methodology for Estimating Emissions

NMVOCs emissions from storage facilities for chemical products were calculated on the assumption that the emission volumes were same as the 1983 combined yearly emissions of "Petrochemicals" and

"Others", given in the *Basic Study on HC Sources* (Institute of Behavioral Science, 1987). "Petrochemicals" covered base chemicals (for the chemical industry); "Other" covered solvents (shipped primarily for non-feedstock use).

• Emission factors

No emission factors were established.

Activity data

No activity data were calculated.

3.1.2.2.c. NMVOCs emissions from shipping facilities for chemical products

• Methodology for Estimating Emissions

NMVOCs emissions from shipping facilities for chemical products were calculated on the assumption that the emission volumes were same as the 1983 combined yearly emissions of "Petrochemicals" and "Others", shown in the *Basic Study on HC Sources* (Institute of Behavioral Science, 1987). "Petrochemicals" covered base chemicals (for the chemical industry); "Other" covered solvents (shipped primarily for non-feedstock use).

• Emission factors

No emission factor has been established.

• Activity data

No activity data has been established.

3.1.3. Sectors that use solvents and other products

3.1.3.1. NMVOCs emissions from paint solvent use (3.A.: NMVOC)

• Methodology for Estimating Emissions

Emissions of NMVOC were calculated by multiplying the consumption of solvent by the NMVOC emission rate (the percentage of NMVOC not removed but released into atmosphere).

• Emission factors

The NMOVC emission rate (92.54[%] = 100[%] - 7.46[%]) calculated from the NMVOC removal rate (7.46[%]) estimated by the Ministry of the Environment (1983) was used as the emission factor.

Activity data

Consumption of solvent was calculated by multiplying the 1990 data for solvent consumption per solvent type by the 1990 ratio of solvent consumption in paint production. The consumption data were extracted from the *Present condition and prospect about VOCs in Paint Industry* (Japan Paint Manufacturers Association). The solvent consumption ratio was provided in the *Yearbook of Chemical Industries Statistics* (Ministry of Economy, Trade and Industry). As the statistical records on solvent consumption in paint production were discontinued, the data for 2001 were substituted for values for years 2002 and beyond.

Calculation of annual consumption of paint solvent A in Year XAnnual consumption of paint solvent A in Year X[t]= Annual consumption of paint solvent A in 1990[t]×(Annual consumption of paint production solvent B in Year X[t]

/Annual consumption of paint production solvent B in 1990 [t])

Table A 3-12 Relationship of types of paint solvents and solvents for paint production used in calculation

	liculation
Types of Paint Solvent (A)	Types of Paint Production Solvents Used in
	Calculation (B)
Aliphatic compound hydrocarbon	Mineral spirit
Alicyclic compound hydrocarbon	Toluene, xylene, and other aromatic hydrocarbon
Aromatic compound hydrocarbon	Toluene, xylene, and other aromatic hydrocarbon
Petroleum mixed solvent	Mineral spirit
Alcohol solvent	Alcohol solvent
Ether, Ether Alcohol solvent	Alcohol solvent
Ester solvent	Ester solvent
Ketone solvent	Ketone solvent
Chloric solvent	Solvent with a high boiling point
Other non-chloric solvent	Solvent with a high boiling point

3.1.3.2. Degreasing, dry cleaning (3.B.: NMVOC)

3.1.3.2.a. NMVOCs emissions from metal cleansing

• Methodology for Estimating Emissions

NMVOCs emissions from metal cleansing were calculated by multiplying the shipping amount of solvents (trichloro ethylene and tetrachloro ethylene) in degreasing by Japan's own emission factor.

• Emission factors

Emission factors were established as the ratio of emission to shipment (0.66 [Mg/t] = 88,014 / 133,000), based on data for 1983 in the *Report on the Survey of Measures for Stationary Sources of Hydrocarbons* (Institute of Behavioral Science, 1991).

• Activity data

Shipping amount of solvents was calculated by multiplying the sales volume of trichloro ethylene and tetrachloro ethylene, provided in the *Yearbook of Chemical Industries Statistics* (Ministry of Economy, Trade and Industry), by the ratio of consumption for metal cleansing use to total consumption of organic chloric solvent (3 type) (0.2 = 11,266 / 56,350), shown in documents from the Perchlo Association.

3.1.3.2.b. NMVOCs emissions from dry cleaning

• Methodology for Estimating Emissions

NMVOCs emissions from dry cleaning were calculated on the assumption that the volume of NMOVC emissions was the same as the volume of solvents used in dry cleaning (petroleum solvents and tetrachloro ethylene).

• Emission factors

No emission factors were established, as all the solvents used in dry cleaning were assumed to be discharged into the atmosphere.

• Activity data

Estimates by the Institute of Cleaning Research were used for the calculation of the annual consumption of petroleum solvents and tetrachloro ethylene in 1990 and 1991.

Annual consumption in 1992 and in subsequent years was calculated by the following equation on the assumption that solvent consumption was proportional to the number of machines in operation:

Calculation of annual consumption of solvents in Year X

Annual consumption of solvents in Year X [t]

= $\Sigma_{\text{petroleum-based solvent/tetrachloroethylene}}$ {annual consumption of petroleum solvents or tetrachloroethylene in 1991 [t] × (the number of machines in operation in Year X / the number of machines in operation in 1991)}

3.1.3.3. Chemical products, manufacture and processing (3.C.: NMVOC)

3.1.3.3.a. NMVOCs emissions from paint production

• Methodology for Estimating Emissions

NMVOCs emissions from paint production were calculated by multiplying the amount of solvent treated in paint production by Japan's own emission factors.

• Emission factors

Emission factors were established based on the *Manual to control HC emissions* (Air Quality Management Bureau, Ministry of the Environment, 1982).

• Activity data

Amount of solvent treated in paint production in the *Yearbook of Chemical Industries Statistics* (Ministry of Economy, Trade and Industry) was used for the calculation of activity data. The usage of ketone solvents was allocated to "Methyl isobutyl ketone" and "Other ketones" (with approx. 63% allocated to methyl isobutyl ketones), based on the interview survey results included in *Manual to control HC emissions* (Air Quality Management Bureau, Ministry of the Environment, 1982). For 2002 and subsequent years, the 2001 values were used because the statistics were discontinued.

Solvent	Emission factor (%)					
Toluene	0.3					
Xylene	0.2					
Other aromatic hydrocarbon	0.2					
Mineral spirit	0.2					
Alcohol solvent	0.3					
Ester solvent	0.3					
Methyl isobutyl ketone	0.3					
Other ketones	0.2					
Solvent with a high boiling point	0.1					

Table A 3-13 Emission factors for solvents used as raw material for paints

Source: Manual to control HC emissions (Air Quality Management Bureau, Ministry of the Environment, 1982)

3.1.3.3.b. NMVOCs emissions from printing ink production

• Methodology for Estimating Emissions

NMVOCs emissions from printing ink production were calculated by multiplying amount of solvent treated in paint production, by Japan's own emission factors.

• Emission factors

Emission factors were established based on the results of surveys conducted by the Ministry of the Environment, as well as *Basic study on HC sources* (Institute of Behavioral Science, 1987).

Solvent	Emission factor
Petroleum solvent ^{a)}	0.00033
Aromatics hydrocarbon ^{a)}	0.00108
Alcohol solvent ^{a)}	0.00105
Ester, ether solvent ^{b)}	0.00117

Table A 3-14 Emission	factors for solvents used	as materials in printing ink
	inclusion solvenus used	as materials in printing mik

Source: a: Surveys by the Ministry of the Environment

b: Basic Study on HC sources (Institute of Behavioral Science, 1987)

• Activity data

Amount of solvent treated in paint production in the *Yearbook of Chemical Industries Statistics* (Ministry of Economy, Trade and Industry) were used for the calculation of activity data. For 2002 and subsequent years, the 2001 values were used because the statistics were discontinued.

3.1.3.3.c. NMVOCs emissions from printing ink solvent use

• Methodology for Estimating Emissions

NMVOCs emissions from printing ink solvent use were calculated by multiplying the 1983 figures for NMVOC emissions from printing ink solvent use by the ratio of 1983 and each year about shipment amount of solvent.

• Emission factor

Emission factors were established as "0.3".

• Activity data

Shipment amount of solvent in the *Yearbook of Chemical Industries Statistics* (Ministry of Economy, Trade and Industry) were used for the calculation of activity data.

3.1.3.3.d. NMVOCs emissions from polyethylene laminate

• Methodology for Estimating Emissions

NMVOCs emissions from polyethylene laminate were calculated on the assumption that the yearly emissions equaled the 1983 emissions data provided in the *Basic study on HC sources* (Institute of Behavioral Science, 1987)

• Emission factor

No emission factors were established.

Activity data

No activity data were calculated.

3.1.3.3.e. NMVOCs emissions from solvent-type adhesive use

• Methodology for Estimating Emissions

NMVOCs emissions from solvent-type adhesive use were assumed to equal the amount of solvents (xylene, toluene) used in adhesives.

• Emission factors

No emission factors were established as all the solvents used in adhesives were assumed to be discharged into the atmosphere.

Activity data

Shipment amount of adhesive were calculated by multiplying amount of adhesives shipment by type (on calendar year basis), shown in the *Current survey report on adhesive* (Japan Adhesive Industry Association), by solvent content rate for each type shown in the *Current survey report on adhesive* (Japan Adhesive Industry Association).

Tuble 115 15 Bolt ent content in autobites of type					
Adhesive	Solvent content (%)				
Vinyl acetate resin solvent type	65				
Other resin solvent type	50				
CR solvent type	71				
Other synthetic rubber solvent type	76				
Natural rubber solvent type	67				

Table A 3-15 Solvent content in adhesives by type

Source: Current survey report on adhesive (Japan Adhesive Industry Association)

3.1.3.3.f. NMVOCs emissions from gum solvent use

• Methodology for Estimating Emissions

NMVOCs emissions from gum solvent use were calculated by multiplying the consumption of solvents in rubber by NMVOC emission rate (the percentage of NMVOC not removed but released into atmosphere).

• Emission factors

The NMVOC emission rate (92.7[%] = 100[%] - 7.3[%]) was used. This was calculated from the 1983 estimate of the NMVOC removal rate (7.3%), provided in the *Basic study on HC sources* (Institute of Behavioral Science, 1987).

• Activity data

The annual consumption of solvents in rubber was calculated by multiplying the consumption of petrol for solvent use by the ratio of the amount of rubber petrol use to total amount of gum solvent use (0.42 = 21,139 / 50,641). The consumption data were obtained either from the *Statistics of rubber products* (Ministry of Economy, Trade and Industry) or the results of surveys by the Japan Rubber Manufacturers Association; the usage rate was provided by the *Basic study on HC sources* (Institute of Behavioral Science, 1987).

3.1.3.4. Other (3.D.: NMVOC)

3.1.3.4.a. NMVOCs emissions from other solvent use for production

• Methodology for Estimating Emissions

NMVOCs emissions from other solvent use for production were calculated on the assumption that the yearly emissions equaled the 1983 emissions shown in the Basic study on HC sources (Institute of Behavioral Science, 1987).

• Emission factor

No emission factors were established.

• Activity data

No activity data were calculated.

3.1.4. Agriculture

3.1.4.1. Field burning of agricultural residues (4.F.)

3.1.4.1.a. Rice Straw, Rice Chaff & Straw of Wheat, Barley, Oats and Rye (4.F.1.: CO)

• Methodology for Estimating Emissions

CO emissions from the specified sources were calculated by using Japan's own Methodology for Estimating Emissions shown below (Rye and oats were excluded from the estimate because there are no Japan-specific emission factors for them):

Calculation of CO emission from burning of rice straw, chaff, and wheat straw

CO emission from burning of rice and wheat straw and chaff [t-CH₄]

 $=\Sigma_{\text{rice straw, wheat straw, chaff}}$ (amount of rice or wheat straw or chaff burnt [t]

× carbon content (dry weight) × percentage of carbon released as CO

 \times mol ratio of CO to CO₂ in emitted gases)

• Emission factors

Emission factors were established for each parameter based on the measured data available in Japan.

Table A 5-10 Carbon content of fice/wheat straw and chain							
	Carbon content Note						
Rice straw 0.356 Adopted the mean value between 0.369^{a} and 0.342^{b} .							
Chaff	Chaff 0.344 Value measured by Bando et al. ^a						
Wheat straw	0.356	Assumed to be the same as for rice straw					

a:Bando, Sakamaki, Moritomi, and Suzuki, "Study of analysis of emissions from biomass burning" (from the Source: 1991 Report on Studies on Comprehensive Promotion Cost of Environmental Studies (National Institute of Environmental Studies, 1992))

b: Y Miura and T Kan'no, "Emissions of trace gases (CO₂, CO, CH₄, and N₂O) resulting from rice straw burning", Soil Sci. Plant Nutr., 43(4),849-854, 1997

	Percentage of carbon emitted as CO	Note
Rice straw	0.684	Adopted the median value between 0.8^{a} and 0.567^{b} .
Chaff	0.8	Value measured by Bando et al. ^a
Wheat straw	0.684	Assumed to be the same as for rice straw

Table A 3-17 I	Percentage of	carbon emitte	d as CO f	from rice and	wheat straw	and chaff
14010113-171	i ciccinage oi	carbon chintle		from free and	which shaw a	and chan

Source: a:Bando, Sakamaki, Moritomi, and Suzuki, "Study of analysis of emissions from biomass burning" (from the 1991 Report on Studies on Comprehensive Promotion Cost of Environmental Studies (National Institute of Environmental Studies, 1992))

b: Y Miura and T Kan'no, "Emissions of trace gases (CO₂, CO, CH₄, and N₂O) resulting from rice straw burning", Soil Sci. Plant Nutr., 43(4),849–854, 1997

Table A 3-18 Mol ratio of CO to CO₂ in gases emitted from burning rice and wheat straw and chaff

	Mol ratio of CO to CO_2 in emitted gas	Note
Rice straw	0.219	Adopted the mean value between values by a and b.
Chaff	0.255	Value measured by Bando et al. ^a
Wheat straw	0.219	Assumed to be the same as for rice straw

Source: a:Bando, Sakamaki, Moritomi, and Suzuki, "Study of analysis of emissions from biomass burning" (from the 1991 Report on Studies on Comprehensive Promotion Cost of Environmental Studies (National Institute of Environmental Studies, 1992))

b: Y Miura and T Kan'no, "Emissions of trace gases (CO₂, CO, CH₄, and N₂O) resulting from rice straw burning", Soil Sci. Plant Nutr., 43(4),849–854, 1997

Activity data

Amounts of rice straw, chaff, and wheat straw burned were drawn from amounts used in 4.F.1. to calculate CH_4 and N_2O emissions from the burning of agricultural residue. Amounts of wheat straw burned were obtained by using the following equation.

Amount of wheat/barley straw burned = (amounts of wheat and barley burned) $\times 0.5$

Note: Based on expert judgment, the ratio of straw to chaff was set at 1:1.

3.1.5. Land Use, Land-Use Change and Forestry

3.1.5.1. Biomass burning (5(V))

• Methodology for Estimating Emissions

For CO and NOx emissions due to biomass burning, Tier 1 method is used.

> Forest land

(CO)

 $bbGHG_{f} = L_{forestfires} \times ER$

NOx)

 $bbGHG_{f} = L_{forestfires} \times ER \times NC_{ratio}$

 $\begin{array}{ll} bbGHG_{f} &: \text{GHG emissions due to forest biomass burning} \\ L_{forest fires} &: \text{Carbon released due to forest fires}(tC/yr) \\ ER &: \text{Emission ratio} (\text{CO} : 0.06, \text{NO}_{x} : 0.121) \\ NC_{ratio} &: \text{NC ratio} \end{array}$

• Emission Factor

Emission ratio

The following values are applied to emission ratios for CO and NOx due to biomass burning. CO: 0.06, CH₄: 0.012, N₂O: 0.007, NOx: 0.121 (default value stated in the GPG-LULUCF, Table 3A.1.15)

> NC ratio

The following values are applied to NC ratio of NOx. NC ratio: 0.01 (default value stated in the GPG-LULUCF p.3.50)

• Activity data

For activity in Forest land, carbon released by forest fire is used. For detailed information, see the description on the activity data in section 7.13 in Chapter 7.

3.1.6. Wastes

3.1.6.1. Waste incineration (6.C.)

3.1.6.1.a. Municipal Solid Waste Incineration (6.C.–)

• Methodology for Estimating Emissions

The NO_x, CO, NMVOC, and SO₂ emissions from the specified sources were calculated by multiplying the incineration amount of MSW in each incinerator type (Continuous Incinerators, Semi-continuous Incinerators, Batch type Incinerators, Gasification melting furnaces) by Japan's own emission factors. These emissions are categorized following the methods given in chapter 8 based on incinerations either with or without energy recovery. The former emissions are reported in the Energy sector, while the latter are reported in the Waste sector.

• Emission factors

$\succ NO_X, SO_2$

For incinerators, emission factors were established for each incinerator type by using the emission volume and volume of treated waste identified in the *General Survey of the Emissions of Air Pollutants*. (The categories of incinerator types included: [1301: Waste incinerator (municipal solid waste; continuous system)] and [1302: Waste incinerator (municipal solid waste; batch system)]). The incineration material was [53: Municipal solid waste].) It should be noted that while the *General Survey of the Emissions of Air Pollutants* classified the incinerators into two classes (Continuous and Batch), this report classifies incinerators into three classes ("Continuous", "Semi-continuous", and "Batch type") by dividing the Continuous system and assigning those which operated for less than 3,000 hours to the "Semi-continuous" class.

For gasification melting furnaces, the value for Continuous Incinerators with a similar incineration method was used.

	Item	Unit	1990	1995	2000	2005	2006	2007	2008
	Continuous Incinerator	kg-NOx/t	1.238	1.213	1.127	1.127	1.127	1.127	1.127
NOx	Semi-Continuous Incinerator	kg-NOx/t	1.055	1.226	1.226	1.226	1.226	1.226	1.226
NOX	Batch type Incinerator	kg-NOx/t	1.137	1.918	1.850	1.850	1.850	1.850	1.850
	Gasification melting furnace	kg-NOx/t	1.238	1.213	1.127	1.127	1.127	1.127	1.127
	Continuous Incinerator	kg-SO ₂ /t	0.555	0.539	0.361	0.361	0.361	0.361	0.361
SO_2	Semi-Continuous Incinerator	kg-SO ₂ /t	0.627	1.141	0.712	0.712	0.712	0.712	0.712
	Batch type Incinerator	kg-SO ₂ /t	1.073	1.625	1.714	1.714	1.714	1.714	1.714
	Gasification melting furnace	kg-SO ₂ /t	0.555	0.539	0.361	0.361	0.361	0.361	0.361

Table A 3-19 NO_x and SO₂ emission factors for municipal waste incineration by facility type

The data after 2000 were used for 2001 and subsequent years.

Source: Research of Air Pollutant Emissions from Stationary Sources (Ministry of the Environment)

≻ CO

For incinerators, based on the emission factors for individual facilities summarized in the *Reports on Greenhouse gas emissions estimation methodology* (Japan Sociality Atmospheric Environment, 1996) as well as other reports, the emission factors were established for each incinerator class. It should be noted that while the Atmospheric Environment Society report subdivided the facilities by furnace type (e.g., stoker, fluidized bed, etc.), this report determined the emission factors for three classes of "Continuous", "Semi-continuous" and "Batch type" by weighting the average of incinerated volume for each furnace.

For gasification melting furnaces, the value for continuous stoker furnaces with a similar incineration method was used.

Table A 3-20 CO emission factors for municipal waste incineration by facility type

	Furnace Type	Unit	1990	1995	2000	2005	2006	2007	2008
CO	Continuous Incinerator	gCO/t	557	557	555	554	554	554	554
	Semi-Continuous Incinerator	gCO/t	548	548	567	591	607	610	610
	Batch type Incinerator	gCO/t	8,237	8,237	8,298	8,341	8,344	8,347	8,347
	Gasification melting furnace	gCO/t	567	567	567	567	567	567	567

* The data for 2000 were used for 2001 and subsequent years.

Source: Reports on Greenhouse gas emissions estimation methodology (Japan Sociality Atmospheric Environment, 1996), and others.

> NMVOC

For both incinerators and gasification melting furnaces, NMVOC emission factors were established by multiplying the CH_4 emission factors for each furnace type per fuel type by "NMVOC/CH₄", the emission ratio for fuel type. The ratio was determined by using the reference material by Japan Environmental Sanitation Center and Institute of Behavioral Science, which estimated CH_4 and NMVOC emissions per unit calorific value.

Table A 3-21 NMVOC emission factors for municipal waste incineration by facility type

140	Tuble 115 21 1011 VOC emission factors for mainerpar waste memoration by facinty type								
	Furnace Type	Unit	1990	1995	2000	2005	2006	2007	2008
NMVOC	Continuous Incinerator	gNMVOC/t	0.9	0.9	0.9	0.3	0.3	0.3	0.3
	Semi-Continuous Incinerator	gNMVOC/t	7.8	7.8	8.5	2.2	2.3	2.3	2.3
	Batch type Incinerator	gNMVOC/t	9.1	9.1	9.5	1.5	1.5	1.5	1.5
	Gasification melting furnace	gNMVOC/t	-	-	0.6	0.8	0.8	0.8	0.8

The data for 2000 were used for 2001 and subsequent years.

Source: Report on Screening Survey Regarding Measures to Counter Global Warming (Japan Environmental Sanitation Center, 1989), Study of Establishment of Methodology for Estimation of Hydrocarbon Emissions (Institute of Behavioral Science, 1984)

• Activity data

For incinerators, the activity data used was the incineration volume for each facility type as calculated by multiplying the incineration volume of municipal waste by the incineration rate for each facility type. The incineration volume data were extracted from the *Report of the Research on the State of Wide-range Movement and Cyclical Use of Wastes (the Volume on Cyclical Use)* by the Ministry of the Environment. The incineration rate was calculated in the *Waste Treatment in Japan* published by the Ministry of the Environment.

For gasification melting furnaces, the activity data used was the volume incinerated in gasification melting furnaces, calculated from data in the Ministry of the Environment's "*Waste Treatment in Japan*."

3.1.6.1.b. Industrial Wastes Incineration (6.C.–)

• Methodology for Estimating Emissions

 NO_x , CO, NMVOC, and SO_2 emissions from the specified sources were calculated by multiplying the incineration amount of industrial waste for each waste type by Japan's own emission factors. These emissions are categorized following the methods given in chapter 8 based on incinerations either with or without energy recovery. The former emissions are reported in the Energy sector, while the latter are reported in the Waste sector.

• Emission factors

$\succ NO_X, SO_2$

An emission factor was established for each type of industrial solid waste using the emission volume and volume of treated industrial solid waste identified by the *General Survey of the Emissions of Air Pollutants*. The categories of incinerator types included: [1303: Waste incinerator (industrial solid waste; continuous system)] and [1304: Waste incinerator (industrial solid waste; batch system)]. The incinerator fuel covered the categories [23: Fuel Wood] and [54: Industrial solid waste]). The six types of industrial waste were "Waste paper or waste wood", "Sludge", "Waste oil", "Waste plastics", "Waste textiles", and "Animal/plant residue, livestock carcasses". Category [23: Sawn Timber] was used for "Waste paper or waste wood", "Waste textiles", and "Animal/plant residue, livestock carcasses". However, no emission factor was set for the mixed burning of multiple waste types.

	Item	Unit	1990	1995	2000	2005	2006	2007	2008
NOx	"Fuel Wood 23"	kg-NOx/t	1.545	1.312	5.828	5.828	5.828	5.828	5.828
	"Industrial Waste 54"	kg-NOx/t	0.999	1.158	1.415	1.415	1.415	1.415	1.415
SO ₂	"Fuel Wood 23"	kg-SO ₂ /t	1.528	1.274	2.118	2.118	2.118	2.118	2.118
	"Industrial Waste 54"	kg-SO ₂ /t	1.179	1.882	1.352	1.352	1.352	1.352	1.352

Table A 3-22 NO_x and SO_2 emission factors for industrial waste by facility type

 \ast The data for 1999 were used for 2000 and subsequent years.

Source: Research of Air Pollutant Emissions from Stationary Sources (Ministry of the Environment)

> CO

Based on the emission factors for individual facilities summarized in the *Reports on Greenhouse gas emissions estimation methodology* (Japan Sociality Atmospheric Environment, 1996) as well as other reports, an emission factor was established for each type of industrial solid waste. The six types of industrial waste were "Waste paper or waste wood", "Sludge", "Waste oil", "Waste plastics", "Waste

textiles", and "Animal/plant residues, livestock carcasses". The emission factor for "wood waste" was used for "Waste textiles" and "Animal/plant residues, livestock carcasses", for which there are no measurements. No emission factor was set for the mixed burning of multiple waste types.

Tuble 115 25 66 emission fuelois for medistrui wuste memerators of operation type											
Item	Unit	1990	1995	2000	2005	2006	2007	2008			
Waste Paper, Waste Wood	gCO/t	1,334	1,334	1,334	1,334	1,334	1,334	1,334			
Waste Oil	gCO/t	127	127	127	127	127	127	127			
Waste Plastics	gCO/t	1,790	1,790	1,790	1,790	1,790	1,790	1,790			
Sludge	gCO/t	2,285	2,285	2,285	2,285	2,285	2,285	2,285			
Waste textile	gCO/t	1,334	1,334	1,334	1,334	1,334	1,334	1,334			
Animal and Plant residues	gCO/t	1,334	1,334	1,334	1,334	1,334	1,334	1,334			

Table A 3-23 CO emission factors for industrial waste incinerators by operation type

Source: Reports on Greenhouse gas emissions estimation methodology (Japan Sociality Atmospheric Environment, 1996) and others

> NMVOC

NMVOC emission factors were established by multiplying the CH₄ emission factors for each furnace type per fuel type by "NMVOC/CH₄", the emission ratio for fuel type. The ratio was determined by using the reference materials by Japan Environmental Sanitation Center and Institute of Behavioral Science, which estimated CH₄ and NMVOC emissions per unit calorific value.

Item	Unit	1990	1995	2000	2005	2006	2007	2008
Waste Paper, Waste Wood	gNMVOC/t	2.48	2.48	2.48	25.28	25.28	25.28	25.28
Waste Oil	gNMVOC/t	0.54	0.54	0.54	0.45	0.45	0.45	0.45
Waste Plastics	gNMVOC/t	3.40	3.40	3.40	0.90	0.90	0.90	0.90
Sludge	gNMVOC/t	1.61	1.61	1.61	0.17	0.17	0.17	0.17
Waste textile	gNMVOC/t	2.48	2.48	2.48	25.28	25.28	25.28	25.28
Animal and Plant residues	gNMVOC/t	2.48	2.48	2.48	25.28	25.28	25.28	25.28

Table A 3-24 NMVOC emission factors for industrial waste incineration by facility type

Source: Report on Screening Survey Regarding Measures to Counter Global Warming (Japan Environmental

Sanitation Center, 1989)

Study of Establishment of Methodology for Estimation of Hydrocarbon Emissions (Institute of Behavioral Science, 1984)

• Activity Data

The activity data used the incineration volume data for each type of waste extracted from the Report of the Research on the State of Wide-range Movement and Cyclical Use of Wastes (the Volume on Cyclical Use) and the Waste Treatment in Japan published by the Ministry of the Environment.

3.1.6.1.c. Incineration in Conjunction with Use of Waste as Fuel and Raw Material (1.A.-)

• Methodology for Estimating Emissions

CO and NMVOC emissions from this source were estimated by multiplying the amounts of fuel/raw material burned for each waste type by a Japan-specific emission factor. These emissions are reported in Energy sector (1.A.) following the methodologies given in chapter 8 (Waste).

• Emission Factors

➤ CO

The CO emission factors (fixed unit basis) for furnace types, which are used for counting emissions

from 1A Stationary Sources, were determined by using the calorific values in General Energy Statistics to convert to weight-based emission factors. For the calorific values of waste tires from FY2005 and on, values from the Agency for Natural Resources and Energy's "The Reexamination of Standard Calorific Values and Their Revised Values to Be Applied from FY2005 and on" (2007) were used.

Table A 3-25 CO emission factors from incineration in conjunction with use of waste as fuel and raw material

Application	Units	Waste oil	RDF	RPF	Waste tires (FY2004 and before)	Waste tires (FY2005 and after)	Waste plastics	Waste wood
Simple incineration	kgCO/t	0.13	1.79	1.79	1.79	1.79		
Boilers	kgCO/t	0.052	0.24	0.39	0.28	0.44	0.034	3.64
Cement kilns	kgCO/t	49.1	19.8	32.2	23.0	36.5	32.2	
Other furnaces	kgCO/t	0.052	0.24	0.39	0.28	0.44		
Pyrolysis furnaces	kgCO/t				0.021	0.033		
Gasification	kgCO/t				0.015	0.024		

> NMVOC

Just as for the incineration of municipal solid waste and industrial waste, emission factors were determined from documents with estimates of emissions of CH_4 and NMVOCs per unit calorific values.

Table A 3-26	NMVOC emissions factors from incineration in conjunction with use of waste

as fuel and raw material

Application	Units	Waste oil	RDF	RPF	Waste tires (FY2004 and before)	Waste tires (FY2005 and after)	Waste plastics	Waste wood
Boilers	kgNMVOC/t	0.015	0.00027	0.00043	0.00031	0.00049	0.010	0.12
Cement kilns	kgNMVOC/t	0.048		0.043	0.031	0.049	0.043	
Pyrolysis furnaces	kgNMVOC/t				0.0051	0.0080		
Gasification	kgNMVOC/t				0.0089	0.0141		

• Activity data

We used the same activity data that were used when estimating CH_4 emissions from the use of waste as fuel and raw material.

3.1.7. Other sectors

3.1.7.1. Smoking (7.-: CO)

• Methodology for Estimating Emissions

CO emissions were calculated by multiplying the volume of cigarette sales by Japan's own emission factor.

• Emission factor

The emission factor (0.055 [g-CO/cigarette]) was provided by Japan Tobacco Inc.

• Activity data

The volume of cigarette sales published on Tobacco Institute of Japan website (http://www.tioj.or.jp/) was used for activity data.

References

- 1. Agency for Natural Resources and Energy, General Energy Statistics
- 2. Agency for Natural Resources and Energy, *Study on the total system for prevention of HC-Vapor in petroleum industries*, 1975
- 3. Bando, Sakamaki, Moritomi, and Suzuki, "Study of analysis of emissions from biomass burning", 1991 Report on Studies on Comprehensive Promotion Cost of Environmental Studies, National Institute of Environmental Studies, 1992
- 4. Institute of Behavioral Science, Basic Study on HC Sources, 1987
- 5. Institute of Behavioral Science, Report on the Survey of Measures for Stationary Sources of Hydrocarbons, 1991
- 6. Institute of Behavioral Science, *Study of Establishment of Methodology for Estimation of Hydrocarbon Emissions*, 1984
- 7. Institute of Behavioral Science, Report of the Research on the Indirect Greenhouse Gas Emission Inventory in FY 1996, 1997
- 8. IPCC, Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, 2000
- 9. IPCC, Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, 1997
- 10. Japan Adhesive Industry Association, Current Survey Report on Adhesive
- 11. Japan Environmental Sanitation Center, *Report on Screening Survey Regarding Measures to Counter Global Warming*, 1989
- 12. Japan Paint Manufacturers Association, Present condition and prospect about VOCs in Paint Industry
- 13. Japan Sociality Atmospheric Environment, Reports on Greenhouse Gas Emissions Estimation Methodology, 1996
- 14. Ministry of Agriculture, Forestry and Fisheries, Crop Statistics
- 15. Ministry of Economy, Trade and Industry, Statistics of rubber products
- 16. Ministry of Economy, Trade and Industry, Yearbook of Chemical Industries Statistics
- 17. Ministry of Economy, Trade and Industry, Yearbook of Mineral Resources and Petroleum Production Statistics
- 18. Ministry of Economy, Trade and Industry, *Yearbook of Production, Supply and Demand of Petroleum, Coal, and Coke*
- 19. Ministry of Land, Infrastructure, Transport and Tourism, Statistical Yearbook of Air Transport
- 20. Ministry of Land, Infrastructure, Transport and Tourism, Statistical Yearbook of Motor Vehicle Transport
- 21. Ministry of Land, Infrastructure, Transport and Tourism, The Survey on Transport Energy
- 22. Ministry of the Environment, *Report of the Research on the State of Wide-range Movement and Cyclical Use of Wastes (the Volume on Cyclical Use)*
- 23. Ministry of the Environment, General Survey of the Emissions of Air Pollutants
- 24. Ministry of the Environment, Waste Treatment in Japan
- 25. Ministry of the Environment, Air Quality Management Bureau, Manual to control HC emissions, 1982
- 26. Ministry of the Environment, Air Quality Management Bureau, *Report of Research on Measures for Emission Sources of Small Facilities*, 1996
- 27. The Energy Data and Modeling Center, Handbook of Energy & Economic Statistics in Japan, 2009
- 28. Tobacco Institute of Japan website (http://www.tioj.or.jp/)
- 29. Yoshinori Miura and Tadanori Kanno, *Emissions of trace gases (CO₂, CO, CH₄, and N₂O) resulting from rice straw burning*, Soil Sci. Plant Nutr. 43(4), 849–854, 1997

Annex 4. CO₂ Reference Approach and Comparison with Sectoral

Approach, and Relevant Information on the National Energy Balance

This chapter explains a comparison between reference approach and sectoral approach in accordance with the UNFCCC Reporting Guidelines on Annual Inventories (FCCC/SBSTA/2006/9, paragraph 31).

4.1. Difference in Energy Consumption

As shown in Table A 4-1, fluctuations of difference of energy consumption between the reference approach and the sectoral approach during 1990-2008 ranges between -0.95% and 1.39%. It is relatively low compared to the inventories from other countries.

Difference of solid fuels in 2008 was quite large value (5.94%), because of coal (Imported Steam Coal [\$130]) stock change increasing.

[10^18J]												
	1990	1991	1995	2000	2001	2002	2003	2004	2005	2006	2007	2008
Reference Approach												
Liquid fuels	9,689	9,796	10,191	9,503	9,200	9,211	9,167	8,926	8,913	8,294	8,313	7,559
Solid fuels	3,270	3,356	3,603	4,175	4,267	4,409	4,534	4,967	4,736	4,796	5,010	4,895
Gaseous fuels	2,097	2,248	2,534	3,130	3,126	3,215	3,365	3,354	3,388	3,746	4,082	4,013
Other fuels	NA											
Total RA	15,056	15,400	16,328	16,809	16,593	16,835	17,066	17,246	17,037	16,835	17,405	16,468
Sectoral Approach												
Liquid fuels	9,550	9,599	10,051	9,450	9,133	9,275	9,094	8,934	8,903	8,390	8,402	7,721
Solid fuels	3,354	3,332	3,635	4,118	4,220	4,484	4,605	4,721	4,808	4,787	4,955	4,621
Gaseous fuels	2,106	2,257	2,548	3,136	3,137	3,238	3,371	3,371	3,368	3,756	4,106	4,021
Other fuels	NE											
Total	15,010	15,189	16,234	16,705	16,489	16,997	17,070	17,026	17,079	16,933	17,462	16,363
Difference (%)												
Liquid fuels	1.46%	2.05%	1.39%	0.56%	0.74%	-0.69%	0.80%	-0.10%	0.10%	-1.15%	-1.05%	-2.10%
Solid fuels	-2.50%	0.73%	-0.88%	1.39%	1.10%	-1.65%	-1.54%	5.20%	-1.51%	0.19%	1.11%	5.94%
Gaseous fuels	-0.44%	-0.43%	-0.55%	-0.20%	-0.32%	-0.72%	-0.19%	-0.50%	0.62%	-0.28%	-0.57%	-0.18%
Other fuels	NA											
Total	0.31%	1.39%	0.58%	0.62%	0.63%	-0.95%	-0.02%	1.29%	-0.25%	-0.58%	-0.33%	0.64%

Table A 4-1 Comparison of Energy Consumption

4.2. Difference in CO₂ Emissions

As shown in Table A 4-2, fluctuations of a difference of CO_2 emissions between -1.92% and 0.79%. Emissions from wastes used for energy and from the incineration of wastes with energy recovery, which had been reported in waste sector (6.C.) in previous submissions, are reported in the energy sector (1.A.) in the 2009 inventory submission. Therefore, the difference in CO_2 emissions between the reference approach and the sectoral approach are changed.

Difference of solid fuels in 2008 was quite large value (5.29%), because of coal (Imported Steam Coal [\$130]) stock change increasing.

[Tg CO ₂]												
	1990	1991	1995	2000	2001	2002	2003	2004	2005	2006	2007	2008
Reference Approa	ch											
Liquid fuels	659.1	666.5	692.4	647.0	626.3	626.7	623.9	607.8	606.4	564.0	566.0	514.9
Solid fuels	294.6	301.9	324.2	377.6	385.5	399.0	410.3	450.0	428.7	434.2	453.7	442.8
Gaseous fuels	103.7	111.2	125.3	154.8	154.6	159.0	166.4	165.8	167.6	185.2	201.9	198.5
Other fuels	NA											
Total RA	1,057	1,079	1,142	1,179	1,166	1,185	1,201	1,224	1,203	1,183	1,222	1,156
Sectoral Approach												
Liquid fuels	646.2	649.1	677.3	635.1	613.1	622.9	611.4	600.4	597.8	562.0	563.7	518.1
Solid fuels	308.6	305.8	331.7	376.5	384.9	409.6	419.7	431.1	437.9	436.7	451.5	420.5
Gaseous fuels	104.3	111.8	126.2	155.3	155.3	160.4	167.0	166.9	166.8	186.4	203.3	199.5
Other fuels	9.1	9.4	10.5	13.1	14.2	15.0	15.8	15.6	15.1	14.2	14.4	13.8
Total	1,068	1,076	1,146	1,180	1,167	1,208	1,214	1,214	1,218	1,199	1,233	1,152
Difference (%)												
Liquid fuels	1.99%	2.68%	2.23%	1.87%	2.17%	0.62%	2.05%	1.22%	1.43%	0.34%	0.42%	-0.62%
Solid fuels	-4.54%	-1.28%	-2.26%	0.29%	0.17%	-2.60%	-2.24%	4.38%	-2.11%	-0.57%	0.49%	5.29%
Gaseous fuels	-0.57%	-0.57%	-0.71%	-0.32%	-0.45%	-0.88%	-0.40%	-0.65%	0.45%	-0.61%	-0.69%	-0.52%
Other fuels	NA											
Total	-1.01%	0.32%	-0.33%	-0.06%	-0.08%	-1.92%	-1.10%	0.79%	-1.24%	-1.32%	-0.91%	0.36%

Table A 4-2 Comparison of CO₂ Emissions

4.3. Comparison between Differences in Energy Consumption and that of CO_2 Emissions

The difference in energy consumption and the difference in CO_2 emissions generally show a similar tendency for their trends.

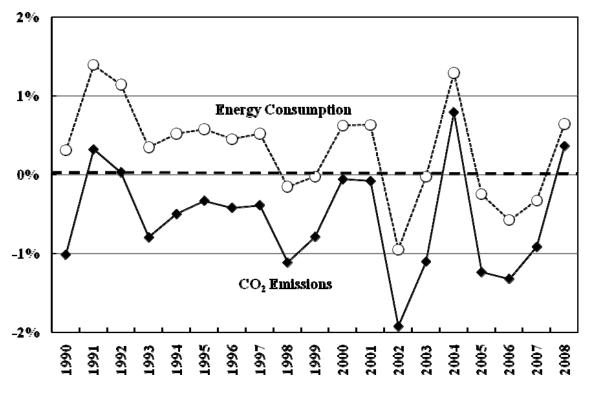


Figure A 4-1 Trends in Difference of Energy Consumption and CO₂ Emissions

4.4. Causes of the difference between Reference Approach and Sectoral Approach

The difference in energy consumption and in CO₂ emissions can be explained by the difference of the amount of carbon which were deducted as feedstock and non-energy use in each approach, and 'Other Conversions & Blending' [#2700], 'Other Input/Output' [#3000], 'Stock Change' [#3500], 'Statistical Discrepancy' [#4000] ,and "energy loss" and "carbon imbalance" of 'Oil Products' [#2600] of the Energy Balance Table (*General Energy Statistics*).

The fraction of carbon stored for a feedstock and non-energy in reference approach was used for the default values given in the *Revised 1996 IPCC Guidelines*.

1) Matters not sufficiently considered in the calculation process of Reference Approach

In the current estimation of reference approach, it was assumed that the amount of energy subtracted the energy amount for non-energy use from the national energy amount supplied was completely combusted. However, in real situations, some of the energy amount combusted is left without being combusted. The increase or decrease of the remaining energy amount were not considered in the current estimation of reference approach.

[Other Input/Output [#3000]]

In oil refining and other parts of the energy conversion sector, energy source shipment/drawdown amounts do not necessarily match production/receipt amounts. Other than energy received through one's own imports or that produced by refining, factors involved include returns from consumption/sales sectors of products once shipped, transactions of small amounts of byproduct energy from other companies, stock buildups and drawdowns due to product storage tank installation or decommissioning at factories and business sites, and losses due to accidents or fires.

When energy source inconsistencies due to such causes in the energy conversion sector are determined, the other input/output sector accounts for the amount. However, this input/output are not reflected under reference approach emission calculation.

[Stock Change [#3500]]

The increase or decrease of stock were not reflected under reference approach emission calculation.

 CO_2 emissions from wastes used for energy and from the incineration of wastes with energy recovery originate from carbon in waste oil, waste plastics, waste tire, synthetic textile scrap and other non-biogenic waste which were incinerated. These amounts of carbons may not be reflecting the actual conditions in the deduction of carbon for feedstock and non-energy use in the calculation of the reference approach. The methodology for calculating the amount of stored carbon as feedstock and non-energy use in the reference approach should be examined and revised in the future.

2) Matters which cannot be avoided for the characteristics of survey data

[Statistical Discrepancy [#4000]]

Statistical discrepancy is originally the intrinsic error arising at the sampling stage in statistical studies (source error), and mutual discrepancies among the statistics for supply, conversion, and consumption. It is sometimes difficult to guess where discrepancies come from (relative error).

These errors induce the discrepancies among domestic supply, conversion, and final energy consumption, calculated as difference between both approaches.

3) Matters related to the difference of energy and carbon balance between energy input and output

[Other Conversions & Blending [#2700]]

This sector represents energy conversion that does not belong to large-scale energy conversion such as power production, heat generation, and coal and oil product manufacturing. It also represents changes in coal and oil products through only very simple operations.

Carbon weight is considered to be consistent before and after blending or conversions. However, given that carbon content per calorific value is changed following such as blending, in statistics, carbon weight could be varied before and after blending or conversions. This difference can generate the variation between two approaches.

[Oil Products [#2600]]

Energy loss and carbon imbalance during the process of oil production produce the difference between input and output of energy or carbon.

											[Gg-CO ₂]
	1990	1995	2000	2001	2002	2003	2004	2005	2006	2007	2008
RA	1,057,427	1,141,966	1,179,346	1,166,441	1,184,667	1,200,526	1,223,561	1,202,642	1,183,422	1,221,635	1,156,161
Liquid fuels	659,104	692,444	646,974	626,340	626,747	623,890	607,770	606,374	563,964	566,017	514,925
Solid fuels	294,611	324,221	377,604	385,525	398,965	410,252	449,953	428,702	434,223	453,747	442,753
Gaseous fuels	103,711	125,302	154,767	154,575	158,955	166,384	165,837	167,566	185,235	201,872	198,482
											NA
SA	1,068,246	1,145,763	1,180,023	1,167,385	1,207,883	1,213,885	1,213,985	1,217,686	1,199,261	1,232,905	1,151,985
Liquid fuels	646,223	677,349	635,121	613,057	622,889	611,372	600,423	597,813	562,037	563,675	518,131
Solid fuels	308,620	331,720	376,521	384,881	409,624	419,659	431,080	437,937	436,698	451,548	420,523
Gaseous fuels	104,301	126,198	155,261	155,279	160,359	167,045	166,918	166,823	186,374	203,273	199,519
Other fuels	9,102	10,497	13,122	14,168	15,011	15,809	15,564	15,113	14,151	14,408	13,812
RA-SA	-10,820	-3,797	-678	-945	-23,216	-13,359	9,576	-15,045	-15,838	-11,270	4,176
Liquid fuels	12,881	15,095	11,854	13,284	3,858	12,519	7,348	8,560	1,927	2,341	-3,205
Solid fuels	-14,009	-7,499	1,084	644	-10,659	-9,407	18,873	-9,235	-2,475	2,199	22,230
Gaseous fuels	-589	-896	-494	-704	-1,404	-662	-1,081	743	-1,139	-1,402	-1,037
Other fuels	-9,102	-10,497	-13,122	-14,168	-15,011	-15,809	-15,564	-15,113	-14,151	-14,408	-13,812
Statistical Discrepancy	-10,465	3,381	-1,258	-1,504	-12,510	-9,485	-3,088	-19,607	-13,029	-16,224	-18,807
Liquid fuels	-3,708	3,839	-5,664	-5,292	-12,641	-10,667	-15,985	-15,724	-18,620	-22,577	-30,160
Solid fuels	-6,796	-693	3,915	3,343	-320	836	12,409	-4,361	6,111	6,427	11,706
Gaseous fuels	39	236	491	446	450	346	488	478	-521	-73	-354
Other Conversions & Blending	-2,828	-3,076	-1,189	-1,277	-782	-775	-601	-1,110	-1,233	-1,475	-1,137
Liquid fuels	803	1,058	1,119	1,091	1,136	1,171	1,161	1,193	1,151	1,093	1,082
Solid fuels	-2,807	-3,078	-1,121	-1,168	-709	-709	-546	-1,059	-1,131	-1,361	-1,047
Gaseous fuels	-825	-1,056	-1,186	-1,201	-1,210	-1,237	-1,216	-1,244	-1,253	-1,206	-1,172
Stock Change	1,452	1,878	2,225	4,268	-8,722	-6,234	9,121	556	-2,851	-2,625	15,696
Liquid fuels	788	1,311	-976	1,209	-3,753	-1,853	-2,369	270	2,234	-1,292	1,746
Solid fuels	681	757	2,934	2,912	-4,286	-4,504	12,005	-1,097	-5,567	-990	13,632
Gaseous fuels	-18	-190	268	148	-683	123	-515	1,383	482	-344	318
Other Input/Output	-895	-642	2,106	623	1,878	2,010	1,625	2,577	-1,385	1,174	1,392
Liquid fuels	-895	-642	2,106	623	1,878	2,010	1,625	2,577	-1,385	1,174	1,392
Solid fuels	0	0	0	0	0	0	0	0	0	0	0
Gaseous fuels	0	0	0	0	0	0	0	0	0	0	0
Oil Products	1,257	1,057	6,121	8,664	9,025	10,777	8,166	10,182	10,606	14,586	15,059
Liquid fuels	1,518	1,351	6,476	9,032	9,399	11,162	8,548	10,600	11,009	14,960	15,431
Solid fuels	0	0	0	0	0	0	0	0	0	0	0
Gaseous fuels	-261	-294	-355	-368	-374	-385	-382	-418	-403	-374	-371
Total	-11,478	2,598	8,004	10,775	-11,111	-3,707	15,222	-7,401	-7,892	-4,564	12,203
Liquid fuels	-1,493	6,917	3,060	6,663	-3,981	1,822	-7,021	-1,083	-5,610	-6,643	-10,510
Solid fuels	-8,921	-3,015	5,727	5,086	-5,314	-4,377	23,868	-6,517	-587	4,076	24,291
Gaseous fuels	-1,064	-1,304	-783	-975	-1,816	-1,152	-1,626	199	-1,695	-1,997	-1,578
(RA-SA)-(Total)	659	-6,395	-8,682	-11,719	-12,105	-9,653	-5,646	-7,644	-7,946	-6,706	-8,027
Liquid fuels	14,375	8,178	8,794	6,620	7,839	10,696	14,368	9,643	7,537	8,985	7,304
Solid fuels	-5,088	-4,484	-4,643	-4,443	-5,345	-5,030	-4,995	-2,718	-1,888	-1,878	-2,061
Gaseous fuels	475	408	289	271	412	490	545	544	556	595	542
				-14,168	-15,011	-15,809	-15,564	-15,113	-14,151	-14.408	-13,812

Table A 4-3 Comparison of CO₂ emissions (detail)

Annex 5. Assessment of Completeness and (Potential) Sources and Sinks of

Greenhouse Gas Emissions and Removals Excluded

5.1. Assessment of Completeness

Current inventory is submitted in accordance with the common reporting format (CRF), which requires entering emission data or a notation key¹ such as "NO", "NE", or "NA" for all sources. This chapter presents the definition of notation keys and decision trees for the application of them, both of which are based on the UNFCCC reporting Guidelines (FCCC/CP/1999/7, FCCC/CP/2002/8 or FCCC/SBSTA/2004/8) and the results of Committee for Greenhouse Gases Emissions Estimation Methods in 2002.

This chapter also reports source categories which have not been estimated because i) applicability of IPCC default values is not assured, ii) default methodologies and default values are not provided, iii) activity data is not available, iv) actual condition of GHG emissions or removals is not understood clearly.

5.2. Definition of Notation Keys

When reviewing the appropriateness of applying notation keys shown in the UNFCCC reporting guideline, it is necessary to establish a common concept for an application of these keys for each sector, but unclear points described in Table 1 are found as below regarding the use of the notation key.

- The explanation of "NO" in the UNFCCC reporting guidelines can be taken that "NO" may be applied to both situations when there are no emissions or removals because the activities do not exist in Japan, and when emissions or removals do not occur in principle although the activities do exist.
- The first sentence of the "NA" explanation in the UNFCCC reporting guidelines seems to imply that "NA" may be applied to both situations as for "NO". However, because the second sentence states that "If categories... are shaded, they do not need to be filled in", it also seems to mean that "NA" is applied only when the activities exist but there are no emissions or removals in principle.

In the Committee for Greenhouse Gases Emissions Estimation Methods in 2002, the meanings of the notation keys are defined based on the following policy (as shown in Table 2).

It was decided that "NA" is applied when the activity does exist in Japan, but in principle there are no GHG emissions or removals, while "NO" will apply when the activity itself does not exist and there are no emissions or removals.

If the UNFCCC reporting guidelines are revised in future, the review of the definitions of notation keys and the way to fill them in CRF will be conducted.

¹ These were called "standard indicators" in FCCC/CP/1999/7, but were changed to "notation keys" in FCCC/CP/2002/8.

Notation Key	Explanation
NO	"NO" (not occurring) for emissions by sources and removals by sinks of greenhouse
(Not Occurring)	gases that do not occur for a particular gas or source/sink category within a country;
	"NE" (not estimated) for existing emissions by sources and removals by sinks of
NE	greenhouse gases which have not been estimated. Where "NE" is used in an
(Not Estimated)	inventory for emissions or removals of CO ₂ , CH ₄ , N ₂ O, HFCs, PFCs or SF ₆ , the Party
(i tot Estimated)	should indicate why emissions could not be estimated, using the completeness table of
	the common reporting format;
NA	"NA" (not applicable) for activities in a given source/sink category that do not result
(Not Applicable)	in emissions or removals of a specific gas. If categories in the common reporting
(itorrippileable)	format for which "NA" is applicable are shaded, they do not need to be filled in;
	"IE" (included elsewhere) for emissions by sources and removals by sinks of
	greenhouse gases estimated but included elsewhere in the inventory instead of the
Ш	expected source/sink category. Where "IE" is used in an inventory, the Party
IE (Included Elsewhere)	should indicate, using the completeness table of the common reporting format,
(Included Elisewhere)	where in the inventory the emissions or removals from the displaced source/sink
	category have been included and the Party should give the reasons for this inclusion
	deviating from the expected category;
	"C" (confidential) for emissions by sources and removals by sinks of greenhouse
	gases which could lead to the disclosure of confidential information, given the
С	provisions of paragraph 27 above; (para 27: Emissions and removals should be
(Confidential)	reported on the most disaggregated level of each source/sink category, taking into
	account that a minimum level of aggregation may be required to protect confidential
	business and military information.

 Table A 5-1
 Notation keys indicated in UNFCCC reporting guidelines

Source : UNFCCC reporting guidelines on annual inventories (FCCC/SBSTA/2004/8)

* The notation key "0" was deleted at COP8 from the revised UNFCCC reporting guidelines (FCCC/CP/2002/8).

Notation Key	Definition
NO	Used when there are no activities that are linked to emissions or removals for a
(Not Occurring)	certain source.
NE (Not Estimated)	Used when the emissions or removals of a certain source cannot be estimated.
NA (Not Applicable)	Used when an activity associated with a certain source does exist, but in principle it accompanies no occurrence of specific GHG emissions or removals. "NA" is not applied when there are no GHG emissions or removals because the GHGs in raw materials have been removed.
IE (Included Elsewhere)	IE is used when an emissions or removals are already included in other sources. For assuring the completeness of CRF, the sources in which the emissions or removals are included and the reasons for including it elsewhere are to be recorded in the table.
C (Confidential)	Used for confidential information relating to business or the military. However, in consideration of transparency in calculation of emissions or removals, information will be reported to the extent that it does not hinder business or other operations (for example, reporting the aggregated total of several substances).

Table A 5-2 Definition of Notation Keys

5.3. Decision Tree for Application of Notation Keys

Decision tree for the application of notation keys, based on UNFCCC reporting Guidelines (FCCC/CP/1999/7 FCCC/CP/2002/8 or FCCC/SBSTA/2004/8) and the results of Committee for Greenhouse Gases Emissions Estimation Methods in 2002, is shown in Figure 1.

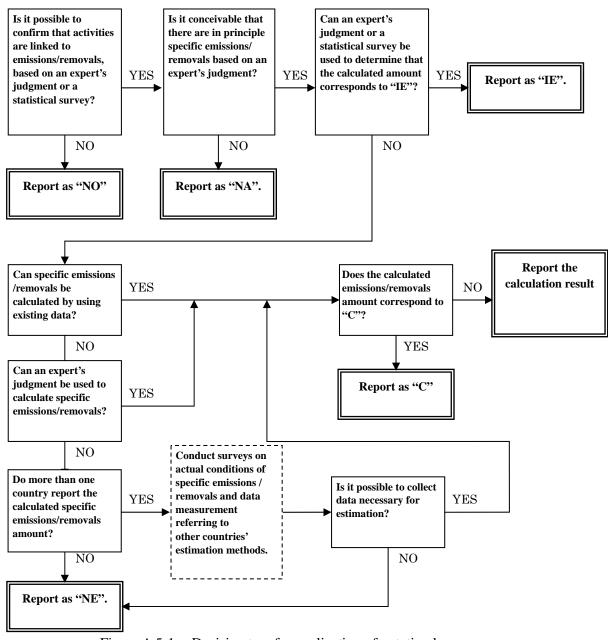


Figure A 5-1 Decision tree for application of notation keys

5.4. Source categories not estimated in Japan's inventory

Source categories dissolved not estimate status in this year and categories still not estimated in Japan's inventory are listed below. Note that the actual emissions 1990-1994 of HFCs, PFCs and SF_6 are not estimated.

Code	Sector		Source category								
1	Industrial Processes	Mineral Products	eral Products Soda Ash Soda Ash Use (Including desulfurization equipment)								
2	Industrial Processes	Consumption of Halocarbons and SF6	Other	Railway Silicon Rectifiers	Disposal	PFCs					
3	Land - use Change and Forestry	Cropland	Cropland remaining Cropland	Dead Organic Matter		CO ₂					
4	Land - use Change and Forestry	Cropland	Land Converted to Cropland	Biomass Burning	Wildfires	CO ₂					
5	Land - use Change and Forestry	Cropland	Land Converted to Cropland	Biomass Burning	Wildfires	CH ₄					
6	Land - use Change and Forestry	Cropland	Land Converted to Cropland	Biomass Burning	Wildfires	N ₂ O					

Table A 5-3 Dissolution of "NE" categories for 2008

Table A 5-4 "NE" categories for 2008

Code	Sector		Source c	ategory		GHG
1	Energy	Fugitive Emissions from Fuels	Solid Fuels	Coal Mining		CO ₂
2	Energy	Fugitive Emissions from Fuels	Solid Fuels	Coal Mining		N20
3	Energy	Fugitive Emissions from Fuels	Solid Fuels	Solid Fuel Transformation		CO ₂
4	Energy	Fugitive Emissions from Fuels	Solid Fuels	Solid Fuel Transformation		CH_4
5	Energy	Fugitive Emissions from Fuels	Solid Fuels	Solid Fuel Transformation		N ₂ O
6	Energy	Fugitive Emissions from Fuels	Oil and Natural Gas	Oil	Refining/Storage	CO ₂
7	Energy	Fugitive Emissions from Fuels	Oil and Natural Gas	Oil	Distribution of Oil Products	CO ₂
8	Energy	Fugitive Emissions from Fuels	Oil and Natural Gas	Oil	Distribution of Oil Products	CH_4
9	Industrial Processes	Mineral Products	Asphalt roofing			CO ₂
10	Industrial Processes	Mineral Products	Road Paving with Asphalt			CO ₂
11	Industrial Processes	Chemical Industry	Ammonia Production			CH ₄
12	Industrial Processes	Metal Production	Aluminium Production			CH_4
13	Solvent and Other Product Use	Degreasing and Dry-Cleaning				CO ₂
14	Solvent and Other Product Use	Chemical Product, Manufacture and Pro	cessing			CO ₂
15	Solvent and Other Product Use	Other	Other Use of N2O			N ₂ O
16	Agriculture	Enteric Fermentation	Poultry			CH_4
17	Agriculture	Field Burning of Agricultural Residues	Other			CH ₄
18	Agriculture	Field Burning of Agricultural Residues	Other			N ₂ O
19	Land - use Change and Forestry	Cropland	Cropland remaining Cropland	Soil		Carbon Stock Change
20	Land - use Change and Forestry	Cropland	Cropland remaining Cropland	Biomass Burning	Controlled Burning	CO ₂
21	Land - use Change and Forestry	Cropland	Cropland remaining Cropland	Biomass Burning	Controlled Burning	CH ₄
22	Land - use Change and Forestry	Cropland	Cropland remaining Cropland	Biomass Burning	Controlled Burning	N ₂ O
23	Land - use Change and Forestry	Cropland	Land Converted to Cropland	Forest Land converted to Cropland	Soil	Carbon Stock Change
24	Land - use Change and Forestry	Cropland	Land Converted to Cropland	Grassland converted to Cropland	Soil	Carbon Stock Change
25	Land - use Change and Forestry	Cropland	Land Converted to Cropland	Wetland converted to Cropland	Soil	Carbon Stock Change
26	Land - use Change and Forestry	Cropland	Land Converted to Cropland	Other Land converted to Cropland	Dead Organic Matter	Carbon Stock Change
27	Land - use Change and Forestry	Cropland	Land Converted to Cropland	Other Land converted to Cropland	Soil	Carbon Stock Change
28	Land - use Change and Forestry	Cropland	Land Converted to Cropland	N2O emissions from disturbance	Controlled Burning	N ₂ O
29	Land - use Change and Forestry	Grassland	Grassland remaining Grassland	Wild land	Living Biomass	Carbon Stock Change
30	Land - use Change and Forestry	Grassland	Grassland remaining Grassland	Wild land	Dead Organic Matter	Carbon Stock Change
31	Land - use Change and Forestry	Grassland	Grassland remaining Grassland	Wild land	Soil	Carbon Stock Change
32	Land - use Change and Forestry	Grassland	Grassland remaining Grassland	Grazed meadow	Soil	Carbon Stock Change
33	Land - use Change and Forestry	Grassland	Grassland remaining Grassland	Pasture land	Soil	Carbon Stock Change
34	Land - use Change and Forestry	Grassland	Grassland remaining Grassland	Biomass Burning	Wildfires	CO ₂
35	Land - use Change and Forestry	Grassland	Grassland remaining Grassland	Biomass Burning	Wildfires	CH ₄
36	Land - use Change and Forestry	Grassland	Grassland remaining Grassland	Biomass Burning	Wildfires	N ₂ O
37	Land - use Change and Forestry	Grassland	Grassland remaining Grassland	Biomass Burning	Controlled Burning	CO ₂
38	Land - use Change and Forestry	Grassland	Grassland remaining Grassland	Biomass Burning	Controlled Burning	CH ₄
39	Land - use Change and Forestry	Grassland	Grassland remaining Grassland	Biomass Burning	Controlled Burning	N ₂ O
40	Land - use Change and Forestry	Grassland	Land Converted to Grassland	Forest Land converted to Grassland	Soil	Carbon Stock Change
41	Land - use Change and Forestry	Grassland	Land Converted to Grassland	Cropland converted to Grassland	Dead Organic Matter	Carbon Stock Change
42	Land - use Change and Forestry	Grassland	Land Converted to Grassland	Cropland converted to Grassland	Soil	Carbon Stock Change
43	Land - use Change and Forestry	Grassland	Land Converted to Grassland	Wetland converted to Grassland	Dead Organic Matter	Carbon Stock Change
44	Land - use Change and Forestry	Grassland	Land Converted to Grassland	Wetland converted to Grassland	Soil	Carbon Stock Change
45	Land - use Change and Forestry	Grassland	Land Converted to Grassland	Other Land converted to Grassland	Dead Organic Matter	Carbon Stock Change
46	Land - use Change and Forestry	Grassland	Land Converted to Grassland	Other Land converted to Grassland	Soil	Carbon Stock Change
47	Land - use Change and Forestry	Grassland	Land Converted to Grassland	Biomass Burning	Wildfires	CO ₂
48	Land - use Change and Forestry	Grassland	Land Converted to Grassland	Biomass Burning	Wildfires	CH ₄
49	Land - use Change and Forestry	Grassland	Land Converted to Grassland	Biomass Burning	Wildfires	N2O
50	Land - use Change and Forestry	Wetlands	Wetlands remaining Wetlands	Flooded land	Living Biomass	Carbon Stock Change

Code	Sector	Source category			GHG	
51	Land - use Change and Forestry	Wetlands	Wetlands remaining Wetlands	Flooded land	Dead Organic Matter	Carbon Stock Change
52	Land - use Change and Forestry	Wetlands	Wetlands remaining Wetlands	Flooded land	Soil	Carbon Stock Change
53	Land - use Change and Forestry	Wetlands	Wetlands remaining Wetlands	Biomass Burning	Wildfires	CO ₂
54	Land - use Change and Forestry	Wetlands	Wetlands remaining Wetlands	Biomass Burning	Wildfires	CH ₄
55	Land - use Change and Forestry	Wetlands	Wetlands remaining Wetlands	Biomass Burning	Wildfires	N ₂ O
56	Land - use Change and Forestry	Wetlands	Wetlands remaining Wetlands	Biomass Burning	Controlled Burning	CO ₂
57	Land - use Change and Forestry	Wetlands	Wetlands remaining Wetlands	Biomass Burning	Controlled Burning	CH ₄
58	Land - use Change and Forestry	Wetlands	Wetlands remaining Wetlands	Biomass Burning	Controlled Burning	N ₂ O
59	Land - use Change and Forestry	Wetlands	Land converted to Wetlands	Forest Land converted to Wetlands	Soil	Carbon Stock Change
60	Land - use Change and Forestry	Wetlands	Land converted to Wetlands	Cropland converted to Wetlands	Dead Organic Matter	Carbon Stock Change
61	Land - use Change and Forestry	Wetlands	Land converted to Wetlands	Cropland converted to Wetlands	Soil	Carbon Stock Change
62	Land - use Change and Forestry	Wetlands	Land converted to Wetlands	Grassland converted to Wetlands	Dead Organic Matter	Carbon Stock Change
63	Land - use Change and Forestry	Wetlands	Land converted to Wetlands	Grassland converted to Wetlands	Soil	Carbon Stock Change
64	Land - use Change and Forestry	Wetlands	Land converted to Wetlands	Settlements converted to Wetlands	Dead Organic Matter	Carbon Stock Change
65	Land - use Change and Forestry	Wetlands	Land converted to Wetlands	Settlements converted to Wetlands	Soil	Carbon Stock Change
66	Land - use Change and Forestry	Wetlands	Land converted to Wetlands	Other Land converted to Wetlands	Dead Organic Matter	Carbon Stock Change
67	Land - use Change and Forestry	Wetlands	Land converted to Wetlands	Other Land converted to Wetlands	Soil	Carbon Stock Change
68	Land - use Change and Forestry	Wetlands	Land converted to Wetlands	Biomass Burning	Wildfires	CO ₂
69	Land - use Change and Forestry	Wetlands	Land converted to Wetlands	Biomass Burning	Wildfires	CH_4
70	Land - use Change and Forestry	Wetlands	Land converted to Wetlands	Biomass Burning	Wildfires	N ₂ O
71	Land - use Change and Forestry	Settlements	Settlements remaining Settlements		·	CH ₄
72	Land - use Change and Forestry	Settlements	Settlements remaining Settlements			N ₂ O
73	Land - use Change and Forestry	Settlements	Settlements remaining Settlements	Other than Urban Green Areas	Living Biomass	Carbon Stock Change
74	Land - use Change and Forestry	Settlements	Settlements remaining Settlements	Other than Urban Green Areas	Dead Organic Matter	Carbon Stock Change
75	Land - use Change and Forestry	Settlements	Settlements remaining Settlements	Other than Urban Green Areas	Soil	Carbon Stock Change
76	Land - use Change and Forestry	Settlements	Settlements remaining Settlements	Urban Green Areas subject to RV	Soil	Carbon Stock Change
77	Land - use Change and Forestry	Settlements	Settlements remaining Settlements	Urban Green Areas not subject to RV	Dead Organic Matter	Carbon Stock Change
78	Land - use Change and Forestry	Settlements	Settlements remaining Settlements	Urban Green Areas not subject to RV	Soil	Carbon Stock Change
79	Land - use Change and Forestry	Settlements	Land Converted to Settlements	Forest Land Converted to Settlements	Soil	Carbon Stock Change
80	Land - use Change and Forestry	Settlements	Land Converted to Settlements	Cropland Converted to Settlements	Soil	Carbon Stock Change
81	Land - use Change and Forestry	Settlements	Land Converted to Settlements	Grassland Converted to Settlements	Soil	Carbon Stock Change
82	Land - use Change and Forestry	Other land	Land Converted to Other land	Forest Land Converted to Other land	Soil	Carbon Stock Change
83	Land - use Change and Forestry	Other land	Land Converted to Other land	Cropland Converted to Other land	Dead Organic Matter	Carbon Stock Change
84	Land - use Change and Forestry	Other land	Land Converted to Other land	Cropland Converted to Other land	Soil	Carbon Stock Change
85	Land - use Change and Forestry	Other land	Land Converted to Other land	Grassland Converted to Other land	Dead Organic Matter	Carbon Stock Change
86	Land - use Change and Forestry	Other land	Land Converted to Other land	Grassland Converted to Other land	Soil	Carbon Stock Change
87	Land - use Change and Forestry	Harvested Wood Product				CO ₂
88	Land - use Change and Forestry	Harvested Wood Product				CH ₄
89	Land - use Change and Forestry	Harvested Wood Product				N ₂ O
90	Waste	Wastewater Handling	Domestic and Commercial Wastewa	iter		CH ₄
91	Waste	Wastewater Handling	Domestic and Commercial Wastewa	ter		N ₂ O
92	Waste	Waste Incineration				N ₂ O

Table A 5-5 "NE" categories for 2008 (cont.)

Annex 6. Additional Information to be Considered as Part of the NIR

Submission or Other Useful Reference Information

6.1. Details on Inventory Compilation System and QA/QC Plan

The main parts of the QA/QC Plan for Japan's greenhouse gas inventory are excerpted.

6.1.1. Introduction to QA/QC Plan

The QA/QC Plan is an internal document that documents, among other things, the specifics of all QA/QC activities in all processes from the start of National Inventory Report compilation to the final report, the compilation schedule, and the apportionment of all involved entities' roles. It organizes and systematizes the QA/QC activities of inventory compilation and clarifies what each entity involved in compilation is supposed to do. Additionally, it is prepared for the purpose of guaranteeing the implementation of QA/QC activities.

6.1.2. QA/QC plan's scope

The QA/QC Plan's scope includes the processes of preparing, reporting, and reviewing the inventory under the Framework Convention on Climate Change, and the supplementary information on sinks under Kyoto Protocol Articles 3.3 and 3.4, as stipulated in Article 7.1 of the Protocol.

6.1.3. Roles and responsibilities of each entity involved in the inventory preparation process

Following are the agencies involved in the inventory compilation process, and the roles of those agencies.

1) Ministry of the Environment (Climate Change Policy Division, Global Environment Bureau)

- > The single national agency responsible for preparing Japan's inventory, which was designated pursuant to the Kyoto Protocol Article 5.1.
- > It is responsible for editing and submitting the inventory.

2) Greenhouse Gas Inventory Office of Japan (GIO), Center for Global Environmental Research, National Institute for Environmental Studies

Performs the actual work of inventory compilation. Responsible for inventory calculations, editing, and the archiving and management of all data.

3) Relevant Ministries/Agencies

The relevant ministries and agencies have the following roles and responsibilities regarding inventory compilation.

- Preparation of activity data, emission factor data, and other data needed for inventory compilation, and submission of the data by the submission deadline.
- > Quality control (QC) of the data provided to the Ministry of the Environment and the GIO.
- Confirmation and verification of the inventory (CRF, NIR, spreadsheets, and other information) prepared by the Ministry of the Environment and the GIO.
- > (When necessary), responding to questions from expert review teams about the statistics

controlled by relevant ministries and agencies, or about certain data they have prepared, and preparing comments on draft reviews.

> (When necessary), responding to visits by expert review teams.

4) Relevant Organizations

Relevant organizations have the following roles and responsibilities regarding inventory compilation.

- Preparation of activity data, emission factor data, and other data needed for inventory compilation, and submission of the data by the submission deadline.
- > Quality control (QC) of the data provided to the Ministry of the Environment and the GIO.
- When necessary), responding to questions from expert review teams about the statistics controlled by relevant organizations, or about certain data they have prepared, and preparing comments on draft reviews.

5) Committee for the Greenhouse Gas Emissions Estimation Methods

The Committee for the Greenhouse Gas Emissions Estimation Methods (the Committee) is a committee created and run by the Ministry of the Environment. Its role is to consider the methods for calculating inventory emissions and removals, and consider the selection of parameters such as activity data and emission factors. Under the Committee is the inventory working group (WG) that examines crosscutting issues, and breakout groups that consider sector-specific problems (Breakout group on Energy and Industrial Processes, Breakout group on Transport, Breakout group on F-gas [HFCs, PFCs, and SF₆], Breakout group on Agriculture, Breakout group on Waste, and Breakout group on LULUCF). The inventory WG and breakout groups comprise experts in various fields, and consider suggestions for inventory improvements. Improvement suggestions are considered once more by the Committee before approval.

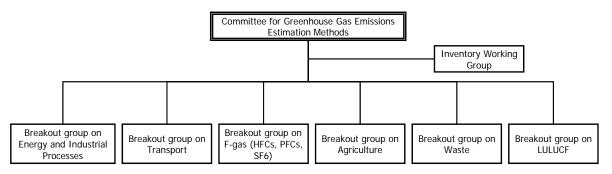


Figure A 6-1 Structure of the Committee for the Greenhouse Gas Emissions Estimation Methods

6) GHG Inventory Quality Assurance Working Group (Expert Peer Review) (QA-WG)

The GHG Inventory Quality Assurance Working Group (the QA-WG) is an organization that is for QA activities, and comprises experts who are not directly involved in inventory compilation. Its role is to assure inventory quality and to identify places that need improvement by conducting detailed reviews of each emission source and sink in the inventory.

7) Private Consulting Companies

Private consultant companies that are contracted by the Ministry of the Environment to perform tasks related to inventory compilation play the following roles in inventory compilation based on their contracts.

- Quality control (QC) of inventory (CRF, NIR, spreadsheets, and other information) compiled by the Ministry of the Environment and the GIO.
- When necessary), providing support for responding to questions from expert review teams and for preparing comments on draft reviews.
- > (When necessary), providing support for responding to visits by expert review teams.

6.1.4. Collection process of activity data

When the activity data needed for calculations are available from sources such as publications and the internet, the necessary data are gathered from these media. Data that are not released in publications, the internet, or in other media, and unpublished data that are used when compiling the inventory are obtained by the Ministry of the Environment or the GIO by requesting them from the relevant ministries and agencies and the relevant organizations which control those data. The main relevant ministries and agencies and relevant organizations that provide data are as shown in Table A 6-1.

Table A 6-1	List of the main relevant	t ministries and agencies and	the relevant organizations (data
-------------	---------------------------	-------------------------------	----------------------------------

providers)

Ministries/	Ministries/Agencies/Organizations Major data or statistics				
	Ministry of the Environment	Research of Air Pollutant Emissions from Stationary Sources / volume of waste in landfill / volume of incinerated waste / number of people per <i>johkasou</i> facility / volume of human waste treated at human waste treatment facilities			
Relevant	Ministry of Economy, Trade and Industry	General Energy Statistics / Yearbook of Production, Supply and Demand of Petroleum, Coal and Coke / Yearbook of Iron and Steel, Non-ferrous Metals, and Fabricated Metals Statistics / Yearbook of Chemical Industry Statistics / Yearbook of Ceramics and Building Materials Statistics / Census of Manufactures / General outlook on electric power supply and demand			
Ministries/ Agencies	Ministry of Land, Infrastructure, Transport and Tourism	Annual of Land Transport Statistics / Survey on Transport Energy / Statistical Yearbook of Motor Vehicle Transport / Survey on Current State of Land Use,Survey on Current State of Urban Park Development / Sewage Statistics			
	Ministry of Agriculture, Forestry and Fisheries	Crop Statistics / Livestock Statistics / Vegetable Production and Shipment Statistics / World Census of Agriculture and Forestry / Statistics of Arable and Planted Land Area / Handbook of Forest and Forestry Statistics / Table of Food Supply and Demand			
	Ministry of Health, Labour and Welfare	Statistics of Production by Pharmaceutical Industry			
	Federation of Electric Power Companies	Amount of Fuel Used by Pressurized Fluidized Bed Boilers			
	Japan Coal Energy Center	Coal Production			
Relevant	Japan Cement Association	Amount of clinker production / Amount of waste input to in raw material processing / Amount of RPF incineration			
Organizations	Japan Iron and Steel	Emissions from Coke Oven Covers, Desulfurization Towers, and			
	Federation	Desulfurization Recycling Towers			
	Japan Paper Association	Amount of final disposal of industrial waste / Amount of RPF incineration			
	local public entity	Carbon Content of Waste by Composition			

6.1.5. Selection process of emission factors and estimation methods

Calculation methods for Japan's emission and removal amounts are determined by having the Committee explore calculation methods suited to Japan's situation for all the activity categories necessary for calculating Japan's greenhouse gas emission and removal amounts, based on the 1996 Revised IPCC Guidelines, GPG (2000), GPG-LULUCF, and the 2006 IPCC Guidelines.

6.1.6. Improvement process of estimations for emissions and removals

In Japan, improvements in calculation methods are considered in accordance with necessity whenever an inventory item requiring improvement is identified because of, for example, a UNFCCC review or an observation by the QA-WG, progress in international negotiations such as the creation of new guidelines, progress or changes in scientific research or in the compilation of statistics, or the acquisition of new information by the system for calculating, reporting, and publishing GHG emissions. Proposals for improving the estimation of emissions and removals are considered by scientific research or the Committee, and the results are incorporated into the inventory. Figure A 6-2 below is a diagram of the inventory improvement process.

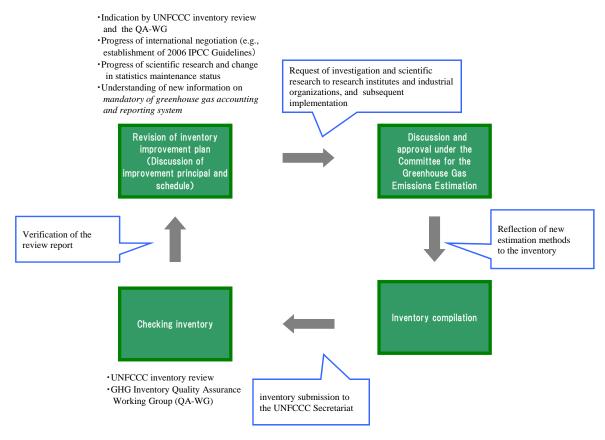


Figure A 6-2 Diagram of the inventory improvement process

6.1.7. QA/QC activity

When compiling the inventory in Japan, inventory quality is controlled by performing quality control (QC) activities (such as checking the correctness of calculations and archive of documents) at each step in accordance with GPG (2000) and GPG-LULUCF. In Japan, the quality control activities relating to inventory compilation performed by personnel belonging to agencies involved in inventory compilation—that is, the Ministry of the Environment (including the GIO and private consultant companies), relevant ministries and agencies, and relevant organizations—are considered to be QC. External reviews by experts who are outside the inventory compilation system (the QA-WG) are considered to be QA (quality assurance). They verify and assess data quality from the perspectives of scientific knowledge and data availability with respect to current calculation methods. Table A 6-2 sketches Japan's QA/QC activities.

	Implementing entity	Main contents of activity
QC (Quality Control)	Ministry of the Environment (Climate Change Policy Division, Global Environment Bureau)	 Progress management of the inventory compilation and overall control Check of inventory compiled by the GIO (CRF, NIR, spreadsheets, and other information) Establishment and revision of QA/QC plan Check of the inventory improvement plan Holding the meeting of the Committee for the Greenhouse Gas Emissions Estimation Methods
	Greenhouse Gas Inventory Office of Japan, Center for Global Environmental Research, National Institute for Environmental Studies (GIO) Relevant Ministry and Agencies (including the Ministry of the Environment) and relevant organizations	 QC check in inventory compilation Archiving of QA/QC activity records and relevant data and documents Development of information system Making of inventory improvement plan Making of revised QA/QC plan Preparation of activity data, emission factor, and other data needed for inventory compilation, and submission of the data by the submission deadline. Check of various data supplying to the GIO Check and validation of inventory compiled by the GIO (CRF, NIR, spreadsheets, and other information)
	CommitteefortheGreenhouseGasEmissionsEstimationMethodsPrivateConsultantCompanies	 Discussion and Assessment for estimation methods, emission factors, and activity data Check of inventory compiled by the GIO (CRF, NIR, spreadsheets, and
QA (Quality Assurance)	Inventory Quality Assurance Working Group (QA-WG) (Expert Peer Review)	other information) • Validation of estimation methods, emission factors, and activity data • Inventory assessment

Table A 6-2 Summary of Japan's QA/QC activity

6.1.7.1. QC activity

6.1.7.1.a. General QC procedures (Tier 1)

General QC procedures include the general items to be confirmed which are related to the calculation, data processing, completeness, and documentation applicable to all emission source and sink categories. General QC procedures are implemented by each inventory compiler.

Following are the QC activities conducted by the sectoral experts (SEs), who perform the work of compiling the emissions/removals estimation files for each category, the CRF master files and NIR; the National Inventory compiler (NIC), who integrates the information from the individual SEs and compiles the inventory; and the data providers, who provide the activity data and other data used to calculate emissions and removals.

This section describes the QC activities of the GIO and private consultant companies in parts 1) and 2), and the QC activities conducted by the relevant ministries and agencies and the relevant organizations in part 3).

1) Sectoral expert (SE)

SEs perform the following QC activities.

- > Checking for transcription errors in data entry and referencing
- > Checking to ensure that emissions are accurately estimated
- > Checking to see that parameters and emission units are accurately recorded, and that proper

conversion factors are used

- > Checking the conformity of databases and/or files
- > Checking the consistency of data from one category to another
- Checking the accuracy of inventory data behavior from one processing step to the next
- Checking completeness
- Checking time series consistency
- Checking trends
- > Conducting comparisons with past estimated values
- > Checking that uncertainties in emissions and removals are accurately estimated and calculated
- > Carrying out reviews of internal documentation
- Checking that the assumptions and criteria for selecting activity data and emission factors are documented

2) National inventory compiler (NIC)

The NIC performs the following QC activities when preparing CRF files.

- Confirming that CRF Reporter data provided by SEs are imported without omission
- Confirming that the information needed for the documentation box is properly entered
- > Confirming that the reasons for "NE" and "IE" are correctly entered
- > Confirming that the key category analysis results are correctly entered
- > Confirming that recalculations have been correctly performed
- Confirming time series consistency for emissions
- Confirming inventory completeness
- > Confirming that CRF Reporter data are correctly transferred to CRF Excel files
- Confirming that emissions are correctly totaled

3) Data providers

Relevant ministries and agencies and relevant organizations that provide activity data and other data in the inventory compilation process conduct the following QC activities from the perspectives of the completeness/representativeness, accuracy, consistency, and transparency of the data provided.

- Confirming that the provided data are correctly transcribed to input sheets
- Confirming that, in gathering and processing the data, the following QC checks are carried out among those responsible, or by using the system and other means
- Performing verification to guarantee data accuracy (such as by comparison with and verification of other, similar data)
- Evaluating data uncertainty
- When data span multiple years), confirming that data have been prepared with methods that are consistent over the entire time span
- When data preparation methods differ over time), documenting related information (such as reasons for changes and what has been changed)
- (When provided data are obtained by complete enumeration), confirming that all areas of concern to the study are covered
- When provided data are obtained by sampling), confirming grounds (such as checks by experts) enabling one to judge that the representativeness of study samples is sufficiently guaranteed

- When estimates are made in the processing of study data), confirming that QA (such as checks by experts and reviews) has been performed on the soundness of the estimation methods
- Documenting information on the above items (such as data estimation methods and signs of checks by experts)
- > Documenting procedures for preparing statistics and performing studies
- Archive of related information, including the above-mentioned documents, in prescribed locations

6.1.7.1.b. QC procedure for each category (Tier 2)

As part of the QC activities in Japan, private consultant companies perform external QC on the estimation files prepared by the GIO, and on the CRF and NIR drafts. In addition to confirming the data entered into estimation files for each emission source category and the equations for calculating emissions, private consultant companies use estimation files like those of the GIO to calculate total greenhouse gas emissions, and carry out mutual verification of emission estimation results. They also send to the relevant ministries and agencies the sets of files for estimated values for emissions and removals. And they confirm and verify the content of categories relevant to each ministry or agency (coordination with the relevant ministries and agencies).

6.1.7.2. QA activity

Quality assurance (QA) refers to assessment of inventory quality by third units that are not directly involved in inventory compilation. In Japan the following QA is conducted to assure inventory quality.

- 1. GHG Inventory Quality Assurance Working Group (Expert Peer Review)
- 2. Internal QA

6.1.7.2.a. GHG Inventory Quality Assurance Working Group (Expert Peer Review) (QA-WG)

1) Summary

The QA-WG performs detailed reviews (expert peer reviews) by experts not directly involved in inventory compilation for each emission source and sink in order to assure inventory quality and to identify places that need improvement.

2) Scope of review

The GHG Inventory Quality Assurance Working Group performs reviews mainly in the following areas.

- > Confirming the soundness of estimation methods, activity data, emission factors, and other items.
- > Confirming the soundness of content reported in the CRF and NIR.

3) QA-WG in FY 2009

The QA-WG was newly established in FY 2009 as a result of discussions within the Committee held in FY 2008 in order to enhance Japan's QA/QC activities. The QA-WG fulfils QA activities for inventory preparation, reporting and reviewing as required for the Annex I Parties under the FCCC as well as the Kyoto Protocol by implementing a detailed review by experts, who are not directly involved in or related to the inventory preparation process, for each source and/or sink. The secretariat for the QA-WG was established within the GIO. The secretariat and the Ministry of the Environment determined the sectors and categories to be reviewed by the QA-WG. The experts for the QA-WG were selected by taking the following requirements into account.

<Requirements for QA-WG review expert>

- a. No direct involvement in the inventory preparation process for estimating emissions/ removals from the sectors/categories to be reviewed (i.e., no involvement in the Committee, the data creation and the data provision for those sectors/categories)
- b. No specific interests related to the inventory and the capability to judge objectively without being affected by any specific organizations and/or stakeholders.
- c. Sufficient skills, knowledge and experiences to assure the quality of the inventory

The reviewed sectors were the Agriculture and the Waste sectors (two experts for the Agriculture and one expert for the Waste) in FY 2009, and the schedule for the QA-WG was as follows.

Schedule	Matter		
May, 2009	Selection of experts by the Ministry of Environment of Japan and the secretariat		
Early July	Visit and briefing of the experts		
Late July	Review by the experts: 1) The detailed review of the Inventory and the listing of dubious		
-September	and controversial points; 2) Response by the secretariat to this and the provision of		
	supplemental information; 3) After obtaining this, production of some proposals by the		
	experts.		
5 October	Holding of the QA-WG meeting		
November	Bringing up of suggestions from the QA-WG to each breakout group in the Committee		
-February 2010			

Table A 6-3 Schedule for the QA-WG in FY 2009

Key data and the methods of estimation used in these sectors have been validated by QA-WG. The QA-WG identified some issues and submitted them to the Committee. Other issues that have not been resolved by the committee are presented in each category of the "f) Source-specific Planned Improvement" section in this report. In addition, the QA-WG identified insufficient explanations and incorrect descriptions in the NIR 2009 and addressed them in this report to improve transparency and accuracy.

The MOE and the secretariat will annually determine the sectors/categories to be reviewed by the QA-WG, with the aim of reviewing the entire inventory within the next few years.

6.1.7.2.b. Internal QA

Internal QA consists of inventory checking by staff members who are not among the SEs responsible for each category.

The GIO has one or two SEs for each category who prepare the estimation files, CRF, and NIR, but SEs mutually assure the quality of each other's work by checking the content of inventory categories in whose preparation they are not directly involved.

6.1.8. Response for UNFCCC inventory review

The convention inventory and Kyoto Protocol supplementary information on sinks that Japan submits each year are to be reviewed by an expert review team (ERT) pursuant to UNFCCC inventory review

guidelines¹, Kyoto Protocol Article 8, Decision 22/CMP.1, and other requirements. Specifically, rigorous checks are performed in accordance with Japan's prescribed estimation method guidelines² from perspectives including: Are emissions and removals accurately and completely estimated and reported? Are transparent explanations provided for estimation methods? Are QA/QC activities and uncertainty assessments performed appropriately?

Because the inventory review has great significance for attaining Japan's emission reduction targets under the Kyoto Protocol, it is necessary to address this matter after having made careful preparations. The system shown in Figure A 6-3 is used for responding to reviews.

The Ministry of the Environment, which in Japan is responsible for editing and submitting the inventory, is assigned to be the agency with overall control (responsibility) for review response, while the GIO performs the actual work, such as preparing source materials. Communication with the UNFCCC Secretariat is performed by the Ministry of Foreign Affairs. The relevant ministries and agencies, relevant organizations, and private consultant companies³ that are involved in inventory compilation cooperate with review response through activities including providing relevant information, support for source material preparation, and QC implementation.

¹ FCCC/CP/2002/8

² 1996 Revised IPCC Guidelines, Good Practice Guidance (2000)、 GPG-LULUCF

³ Private consultant companies cooperate in correspondence of the revies based on the operating agreement with the Ministry of the Environment.

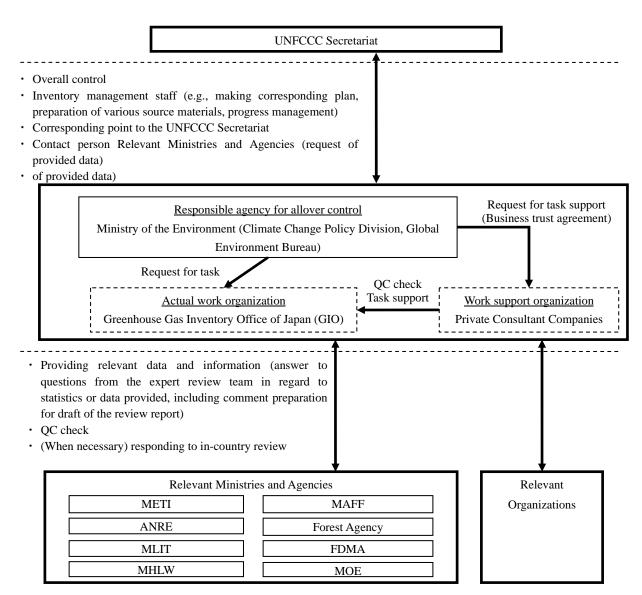


Figure A 6-3 Basic structure of Japan's national system corresponding to inventory review

6.1.9. Documentation and archiving of inventory information

In Japan, the information needed for inventory compilation is documented and as a rule archived by the agency which compiles the inventory (the GIO).

6.1.9.1. Documentation of information

The GIO documents all the inventory-related information in electronic or printed form and archives it. Examples of information that must be archived follow.

- The inventories submitted every year to the UNFCCC Secretariat, and the related files
- Published materials for preliminary and finalized data
- Statistical data and provided data (including data providers, time period when provided, and other related information) used in compiling the inventory
- Information on the discussion process and discussion results related to the selection of activity data, estimation methods, emission factors, and other items (relevant source materials for the discussion process by the Committee for the Greenhouse Gas Emissions Estimation Methods)
- · Records of communications with related entities in the inventory compilation process

- Information on inventory recalculations (such as reasons for recalculations, and when performed)
- Record of QA/QC activities conducted
- Comments by experts on the inventory
- In relation to UNFCCC inventory reviews, review reports and records of questions and answers with expert review teams
- Internal documents on inventory compilation, including the QA/QC Plan

6.1.9.2. Archiving of information

1) Archiving electronic information

i) Inventory-related electronic information

- Each year's emissions/removals estimation files and CRF- and NIR-related files have file names with the year the estimation is for and the year it was performed, and files are saved in folders prescribed for each year.
- Electronic files of statistical data, provided data, etc. used to prepare the inventory's emissions/removals estimates and other, related data are given file names with the date on which the data were obtained and the data provider, and saved in prescribed folders.
- Source materials in electronic form (files in Word, PDF, or other format) used when considering emissions/removals estimation methods are labeled with the source material title and the date the file was obtained (and if necessary the file provider), and saved in prescribed folders.
- If the exchange of information on the inventory has been conducted by email, the email files are saved in prescribed folders.

ii) Backup and risk management of electronic information

- The CGER server, where inventory-related information is stored, is automatically backed up to two other locations every day.
- Once a year, after submission of the annual inventory to the UNFCCC Secretariat, all inventory-related electronic information is saved to CD-ROMs and other electronic media and archived.

2) Archiving printed form

• Books of statistics, data and source materials (including faxes) in printed form that have been provided, and other source materials in printed form that have been used in inventory emissions/removals estimates are filed in a prescribed storage location.

6.1.9.3. QC activity for documentation and archiving of inventory information

Immediately after the inventory is submitted to the UNFCCC Secretariat, the GIO carries out QC activities related to the documentation and archive of inventory information.

Annex 7. Methodology and Results of Uncertainty Assessment

7.1. Methodology of Uncertainty Assessment

7.1.1. Background and Purpose

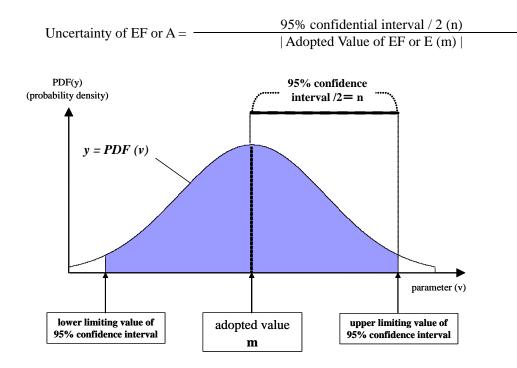
Under the United Nations Framework Convention on Climate Change (UNFCCC), Annex I Parties are required to submit their inventories on greenhouse gases emissions and removals (hereafter, 'inventory') to the UNFCCC secretariat. *Good Practice Guidance (2000)*, adopted in May 2000, further requires parties to quantitatively assess and report the uncertainty of their inventories. It should be noted that uncertainty assessment is intended to contribute to continuous improvement in the accuracy of inventories and that a high or low uncertainty assessed will not affect the justice of an inventory nor result in the comparison of accuracy among parties' inventories.

Japan considered uncertainty of its inventory in the Committee for the Greenhouse Gases Emissions Estimation Methods in FY 2001 and again in FY 2006. Japan has annually conducted uncertainty assessment based on the Committee's results since then.

This document will be used as a guideline for conducting the uncertainty assessment of Japan's inventories. It may be subjected to be adjusted as appropriate.

7.1.2. Overview of Uncertainty Assessment Indicated in the Good Practice Guidance

7.1.2.1. About Uncertainty Assessment


7.1.2.1.a. What is uncertainty?

- The term "uncertainty" refers to the degree of discrepancy in various data in comparison with a true value, stemming from number of characteristics with lack of sureness including representational reliability of measurements, and it is a concept that is much broader than that of accuracy.
- The uncertainty of emissions from a particular source is obtained by calculating and applying the uncertainty associated with the source's emission factor, and the uncertainty of activity data.
- The *Good Practice Guidance (2000)* requires uncertainty of emissions from a source to be calculated using the method given below.

$$U = \sqrt{U_{EF}}^2 + U_A^2$$

U: Uncertainty of the emissions of the source (%)
 U_{EF} : Uncertainty of the emission factor (%)
 U_A : Uncertainty of the activity data (%)

7.1.2.1.b. Methodology of identifying the uncertainties of emission factors and activity data of each source

• The standard deviations of the observed values of an emission factor are used to set the probability density function, and uncertainty is assessed by seeking a 95 percent confidence interval.

7.1.2.1.c. Method of determining the uncertainty of total national emissions

- By combining the uncertainties of emissions from all sources, it is possible to assess the uncertainty of Japan's total inventory.
- When there is no correlation between multiple uncertainties, and they are normally distributed, the *Good Practice Guidance (2000)* suggests two rules of expedience that relate to combining method (addition and multiplication) of uncertainties. This report adopts Rule A, given in Table 6.1 of the *Good Practice Guidance (2000)*, for the calculations.

$$U_{Total} = \frac{\sqrt{(U_1 \times E_1)^2 + (U_2 \times E_2)^2 + \dots + (U_n \times E_n)^2}}{E_1 + E_2 + \dots + E_n}$$

$$U_{Total}: \text{ Uncertainties of National Total Emissions (\%)}$$

$$U_i: \text{ Uncertainties of the Emissions from Source " i " (\%)}$$

$$E_i: \text{ the Emissions from Source " i " (\%)}$$

7.1.2.2. Targets of the Uncertainty Assessment

The *Good Practice Guidance (2000)* suggests that all uncertainties be taken into account when estimating emissions. It indicates that the following may be the reasons of uncertainty in emission factors or activity data.

Examples of	common reasons	of uncer	tainty in e	emission	factors
1			~		

- Uncertainties associated with a continuous monitoring of emissions
 - Refers to uncertainties arising from differences in conditions at the time of measurement, such as measurements that are taken annually.
- Uncertainties associated with an establishment of emission factors
 - Startup and shutdown in operation of machinery, etc., can give different emission rates relative to activity data. In these cases, the data should be partitioned, with separate emission factors and probability density functions derived for steady-state, startup and shutdown conditions.
 - Emission factors may depend on load of operation. In these cases, the estimation of total

emissions and the uncertainty analysis may need to be stratified to take account of load, which is expressed, for example, as a percentage of full capacity. This could be done by the regression analysis and scatter plots of the emission rate against seemingly influential variables (e.g., emissions versus load) with load becoming a part of the required activity data.

- Adoption of results from measurements taken for other purposes may not be representative. For example, methane measurements made for safety reasons at coalmines and landfills may not reflect total emissions. In such cases, the ratio between the measured data and total emissions should be estimated for the uncertainty analysis.
- Uncertainties associated with an estimation of emission factors from limited measured data - The distribution of emission factors may often differ from the normal distribution. When the distribution is already known, it is appropriate to estimate according to expert judgment, by appending a document that provides the theoretical background.

Examples of common reasons of uncertainty in activity data

- Interpretation of statistical differences: Statistical differences in energy balances usually represent a difference between amounts of primary fuels and amounts of fuels identified in the categories under 'final consumption' and 'in transformation'. They can give an indication of sizes of the uncertainties of the data, especially where long time series are considered.
- Interpretation of energy balances: Production, use, and import/export data should be consistent. If not, this may give an indication of the uncertainties.
- Crosschecks: It may be possible to compare two types of activity data that apply to the same source to provide an indication of uncertainty ranges. For example, the sum of vehicle fuel consumption should be commensurate with the total of fuel consumption calculated by multiplying vehicle-km by fuel consumption efficiency for all types of vehicles.
- > Vehicle numbers and types: Some countries maintain detailed vehicle registration databases with data on vehicles by type, age, fuel type, and emission control technology, all of which can be important for a detailed bottom-up inventory of methane (CH₄) and nitrous oxide (N₂O) emissions from such vehicles. Others do not have such detailed information and this will tend to increase the uncertainty.
- Smuggling of fuel across borders: Imported fuel and the sum of sectoral fuel consumption may be compared as a crosscheck.
- Biomass fuels: Where formal markets for these fuels do not exist, consumption estimates may be much less accurate than for fuels in general.
- Livestock population data: Accuracy will depend on the extent and reliability of national census and survey methods, and there may be different accounting conventions for animals that do not live for a whole year.

7.1.2.3. Methodology of Uncertainty Assessment

The *Good Practice Guidance* (2000) suggests that uncertainty is assessed through expert judgment and actual data with consideration to the sources of uncertainty indicated in section above.

7.1.3. Methodology of Uncertainty Assessment in Japan's Inventories

7.1.3.1. Principle of Uncertainty Assessment

The following method of uncertainty assessment is used, with regard for both convenience of the compilation and suggestions made in the *Good Practice Guidance (2000)*, in a manner that as far as possible ensures there is no deviation from assessment standards among categories.

7.1.3.2. Separation between Emission Factors and Activity Data

The equation for estimating emissions from individual sources is generally represented as follows.

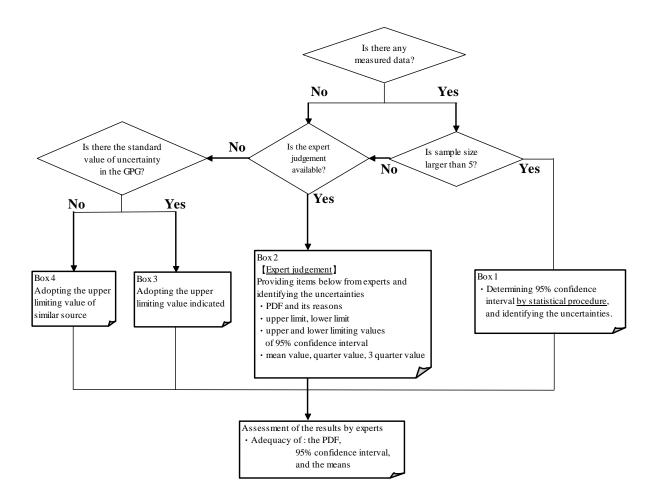
 $E(Emissions) = EF(Emission Factor) \times A(Activity Data)$

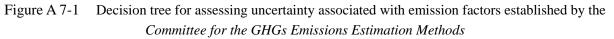
There are sources of emissions, however, where emissions are derived from stochastic equations comprising three or more parameters, and it becomes unclear which combination of parameters should be deemed as the emission factor and the activity data.

In such cases, emission factor and activity data are basically defined in accordance with the concept of emission factor described in the *Enforcement Ordinance for the Law Concerning the Promotion of Measures to Cope with Global Warming* (March 1999).

Example: A stochastic equation comprising three or more parameters

- Emission source: Methane emissions from a waste burial site (food scraps)
- Stochastic equation :


Volume of emissions from the source


- = Carbon content in food scraps × Gas conversion rate of food scraps
 - \times Proportion of methane in generated gas \times 16/12
 - \times Food scraps broken down during the basic period of calculation, expressed in tons
- = (*Emission Factor*: Carbon content of food scraps
 - \times Gas conversion rate of food scraps
 - \times Proportion of methane in gas generated \times 16/12)
 - \times (*Activity Data*: Food scraps broken down during the basic period of calculation, expressed in tons)

7.1.3.3. Uncertainty Assessment of Emission Factors

The uncertainty of emission factors (parameters) is assessed using the following decision tree.

Annex 7. Methodology and Results of Uncertainty Assessment

If an appropriate assessment cannot be made using the decision tree above, it may be done using a method that has been considered and deemed as appropriate. In such cases, the reason why an appropriate assessment could not be achieved using the decision tree, and the method applied, will both need to be clearly explained.

7.1.3.3.a. Case where there is measurement data with five or more samples (Box 1)

Where data from actual measurements is available and there are five or more¹ samples, uncertainty is assessed quantitatively in accordance with the guidelines below.

Guidelines for assessment of uncertainty associated with emission factors

Guideline 1

Where data from actual measurements is available and there are five or more samples, the central limit theorem says that the distribution of averages will follow a normal distribution curve. Assuming that all averages \bar{x} and standard deviations σ / \sqrt{n} follow a normal distribution curve, uncertainty need to be assessed on the basis of the data used to establish the emission factor only.

¹ The *Good Practice Guidance* cites "adequate samples", but for convenience, the Secretariat of *Committee for the GHGs Estimation Methods* suggests the use of five or more.

Guideline 2

In assessing uncertainty, it is assumed that systematic error inherent to individual items of data is already a factor in the distribution. Therefore, systematic error inherent to individual items of data need not be investigated.

Guideline 3

Items that may contribute to uncertainty, but which may not be readily quantitatively assessable, should be recorded for the future investigation. If, through expert judgment, it is possible to estimate their uncertainty, the uncertainty shall be estimated in accordance with expert judgment.

a) When it is not possible to use statistical methods to derive the distribution of data used in calculating emission factors

1) Emission factor has been established by calculating a simple average of the sample data

Where the emission factor has been calculated using a simple average, it is assumed that the data used in calculating the emission factor follows a normal distribution curve. Therefore, the standard deviation of the sample is divided by the square root of the number of samples to estimate the standard deviation of the emission factor σ_{EF} , and uncertainty is calculated by finding the 95 percent confidence interval in accordance with Equation 1.1.

Uncertainty of Emission Factor(%) =
$$\frac{1.96 \times \sigma_{EF}}{|EF|}$$
 ... Equation 1.1.
 σ_{EF} : Standard Deviation of Average
 EF : Emission Factor

2) Emission factor has been calculated using a weighted average of the sample data

Where the emission factor has been derived using a weighted average of the sample data, it is assumed that the data used in calculating the emission factor follows a normal distribution.

Therefore, the standard deviation σ_{EF} of the sample is derived using the equation below. Uncertainty

is calculated by finding the 95 percent confidence interval of the averages in accordance with Equation 1.1. Note that the equation does not account for the uncertainty of weights *wi*.

The weight applied in the weighted average, $wi (\sum wi = 1)$ Sample averages : $EF = \sum (wi \times EFi)$ Unbiased variance of sample averages : $\sigma_{EF^2} = \sum \{w_i \times (EF_i - \overline{EF})^2\} / (1 - \sum w_i^2) \times \sum w_i^2$

b) When the distribution of data used in calculating emission factor is derived using statistical methods

When it is possible to derive the distribution of data used in calculating the emission factor by using statistical methods, it is assumed that the data follows a normal distribution, and the uncertainty of each piece of data is estimated on the basis of section "a) When it is not possible to use statistical methods to derive the distribution of data used in calculating emission factors". The uncertainty of

each piece of data is then determined using Equation 1.2, and the standard deviation of the emission factor σ_{EF} is calculated, to obtain the uncertainty.

If experts at *Working Group on Inventory of Committee for the GHGs Emissions Estimation Methods* indicate that statistical analysis is inappropriate, even using five or more samples, then uncertainty should be assessed by expert judgment. Conversely, if an expert determines that it is possible to carry out statistical analysis, even with less than five samples, uncertainty shall be assessed statistically.

When weight averaging is done to obtain at emission factors, the emission factor EF is expressed as follows, where the emission factor of each sub-category is EF_i , the weight variable is A_i , and the total of weight variables is A.

$$EF = rac{\displaystyle \sum_i EF_i^* imes A_i}{\displaystyle \sum_i A_i} = rac{\displaystyle \sum_i EF_i^* imes A_i}{\operatorname{A}}$$

Substituting the distribution of the emission factor *EF*, σ_{EF}^2 , and the distributions of the individual emission factors *EF_i* and individual weight variables A_i , σ_{EFi}^2 and σ_{Ai}^2 , then σ_{EF}^2 is calculated as follows, using an equation known as the Error Propagation Equation.

$$\mathcal{B}_{EF^2} = \sum_{i} \left[\left(\frac{\partial EF}{\partial EF_i} \right)^2 \mathcal{B}_{EF_i^2} + \left(\frac{\partial EF}{\partial A_i} \right)^2 \mathcal{B}_{Ai^2} \right] = \sum_{i} \left[\frac{A_i^2}{A^2} \mathcal{B}_{EF_i^2} + \frac{(EF_i - EF)^2}{A^2} \mathcal{B}_{Ai^2} \right]$$

Thus, the uncertainty of the emission factor U is obtained using the following equation.

$$U = \frac{1.96 \times O_{EF}}{/EF}$$

7.1.3.3.b. Case where there is no actual measurement data, or there are less than five samples

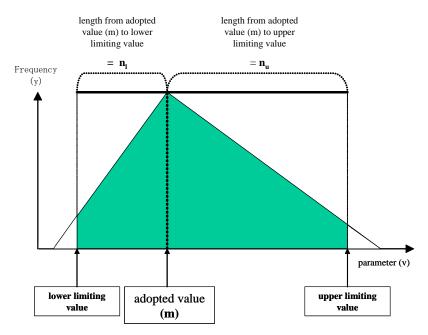

When there is no actual measurement data, or there are less than five samples, uncertainty shall be assessed by expert judgment.

a) When expert judgment is feasible (Box 2)

1) When the distribution of the probability density function of emission factors can be obtained using expert judgment

In this case, uncertainty should be assessed in accordance with expert judgment for the following. The expert providing the expert judgment, the basis for their decision, and factors contributing to uncertainty that are excluded from consideration, should be documented, and the document should be retained.

\triangleright	Distribution and evidence	
\succ	Upper and lower limiting values	
\succ	Upper and lower limiting values of the 95%	
	confidence interval	
\triangleright	Mean, first, and third quartile values	


2) When the distribution of the probability density function of emission factors cannot be obtained using expert judgment

Ask an expert for the upper and lower limiting values appropriate to emission factors in Japan (parameters), and draw a triangular distribution for the emission factors (parameters) with the Japanese emission factor as the vertex, and such that the upper and lower limiting values of a 95 percent confidence interval correspond to the upper and lower limiting values appropriate to the Japanese emission factor (see diagram below).

If the emission factor (parameter) used is larger than the upper limiting value, the emission factor should be used as the upper limiting value. If the emission factor (parameter) used is smaller than the lower limiting value, the emission factor (parameter) should be used as the lower limiting value.

The expert providing the expert judgment, the basis for their decision, and factors contributing to uncertainty that are excluded from consideration, should be documented, and the document should be retained.

Annex 7. Methodology and Results of Uncertainty Assessment

Uncertainty in this context is calculated using the following equation.

Uncertainty to the lower limiting value U₁ (%)
= - {distance to lower limiting value (n₁)/mode (m)}
Uncertainty to the upper limiting value U_u (%)
= + {distance to upper limiting value (n_u)/mode (m)}
Uncertainty is expressed in the form, -0% to +●%, but in assessing overall
uncertainty for Japan, the largest absolute value should be used.

b) When expert judgment is not possible

1) A standard value for uncertainty is provided in the Good Practice Guidance (2000) (Box 3)

When the *Good Practice Guidance (2000)* provides a standard value for uncertainty for a particular emission source, an estimate of uncertainty should err on the safe side, and the upper limiting value of the standard uncertainty value given in the *Good Practice Guidance (2000)* should be used.

2) No standard value for uncertainty is provided in the Good Practice Guidance (2000) (Box 4)

When the *Good Practice Guidance (2000)* does not provide a standard uncertainty for a particular emission source, the standard uncertainty given in the *Good Practice Guidance (2000)* for a similar emission source should be used for the upper limiting value.

Category	Uncertainty of EF
1. Energy	
1.A. CO ₂	5%
1.A. CH ₄ , N ₂ O	3%~10%
1.A.3. Transport(CH ₄ , N ₂ O)	5%
2. Industrial Processes	
Excluding HFCs, PFCs, SF ₆	$1\% \sim 100\%$
HFCs, PFCs, SF ₆	5%~50%
3. Solvent and Other Product Use	-*
4. Agriculture	2%~60%
5. Land Use Change and Forestry	_* *
6. Waste	5%~100%

* Category 3: The use of organic solvents and other such products are not dealt within the GPG (2000).

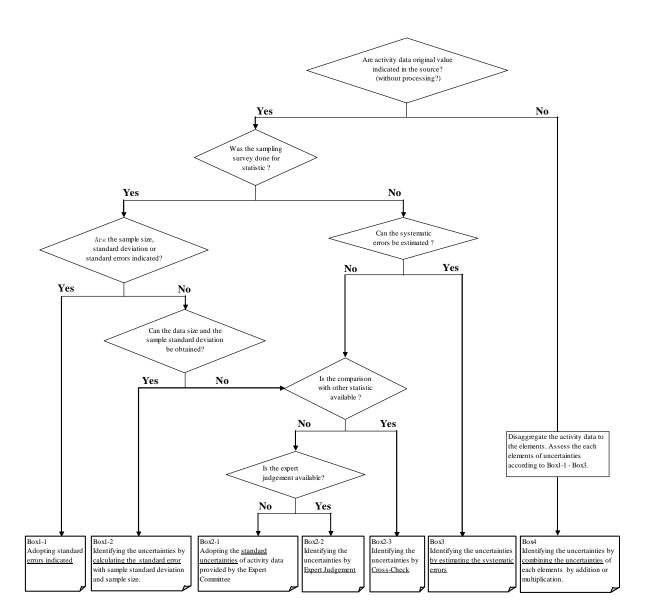
** Category 5: Changes in land use and forestry are not dealt with in the GPG (2000).

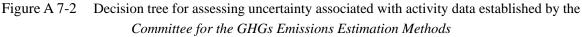
7.1.3.3.c. Methods for Combining Uncertainties of Emission Factors

The basic method for combining uncertainties is Tier 1 in the *Good Practice Guidance (2000)*. When a correlation between elements is strong, uncertainties may be combined using the Monte Carlo method (Tier 2 in the *Good Practice Guidance (2000)*).

a) Uncertainty of emission factor derived from a combination of multiple parameters

The uncertainty of an emission factor may be obtained at from the uncertainty of multiple parameters using the equation given below, in situations of the type described in the example on page Annex 7.5.


$$U_{EF} = \sqrt{U_{I}^{2} + U_{2}^{2} + \cdots + U_{n}^{2}}$$


$$U_{EF}$$
: Uncertainties of Emission Factors (%)
 U_{i} : Uncertainties of Parameter "i" (%)

7.1.3.4. Uncertainty Assessment of Activity Data

The uncertainty of activity data is assessed in accordance with the decision tree depicted below.

Annex 7. Methodology and Results of Uncertainty Assessment

If an appropriate assessment cannot be made using the decision tree above, it may be done using a method that has been considered and deemed as appropriate. The reason why an appropriate assessment could not be achieved using the decision tree, and the method applied, will both need to be clearly explained.

7.1.3.4.a. Using statistical values for activity data

When using statistical values for activity data, uncertainty should be quantitatively assessed in accordance with the following guidelines.

Guidelines for assessment of uncertainty associated with emission factors

Guideline 1

Only the sample error needs to be considered as part of uncertainty assessment in sample surveys.

Guideline 2

In situations other than sample surveys, if it is possible to estimate a systemic error, it should be considered as part of an uncertainty assessment.

Guideline 3

In situations other than sample surveys, if it is not possible to estimate a systemic error, uncertainty should be assessed through crosschecks, or by expert judgment.

Guideline 4

Where quantitative assessment is difficult, factors that would contribute to uncertainty should be recorded for a future investigation.

a) Statistical values based on a sample survey

1) The publisher has made errors public (Box 1-1)

When the publisher of a statistical document has made the sampling errors public in the sample survey, it should be used as the uncertainty of the activity data.

2) The publisher has not made errors public (Box 1-2)

Enquire the publisher of the statistical document for the size of the sample, the sample average, and the standard deviation of the sample. Under the assumption that the distribution of the sample reproduces the distribution of the population, assessment of uncertainty from the statistical values should be done.

Uncertainty
$$U = (1.96 \times s / \sqrt{n}) / X_{aa}$$

X_{ad} : Sample average

S : Standard deviation of sample

n : Number of items of data

If, however, distribution is asymmetrical, the uncertainty U is calculated by dividing the difference between the value of the 95 percent confidence limit furthest from X_{ad} and the average value, by X_{ad} .

Confirmation of the estimation method for Japan from values drawn from the sample survey and, as far as possible, estimation of the uncertainty associated with the estimation method should be done also (e.g., multiply the sample average of the number of head of livestock raised per farm by the number of farms).

3) Amount of data and sample standard deviation are not available, and crosschecking is possible (Box 2-3)

In the case of statistics drawn from a sample survey, where the amount of data and the sample standard deviation are not available, but it is possible to compare the relevant statistical value with multiple other statistical values, uncertainty should be assessed using the same means as in the second case described at section A1.2.3 in the page A1.7 of the *Good Practice Guidance (2000)*.

Uncertainty $U = (1.96 \times s) / X_{ap}$

 X_{ap} : Value used for activity data

s : Standard deviation (data to be cross-checked)

However, if a distribution is asymmetrical, the uncertainty U may be calculated by dividing the difference between the value of the 95 percent confidence limit furthest from X_{ad} and the average value, by X_{ad} .

Also, when there is a single other statistical value only, the assessment should be done using the same method described at 2) "When the distribution of the probability density function of emission factors cannot be obtained using expert judgment" in *Section 7.1.3.3.b.*.

4) Amount of data and sample standard deviation are not available, and expert judgment is available (Box 2-2)

In the case of statistics drawn from a sample survey where the amount of data and sample standard deviation are not available, ask an expert for the upper and lower limiting values appropriate to activity data in Japan, and draw a triangular distribution for activity data (see diagram at page *Annex* 7.9) with the Japanese activity data as the vertex, and such that the upper and lower limiting values of a 95 percent confidence interval correspond to the upper and lower limiting values appropriate to the Japanese activity data.

If the activity data used is larger than the upper limiting value, that activity data should be used as the upper limiting value. If the activity data used is smaller than the lower limiting value, that emission factor (parameter) should be taken as the lower limiting value.

The experts providing the expert judgment, the basis for their decision, and factors contributing to uncertainty that are excluded from consideration, should be documented, and the document should be retained.

5) Amount of data and sample standard deviation are not available, and expert judgment is unavailable (Box 2-3)

The following standard values established by the *Committee for the GHGs Emissions Estimations Methods* will be used.

Table A 7-1Uncertainty of sample statistics established by the Committee for the GHGs EmissionsEstimation Methods

	Fundamental statistics	Other statistics				
Sample survey	50 [%]	100 [%]				

The values for fundamental statistics, approved statistics, and reported statistics have been established by the Committee for the GHGs Emissions Estimation Methods, with reference to the *Good Practice Guidance (2000)* and other material. Statistics other than fundamental statistics have been deemed to be twice the fundamental statistics.

b) Statistical values not based on a sample survey

1) Systemic error can be estimated (Box 3)

Where a systemic error can be estimated, it should be estimated and used. The method by which the systemic error is calculated should be documented, and the document should be retained.

2) Systemic error cannot be estimated, and crosschecking is possible (Box 2-3)

Where systemic error cannot be estimated, but it is possible to compare the relevant statistical value with other statistical values, uncertainty should be assessed using the same means as in Case 2 described at A1.2.3 of Section A1.7 of the *Good Practice Guidance (2000)*.

3) Systemic error cannot be estimated, crosschecking is not possible, and expert judgment is available (Box 2-2)

Same as for "4) Amount of data and sample standard deviation are not available, and expert judgment is available (Box 2-2)" on the previous page.

4) Systemic error cannot be estimated, crosschecking is not possible, and expert judgment is unavailable (Box 2-1)

The following standard values established by the Committee for the GHGs Emissions Estimation Methods should be used.

Table A 7-2Uncertainty of sample statistics established by the Committee for the GHGsEmissions Estimation Methods

	Fundamental statistics	Other statistics
Survey of total population (no rounding)	5 [%]	10 [%]
Survey of total population (rounding)	20 [%]	40 [%]

The values for fundamental statistics, approved statistics, and reported statistics have been established by the Committee for the GHGs Emissions Estimation Methods with reference to the *Good Practice Guidance* and other material. Statistics other than fundamental statistics have been deemed to be twice the fundamental statistics.

7.1.3.4.b. Using statistical values processed as activity data (Box 3)

a) Breakdown of each element of activity data and assessment

Activity data should be broken down as shown in the following example.

- Emission source : Carbon dioxide emission from incineration of naphtha in the chemical industry
 Stochastic equation :
 Activity data for relevant emission source
 - = Naphtha consumption \times 20% (remaining 80% is fixed in the product)²
 - ammonia raw material

After being broken down, each element of the statistical values should be assessed for uncertainty using the method shown at section "7.1.3.4.a. Using statistical values for activity data".

In the example above, for elements based on survey research, such as the figure of 20%, uncertainty should be assessed on the basis of the method shown at section "7.1.3.3. Uncertainty Assessment of *Emission Factors*".

b) Combining elements

Combine each element using the sum and product methods of combination, and assess the uncertainty.

• Sum method (Rule A): Where uncertainty quantities are to be combined by addition. Activity data is expressed as $A_1 + A_2$

² Environmental Agency, The Estimation of CO₂ Emission in Japan, 1992

$$U_{A-total} = \frac{\sqrt{(U_{A1} \times A_{I})^{2} + (U_{A2} \times A_{2})^{2}}}{A_{I} + A_{2}}$$

 U_{An} : Uncertainty of element An (%)

• Product method: Where uncertainty quantities are to be combined by multiplication. Activity data is expressed as $A_1 \times A_2$

$$U_A = \sqrt{U_{AI^2} \times U_{A2^2}}$$

 U_{An} : Uncertainty of element An (%)

7.1.3.5. Uncertainty Assessment of Emissions

7.1.3.5.a. Uncertainty assessment of emissions from individual emission sources

1) Emissions estimated from emission factor and activity data

Use the product combination equation given at Tier 1 of the *Good Practice Guidance*(2000) on the results of emission factor assessment from the previous section and the activity data, and assess the uncertainty of emissions from each emission source.

$$U_{Ei} = \sqrt{U_{EFi}^2 + U_{Ai}^2}$$

$$U_{Ei}$$
: Uncertainty of emissions from emission source *i* (%)

$$U_{EFi}$$
: Uncertainty of element An (%)

$$U_{Ai}$$
: Uncertainty of element An (%)

2) Actual measurements taken of emissions

When emissions are derived from actual measurement, uncertainty of emissions should be assessed directly, in accordance with "7.1.3.3. Uncertainty Assessment of Emission Factors".

7.1.3.5.b. Calculating uncertainty of total emissions

Combine the results of assessments of emission uncertainty for multiple emission sources to assess the uncertainty of total Japanese emissions of greenhouse gases. The uncertainty of emissions from multiple sources should be combined using the product combination equation given at Tier 1 in the *Good Practice Guidance(2000)*.

$$U_{Total} = \frac{\sqrt{(U_I \times E_I)^2 + (U_2 \times E_2)^2 + \dots + (U_n \times E_n)^2}}{E_I + E_2 + \dots + E_n}$$

$$U_{Total}: \text{Uncertainty of total Japanese emissions (\%)}$$

$$U_i: \text{Uncertainty of emission source i (\%)}$$

$$E_i: \text{Emissions from emission source i (Gg)}$$

When the uncertainties of emissions from multiple sources are combined, only the uncertainty of emissions should be indicated. Combination of the uncertainties for both emission factor and activity data should not be done.

7.2. Results of Uncertainty Assessment

7.2.1. Assumption of Uncertainty Assessment

Uncertainty Assessment is conducted with the results of uncertainty assessment in Committee for the

Greenhouse Gases Emissions Estimation Methods in FY 2006.

7.2.2. Uncertainty of Japan's Total Emissions

In FY 2008, total net emissions in Japan were approximately 1,203 million tons (carbon dioxide equivalents). Uncertainty of total net emissions has been assessed at 2% and uncertainty introduced into the trend in total net emissions has been assessed at 1%.

Table A 7-3	Uncertainty c	n Japan S 10	iai mei	LIIIISSIOIIS			
IPCC Category	GHGs	Emissions		Combined	rank	Combined	rank
		/ Removals		Uncertainty		uncertainty as	
		[Gg CO2 eq.]		[%] 1)		% of total	
						national	
						emissions	
		Α	[%]	В		С	
1A. Fuel Combustion (CO ₂)	CO_2	1,151,985.3	89.9%	1%	10	0.76%	2
1A. Fuel Combustion (Stationary:CH ₄ ,N ₂ O)	CH ₄ N ₂ O	5,060.9	0.4%	27%	3	0.11%	8
1A. Fuel Combustion (Transport:CH ₄ ,N ₂ O)	CH ₄ N ₂ O	2,962.5	0.2%	355%	1	0.87%	1
1B. Fugitive Emissions from Fuels	CO ₂ , CH ₄ , N ₂ O	446.4	0.0%	19%	5	0.01%	9
2. Industrial Processes (CO ₂ ,CH ₄ ,N ₂ O)	CO ₂ CH ₄ N ₂ O	51,667.6	4.0%	7%	7	0.32%	7
2. Industrial Processes (HFCs,PFCs,SF ₆)	HFCs, PFCs, SF ₆	23,642.7	1.8%	26%	4	0.52%	4
3. Solvent & other Product Use	N ₂ O	160.4	0.0%	5%	9	0.00%	10
4. Agriculture	CH ₄ N ₂ O	25,844.9	2.0%	18%	6	0.38%	6
5. LULUCF	CO ₂ , CH ₄ , N ₂ O	-78,807.9	-6.1%	6%	8	0.42%	5
6. Waste	CO ₂ CH ₄ N ₂ O	20,058.0	1.6%		2	0.53%	3
Total Net Emissions	(D)	1,203,020.6		(E) $^{2)}$ 2%			

1)
$$C = A \times B / D$$

2)
$$E = \sqrt{C_1^2 + C_2^2 + \cdots}$$

Hereafter, the same method for calculating uncertainty assessment has been used in each sector appearing in Table 4 and the following tables.

7.2.3. Energy Sector

7.2.3.1. Fuel Combustion (CO₂)

Carbon-Hydrogen ratio of hydrocarbons is strongly correlating with calorific value in theory, then, standard deviation of sample data of each fuel's calorific value are used for uncertainty assessment based on assumption that deviation of carbon content and that of calorific value is equal. The uncertainty of energy consumption in TJ given in the *General Energy Statistics* was assessed based on the given statistical error of solid fuels, liquid fuels, and gaseous fuels, since it was difficult to set uncertainty by fuel types and industry.

IPCC Category			GHGs	Emissions	EF/RF	AD	Combined	rank	Combined	rank
0.5				/ Removals	Uncertainty	Uncertainty	Uncertainty		uncertainty as	
				[Gg CO ₂ eq.]	[%]	[%]	[%]		% of total	
				[ug 002 04.]					national	
									emissions	1
				А	а	ь	B ³⁾		с	
1A. Fuel	Solid Fuels	Steel Making Coal	60	13,778.4	3.5%	1.2%	<u>В</u> 4%	19	0.04%	16
Combustion	Solid Fuels	Steam Coal (imported)	CO ₂	251.694.6	2.0%	1.2%	4%	31	0.49%	
Compustion		Steam Coal (indigenous)	CO ₂	231,034.0	2.0%	1.2%	2%	31	0.00%	
		Hard Coal	CO ₂	0.0	4.5%	1.2%	2 % 5%	16	0.00%	
		Coke	CO ₂	88,490.6	1.7%	1.2%	2%	39	0.15%	1
		Coal Tar	CO ₂	1.626.2	5.0%	1.2%	5%	39 14	0.13%	
		Coal Briquette	CO ₂ CO ₂	1,020.2	5.0%	1.2%	5%	14	0.00%	
		Coke Oven Gas		14,450.6	2.0%	1.2%	2%	31	0.03%	
		Blast Furnace Gas	CO ₂ CO ₂	40,484.4	3.8%	1.2%	4%	17	0.03%	1
		Converter Furnace Gas	CO ₂ CO ₂	9.998.7	2.9%	1.2%	3%	20	0.13%	
	Liquid Fuels	Crude Oil for Refinery	CO ₂	0.0	0.8%	2.3%	2%	26	0.00%	
	Liquiu i ucis	Crude Oil for Power Generation	CO ₂ CO ₂	21,595.5	0.9%	2.3%	2%	25	0.04%	1
		Vitumous Mixture Fuel	CO ₂ CO ₂	0.0	0.4%	2.3%	2%	30	0.00%	
		NGL & Condensate	CO ₂ CO ₂	9.0	1.6%	2.3%	3%	21	0.00%	
		Naphtha	CO ₂ CO ₂	812.0	0.1%	2.3%	2%	34	0.00%	1
		Reformed Material Oil	CO ₂ CO ₂	0.0	0.1%	2.3%	2%	34	0.00%	
		Gasoline	CO ₂ CO ₂	133,078.3	0.03%	2.3%	2%	38	0.25%	
		Jet Fuel	CO ₂ CO ₂	13.984.6	1.0%	2.3%	3%	24	0.03%	
		Kerosene	CO ₂ CO ₂	48,491.4	0.05%	2.3%	2%	37	0.09%	1
		Gas Oil or Diesel Oil	CO ₂ CO ₂	87,397.2	1.2%	2.3%	3%	23	0.19%	
		Heating Oil A		50,219.4	1.5%	2.3%	3%	22	0.11%) -
		Heating Oil B	CO ₂	71.3	5.0%	2.3%	6%	10	0.00%	
		Heating Oil C	CO2	74.093.2	0.6%	2.3%	2%	27	0.15%	1
		Lubricating Oil	CO ₂	192.0	5.0%	2.3%	6%	10	0.00%	
		Asphalt	CO2	10,779.3	0.6%	2.3%	2%	27	0.02%	1
		Non Asphalt Heavy Oil Products		0.1	0.6%	2.3%	2%	27	0.00%	
		Oil Coke		12,066.1	5.0%	2.3%	6%	10	0.06%	13
		Galvanic Furnace Gas		144.3	2.9%	2.3%	4%	18	0.00%	33
		Refinary Gas		32,073.9	5.0%	2.3%	6%	10	0.15%	6
		LPG	CO ₂	30,266.9	0.1%	2.3%	2%	34	0.06%	12
	Gaseous Fuels	LNG	CO ₂	118,417.7	0.1%	0.3%	0%	42	0.03%	18
		Indigenous Natural Gas	CO ₂	2,196.2	0.6%	0.3%	1%	40	0.00%	31
		Town Gas*	CO ₂	80,546.7	0.5%	0.3%	1%	41	0.04%	17
		Small Scale Town Gas*	CO ₂	1,214.5	0.1%	0.3%	0%	42	0.00%	35
	Other Fuels	Municipal Solid Waste (Plastics)	CO ₂	4,786.4	4.3%	16.0%	17%	6	0.07%	11
		Municipal Solid Waste (Waste textile)	CO ₂	898.9	4.3%	22.4%	23%	5	0.02%	24
		Industrial Solid Waste (Waste Mineral Oil)		86.7	4.8%	104.4%	105%	1	0.01%	27
		Industrial Solid Waste (Plastics)	CO ₂	297.6	4.8%	100.0%	100%	3	0.02%	22
		Raw material and fuel use of MSW	CO2	367.8	4.3%	16.0%	17%	6	0.01%	29
		Raw material and fuel use of ISW (Waste Mineral Oil)		3,676.7	4.8%	104.4%	105%	<u>1</u>	0.32%	2
		Raw material and fuel use of ISW (Waste Plastics)	CO2	1,332.9	4.8%	12.3%	13%	9	0.01%	
		Raw material and fuel use of Waste tire		1,022.9	4.8%	14.5%	15%	8	0.01%	
		Fuel use of RDF and RPF	CO2	1,342.3	42.6%	10.6%	44%	4	0.05%	14
	Sub Total			1,151,985.3			1%		0.76%	
Total Emissions			(D)	1,203,020.6			2%			

Table A 7-4Results of uncertainty assessment of fuel combustion (CO2)

* Reported in Gaseous Fuels according to the main material; LNG

3) $B = \sqrt{a^2 + b^2}$ (Hereafter, the same method has been used in each sector appearing in Table5 and following)

7.2.3.2. Stationary Combustion (CH₄ and N₂O)

Table A 7-5Results of uncertainty assessment of fuel combustion (CO2)

IPCC Category			GHGs	Emissions / Removals [Gg CO2 eq.]	EF/RF Uncertainty [%]	AD Uncertainty [%]	Combined Uncertainty [%]	rank	Combined uncertainty as % of total national emissions	rank
14. Engl Combustin	(Ct - t'			A 560.1	<u>a</u> 4)	4)	B 47%	10	C 0.02%	
IA. Fuel Combustio	n (Stationary)		CH ₄		4)	4)				
C Weste	Mandala al Calia		N ₂ O	4,054.8			33%	-	0.11%	1
			CH4 N2O		_	_				
Incineration				314.2			42%		0.01%	
	Raw material and fuel use of ISW Waste O Waste PI Waste W Raw material and fuel use o Fuel use of RDF and RPF		CH_4	0.2	111.5%		150%	-	0.00%	
			N ₂ O	3.3	58.8%	100.0%	116%	<u> </u>	0.00%	
	Solid Waste Raw material and fuel use of MSW Raw material and Waste Oil (total)	CH_4	0.0	179.4%	10.0%	180%		0.00%		
		N ₂ O	0.0	111.2%	10.0%	112%		0.00%		
		Waste Oil (total)	CH ₄	0.5	-	-	74%		0.00%	
	fuel use of ISW		N ₂ O	12.3	—	—	41%		0.00%	
		Waste Plastics	CH ₄	3.4	91.7%	10.0%	92%	8	0.00%	
			N ₂ O	4.5	29.7%	10.0%	31%	17	0.00%	6
		Waste Wood	CH ₄	77.2	80.2%	100.0%	128%	3	0.01%	
			N ₂ O	12.9	45.3%	100.0%	110%	6	0.00%	
	Raw material and	fuel use of Waste tire	CH ₄	1.3	_	_	91%	9	0.00%	
			N ₂ O	5.5	—	—	26%	18	0.00%	12
	Fuel use of RDF ar	nd RPF	CH ₄	0.2	—	—	49%	11	0.00%	16
			N ₂ O	7.7	—	—	33%	16	0.00%	10
Sub Total				5,060.9			27%		0.11%	
Total Emissions			(D)	1,203,020.6			2%			

4) Because "—" means aggregation of detailed sub-categories, uncertainties of EF/RF and AD can not be calculated for this level of disaggregation of categories.

7.2.3.3. Mobile Combustion (CH_4 and N_2O)

IPCC Category		GHGs	Emissions / Removals [Gg CO2eq.]	EF/RF Uncertainty [%]	AD Uncertainty [%]	Combined Uncertainty [%]	rank	Combined uncertainty as % of total national emissions	rank
			Α	а	b	в		С	
1A.Fuel Combustion	a. Civil Aviation	CH ₄	4.7	200.0%	10.0%	200%	<u>4</u>	0.00%	6
(Transport)		N ₂ O	103.2	10000.0%	10.0%	10000%	1	0.86%	1
	b. Road Transportation	CH ₄	160.8	40.0%	50.0%	64%	6	0.01%	4
		N ₂ O	2,494.5	50.0%	50.0%	71%	<u>5</u>	0.15%	<u>2</u>
	c. Railways	CH ₄	0.8	_	—	14%	7	0.00%	8
		N ₂ O	79.8	_	—	11%	8	0.00%	7
	d. Navigation	CH_4	22.7	200.0%	13.0%	200%	<u>3</u>	0.00%	<u>5</u>
		N ₂ O	95.9	1000.0%	13.0%	1000%	2	0.08%	3
	Sub Total		2,962.5			355%		0.87%	
Total Emissions		(D)	1,203,020.6			2%			

Table A 7-6 Results of uncertainty assessment of mobile combustion (CH₄ and N₂O)

(Note) CO₂ emissions from 1A Fuel Combustion (Transport) have been reported under the Table 4.

7.2.3.4. Fugitive Emissions from Fuel

Table A 7-7	Results of uncertainty	assessment of fugitive	emissions from fuel

TD C					erre.		5555	15	a		a 11 1	
IPC	C Cate	gory			GHGs	Emissions	EF/RF	AD		rank	Combined	rank
						/ Removals	Uncertainty	Uncertainty	Uncertainty		uncertainty	
						[Gg CO2eq.]	[%]	[%]	[%]		as % of total	
											national emissions	
											emissions	
						А	а	b	В		С	
	l s	- 20	i. Underground	Mining Activities	CH ₄	14.1	_	-	5%	24	0.00%	12
	1. Solid Fuels	a. Coal Mining	Mines	Post-Mining Activities	CH ₄	18.5	200.0%	10.0%	200%	<u>1</u>	0.00%	<u>2</u>
	S.E	Mir C	ii. Surface	Mining Activities	CH ₄	12.2	200.0%	10.0%	200%	<u>1</u>	0.00%	<u>3</u>
	-		Mines	Post-Mining Activities	CH_4	1.1	200.0%	10.0%	200%	1	0.00%	11
		a. Oil		i. Exploration	CO ₂	0.02	25.0%	10.0%	27%	7	0.00%	20
					CH ₄	0.02	25.0%	10.0%	27%	6	0.00%	21
els					N ₂ O	0.00006	25.0%	10.0%	27%	4	0.00%	24
Fu				ii. Production	CO ₂	0.09	25.0%	5.0%	25%	9	0.00%	17
om					CH ₄	10.4	25.0%	5.0%	25%	9	0.00%	9
IB. Fugitive Emissions from Fuels				iii. Transport	CO2	0.0053	25.0%	5.0%	25%	9	0.00%	22
ons	Gas				CH ₄	1.6	25.0%	5.0%	25%	9	0.00%	14
ssi	al C			iv. Refining / Storage	CH4	15.7	25.0%	0.9%	25%	23	0.00%	7
ini	Oil and Natural	b. Natural		ii. Production / Processing	CO ₂	0.5	25.0%	5.0%	25%	9	0.00%	16
е	Vat	Gas			CH4	284.0	25.0%	5.0%	25%	9	0.01%	<u>1</u>
tiv	L P			iii. Transmission	CH4	22.8	25.0%	10.0%	27%	<u>4</u>	0.00%	4
ugi	ar			iv. Distribution	CH ₄	15.5	25.0%	8.7%	26%	8	0.00%	
Ē.	lio	c. Venting	Venting	i. oil	CO ₂	0.0	25.0%	5.0%	25%	9	0.00%	23
1B	રું	and Flaring			CH ₄	9.9	25.0%	5.0%	25%	9	0.00%	10
			Flaring	i. oil	CO ₂	22.8	25.0%	5.0%	25%	9	0.00%	<u>5</u>
					CH ₄	0.99	25.0%	5.0%	25%	9	0.00%	
					N ₂ O	0.068	25.0%	5.0%	25%	9	0.00%	18
				ii. Gas	CO ₂	14.5	25.0%	5.0%	25%	9	0.00%	8
					CH4	1.9	25.0%	5.0%	25%	9	0.00%	13
					N ₂ O	0.053	25.0%	5.0%	25%	9	0.00%	19
_	Sub To					446.4			19%		0.01%	
Tota	al Emis	sions			(D)	1,203,020.6			2%			

7.2.4. Industrial Processes

7.2.4.1. CO_2 , CH_4 and N_2O

For emissions sources with actual data available for emission factors, the emission factor dataset is deemed to be a sample of the total dataset, and the uncertainty assessment is achieved statistically. It is not a synthesis of the uncertainties of measured error of emissions from each operating site.

IPC	CC Category		of uncertainty	GHGs	Emissions / Removals [Gg CO2 eq.]	EF/RF Uncertainty [%]	AD Uncertainty [%]	Combined Uncertainty [%]	rank	- /	rank
					А	а	b	В		С	
	A. Mineral	1 1. Cement Production			27,996.3	3.0%	10.0%	10%	15	0.24%	
	Products	2. Lime Production		CO ₂	6,931.2	15.0%	5.0%	16%		0.09%	· -
		3. Limestone &	Limestone	CO ₂	11,840.2	16.4%	4.8%	17%	12	0.17%	2
		Dolomite Use	Dolomite	CO ₂	308.3	3.5%	3.9%	5%	17	0.00%	11
		4. Soda Ash Production	and Use	CO ₂	308.0	15.0%	6.5%	16%	13	0.00%	9
ŝ	B. Chemical	1. Ammonia Production	CO ₂	1,989.8	22.5%	5.0%	23%	11	0.04%	5	
SSS	Industries	Industries Chemical Industries other than Anmonia 2. Nitric Acid,		CO ₂	754.2	77.2%	5.0%	77%	8	0.05%	<u>4</u>
oce				N ₂ O	502.7	46.0%	5.0%	46%	10	0.02%	6
Pr		3. Adipic Acid		N ₂ O	759.4	9.0%	2.0%	9%	16	0.01%	8
ial		4. Carbide		CH ₄	0.66	100.0%	10.0%	100%	5	0.00%	17
str		5. Other	Carbon Black	CH ₄	5.3	54.8%	5.0%	55%	9	0.00%	14
qu			Ethylene	CH ₄	2.1	77.2%	5.0%	77%	7	0.00%	16
2. Industrial Processes			Dichloroethylene	CH ₄	0.34	100.7%	5.0%	101%	4	0.00%	18
2			Styrene	CH₄	1.8	113.2%	5.0%	113%	<u>3</u>	0.00%	15
			Methanol	CH ₄	0.0	NA	NA	NA	NA	NA	NA
			Coke	CH_4	96.3	98.5%	5.0%	99 %	6	0.01%	7
	C. Metal	1. Iron and steel		CO ₂	155.8	_	_	5%	18	0.00%	12
	Production			CH4	12.7	163.0%	5.0%	163%	<u>1</u>	0.00%	
		2. Ferroalloy		CH₄	2.3	163.0%	5.0%	163%	1	0.00%	13
	Sub Total			51,667.6			7%		0.32%		
Tot	al Emissions			(D)	1,203,020.6			2%			

Table A 7-8 Results of uncertainty assessment of industrial processes (CO₂, CH₄ and N₂O)

7.2.4.2. F-gas

		Table A 7-9	Results of	uncertaint	ty ass	essment of	industria	al process	ses (F-ga	.s)		
IPC	PCC Category					Emissions / Removals [Gg CO ₂ eq.]	EF/RF Uncertainty [%]	AD Uncertainty [%]	Combined Uncertainty [%]	rank	Combined uncertainty as % of total national emissions	rank
						А		ь	в		с	
	C. Metal	3. Aluminium			PFCs	14.7	a 33.0%	5.0%	33%	30	0.00%	21
	Production		um and Magnesium H	Foundries	SF ₆	652.5	-	5.0%	5%	32	0.00%	18
		4. SF6 Used in Aluminium and Magnesium Foundries 1. By-product Emissions (HCFC-22)				469.2	2.0%	5.0%	5%	31	0.00%	20
	E. Production	2. Fugitive Emissions		HFCs HFCs	232.2	100.0%	10.0%	100%	1	0.02%	12	
	of F-gas	2. Fugitive Emissions				523.8	100.0%	10.0%	100%	Ī	0.04%	8
	0				PFCs SF ₆	1,288.2	100.0%	10.0%	100%	1	0.11%	
			Domestic	manufacturing	HFCs	369.1	50.0%	40.0%	64%	6	0.02%	11
			Refrigerator	stock	HFCs	IE	50.0%	40.0%	64%	6	0.00%	
		Air ent	÷	disposal	HFCs	IE	-	40.0%	40%	20	0.00%	25
		p ud	Commercial	manufacturing	HFCs	8,269.0	50.0%	40.0%	64%	6	0.44%	
		.gas I. Refrigeration and Air Conditioning Equipment	Refrigerator	stock	HFCs	IE	50.0%	40.0%	64%	6	0.00%	25
(S			-	disposal	HFCs	IE	-	40.0%	40%	20	0.00%	25
-ga			Stationary	manufacturing	HFCs	2,080.0	50.0%	40.0%	64%	6	0.11%	4
E		ige	Air-Conditioning	stock	HFCs	IE	50.0%	40.0%	64%	6	0.00%	
ses		efr	-	disposal	HFCs	IE	-	40.0%	40%	20	0.00%	25
ces	200	B. B	Mobile	manufacturing	HFCs	2,518.0	50.0%	40.0%	64%	6	0.13%	3
ro	É.	-0	Air-Conditioning	stock	HFCs	IE	50.0%	40.0%	64%	6	0.00%	
I F	19			disposal	HFCs	IE	-	40.0%	40%	20	0.00%	25
Ë	io	2. Foam Blowing		manufacturing	HFCs	148.9	50.0%	50.0%	71%	4	0.01%	14
ISU	đ			stock	HFCs	137.5	50.0%	50.0%	71%	4	0.01%	15
Industrial Processes (F-gas)	Consumption of F-gas	3. Fire Extinguisher		manufacturing	HFCs	6.3	50.0%	40.0%	64%	6	0.00%	22
2.	u,	4. Aerosols / MDI	Aerosols	manufacturing	HFCs	69.9	-	40.0%	40%	20	0.00%	19
	ш. 			stock	HFCs	605.4	-	40.0%	40%	20	0.02%	10
	н		MDI	manufacturing	HFCs	6.3	-	40.0%	40%	20	0.00%	23
				stock	HFCs	207.9	-	40.0%	40%	20	0.01%	17
		5. Solvents			PFCs	1,318.3	-	40.0%	40%	20	0.04%	7
		7. Semiconductor Manuf	acture		HFCs	145.7	50.0%	40.0%	64%	6	0.01%	16
					PFCs	2,756.5	50.0%	40.0%	64%	6	0.15%	2
					SF_6	952.5	50.0%	40.0%	64%	6	0.05%	6
		8. Electrical		manufacturing	SF ₆	443.9	30.0%	40.0%	50%	19	0.02%	13
		Equipment		stock	SF ₆	424.2	50.0%	40.0%	64%	6	0.02%	9
		9. Other - Railway Silico	n Rectifiers	PFCs	2.8	-	40.0%	40%	20	0.00%	24	
	Sub Total					23,642.7			26%		0.52%	
Tota	al Emissions				(D)	1,203,020.6			2%			

(Note) Uncertainty of SF₆ emissions from 2.C.4 Magnesium Foundries are applied same value as that of 2.C.3 Aluminium

7.2.5. Solvents and Other Product Use

			•				-			
IPCC Category			GHGs	Emissions	EF/RF	AD	Combined	rank	Combined	rank
				/ Removals	Uncertainty	Uncertainty	Uncertainty		uncertainty	
				[Gg CO ₂ eq.]	[%]	[%]	[%]		as % of total	
				- 0 1-					national	
									emissions	
				A	а	b	В		С	
3. Solvent and Other	D. Other	Anaesthesia	N ₂ O	160.4	-	5.0%	5%	1	0.00%	1
Product Use	Sub Total			160.4		•	5%		0.00%	
Total Emissions			(D)	1,203,020.6			2%			

Table A 7-10Results of uncertainty assessment of solvent and other product use

7.2.6. Agriculture

Table A 7-11	Results of uncertainty assessment of Agriculture
--------------	--

CC Category			GHGs	Emissions / Removals [Gg CO2 eq.]	EF/RF Uncertainty [%]	AD Uncertainty [%]	Combined Uncertainty [%]	rank	Combined uncertainty as % of total	ranl
									national emissions	
_	-			А	а	b	В		с	
A. Enteric	Dairy Cattle		CH4	3,265.4	—	5.0%	15%	63	0.04%	
Fermentation	Non-Dairy Cattle Buffalo		CH ₄	3,419.0 0.09	50.0%	5.0% 100.0%	19% 112%		0.05% 0.00%	
3	Sheep		CH4 CH4	1.01	50.0%	100.0%	112%		0.00%	
	Goat		CH4	1.24	50.0%	100.0%	112%		0.00%	
	Swine		CH ₄	226.7	50.0%	0.8%	50%	58	0.01%	
	Horse		CH ₄	31.4	50.0%	100.0%	112%	44	0.00%	
B. Manure Management	Dairy Cattle		CH ₄	1,876.700 614.4	_	_	78% 91%	54 52	0.12% 0.05%	
wanagement	Non-Dairy Cattle		<u>N2O</u> CH4	97.198	_		73%	56	0.03%	
	j		N ₂ O	894.7	_	_	125%	42	0.09%	
	Buffalo		CH ₄	0.003	100.0%	100.0%	141%	31	0.00%	
	<u> </u>		N ₂ O	0.013	100.0%	100.0%	141%	31	0.00%	
	Swine		CH ₄	287.806 1,278.1	_	0.8% 0.8%	106% 92%	48 51	0.03% 0.10%	
	Poultry		<u>N2O</u> CH4	62.074	_	2.0%	<u>53%</u>	57	0.10%	
	(Hen, Broiler)		N ₂ O	1,942.8	_	2.0%	79 %	53	0.13%	
	Sheep		CH ₄	0.068	100.0%	100.0%	141%	31	0.00%	5
			N ₂ O	1.2	100.0%	100.0%	141%	31	0.00%	
	Goat		CH4	0.054	100.0%	100.0%	141%	31	0.00%	
	Horse		N2O CH4	5.3 3.631	100.0% 100.0%	100.0% 100.0%	141% 141%	31 31	0.00%	
	110130		N ₂ O	31.2	100.0%	100.0%	141%	31	0.00%	
C. Rice	Continuously Floo	oded	CH ₄	195.7	116.3%	0.3%	116%	43	0.02%	
Cultivation	Intermittently	Straw amendment	CH4	3,850.1	—	0.3%	32%	61	0.10%	
	Flooded	Various compost	CH4	885.0	-	0.3%	32%		0.02%	
D. Agricultural	1. Direct Soil	No-amendment Synthetic Fertilizers	CH ₄	683.0 1,282.5	_	0.3%	46% 139%	59 39	0.03%	
Soils	Emissions	Animal Waste AQplied to Soils	N2O N2O	1,282.5	_	_	152%		0.13%	
bons	Linisbions	N-Fixing Crops	N2O N2O	82.9	_	_	99%	49	0.01%	
		Crop residues	N ₂ O	581.0	_	—	211%	16	0.10%	
		Organic soil	N ₂ O	116.8	—	—	712%	1	0.07%	
	2. Pasture, Range 3. Indirect	Atmospheric Deposition	N2O	13.1 1,304.3		—	133% 75%	40 55	0.00%	
	Emissions	N Leaching & Run-off	N2O N2O	1,504.5	_	_	75% 97%	50	0.08%	
F. Field	1. Cereals	Wheat	CH ₄	7.5	_	_	186%	20	0.00%	
Burning of			N ₂ O	1.7			185%	24	0.00%	4
Agricultural		Barley	CH4	1.6	-	_	185%	22	0.00%	
Residue			N ₂ O	1.3			187%	18 7	0.00%	
		Maize	CH ₄ N ₂ O	24.5 20.8	418.0% 423.0%	50.0% 50.0%	421% 426%	3	0.01% 0.01%	
		Oats	CH ₄	0.8			156%	28	0.00%	
			N2O	0.7	—	—	170%	27	0.00%	4
		Rye	CH4	0.040	-	—	130%	41	0.00%	
		Rice	N ₂ O	0.019			154%	29 23	0.00%	
		RICE	CH ₄ N ₂ O	20.1 8.0	178.0%	50.0%	185% 182%	23 26	0.00% 0.00%	
	2. Pulse	Peas	CH4	0.21	481.0%	20.0%	481%	2	0.00%	
			N ₂ O	0.18	423.0%	20.0%	423%	5	0.00%	
		Soybeans	CH4	2.53	176.0%	50.0%	183%	25	0.00%	
		Other (Adzuki beans)	N ₂ O	0.89	182.0% 179.0%	50.0% 50.0%	189% 186%	17 21	0.00%	
		Guier (Auzuki Dealis)	CH4 N2O	0.66	179.0%	50.0% 50.0%	186%	21 19	0.00%	
		Other (kidney beans)	CH ₄	0.30	418.0%	50.0%	421%	13	0.00%	
			N ₂ O	0.09	418.0%	50.0%	421%	7	0.00%	
		Other (peanuts)	CH4	0.10	418.0%	50.0%	421%	7	0.00%	
	9 Tuber 9 Dest	Detetees	N ₂ O	0.04	418.0%	50.0%	421%	7	0.00%	
	3. Tuber & Roots	Potatoes	CH4	3.6 5.0	418.0% 419.0%	20.0% 20.0%	418% 419%		0.00% 0.00%	
		Other: Sugarbeet	<u>N2O</u> CH4	0.8	415.0%	50.0%	419%		0.00%	
			N ₂ O	1.0	419.0%	50.0%	422%	6	0.00%	
	4. Sugar Cane		CH ₄	11.2	418.0%	50.0%	421%	7	0.00%	1
			N2O	27.3 25,844.9	423.0%	50.0%	426%	3	0.01%	
Sub Total										

7.2.7. LULUCF

IPC	CC Category		GHGs	Emissions / Removals [Gg CO2 eq.]	EF/RF Uncertainty [%]	AD Uncertainty [%]	Combined Uncertainty [%]	rank	Combined uncertainty as % of total national emissions	rank 5)
		1		A	а	b	В		C	
	A. Forest Land	1. Forest Land remaining Forest Land	CO_2	-79,869.3	—	_	6%	12	0.42%	` <u>1</u>
		2. Land converted to Forest Land	CO ₂	-65.0	-	_	91%	2	0.00%	7
r-			CH_4	21.5	25.0%	85.3%	89%		0.00%	10
LULUCF		2	N ₂ O	2.2	75.6%	85.3%	114%	1	0.00%	12
H	B. Cropland	1. Cropland remaining Cropland	CO_2	IE,NA,NE,NO	-	-	-	_	_	_
3		2. Land converted to Cropland	CO ₂	223.3	-	-	25%	10	0.00%	8
ŝ.			CH_4	NE,NO	-	-	—	-	—	—
			N ₂ O	7.4	-	-	74%	5	0.00%	11
	C. Grassland	1. Grassland remaining Grassland	CO_2	IE,NA,NE	-	-	—	-	—	—
		2. Land converted to Grassland	CO ₂	-743.7	-	-	42%	7	0.03%	3
			CH_4	NE,NO	-	-	-	-	_	—
			N ₂ O	NE,NO	-	-	-	-	-	—
	D. Wetlands	1. Wetlands remaining Wetlands	CO_2	NE,NO	-	-	_	-	_	—
		2. Land converted to Wetlands	CO ₂	92.1	-	-	26%	9	0.00%	9
			CH ₄	NE,NO	-	-	-	—	—	—
			N ₂ O	NE,NO	-	-	-	—	—	—
	E. Settlements	1. Settlements remaining Settlements	CO ₂	-770.9	-	-	76%	4	0.05%	2
		2. Land converted to Settlements	CO ₂	1,601.4	-	-	9%	11	0.01%	5
			CH ₄	NE,NO	-	-	-	—	—	—
			N ₂ O	NE,NO	-	-	-	_	_	—
	F. Other Land	1. Other Land remaining Other Land	CO ₂	—	-	-	_	_	_	—
	1	2. Land converted to Other Land	CO ₂	387.5	-	-	28%	8	0.01%	6
	1		CH₄	NO	-	_	-	—	—	—
1	1		N ₂ O	NO		-		—	—	—
1	G. Other	CO ₂ emissions from agricultural lime application	CO ₂	305.6	-50%	9%	51%	6	0.01%	4
	Sub Total			-78,807.9			6%		0.42%	
Tot	al Emissions		(D)	1,203,020.6	Ī		2%			

Table A 7-12 Results of uncertainty assessment of LULUCF

5) Numbers of the rank have been assessed based on the absolute values of "Combined uncertainty as % of total national emissions".

7.2.8. Waste

CC Category			GHGs	Emissions	EF/RF	AD	Combined	rank	Combined	rank
				/ Removals	Uncertainty	Uncertainty	Uncertainty		uncertainty	
				[Gg CO2 eq.]	[%]	[%]	[%]		as % of total	
									national	
									emissions	
				Α	а	b	В		С	
A. Solid Waste	1. Managed Waste	Kitchen Garbage	CH ₄	461.41	42.4%	32.4%	53%	30	0.02%	12
Disposal	Disposal on	Waste PAQer	CH ₄	1,425.95	42.4%	42.7%	60%	26	0.07%	6
on Land	Land	Waste Textile	CH ₄	91.71	43.8%	42.9%	61%	25	0.00%	21
		Waste Wood	CH ₄	950.05	42.5%	56.6%	71%	21	0.06%	7
		Digested Sewage Sludge	CH ₄	39.48	44.2%	32.0%	55%	28	0.00%	27
		Other Sewage Sludge	CH ₄	196.56	44.2%	32.0%	55%	28	0.01%	16
		Human Waste Sludge	CH ₄	81.83	44.2%	32.6%	55%	27	0.00%	22
		Water Purification Sludge	CH4	36.59	108.6%	31.7%	113%	8	0.00%	23
		Organic Sludge from Manufacture	CH4	239.49	54.0%	33.4%	63%	24	0.01%	14
		Livestock Waste	CH4	27.21	46.9%	49.4%	68%	23	0.00%	28
	3. Other	Illegal Disposal	CH ₄	46.99	42.5%	66.8%	79%	16	0.00%	25
B. Wastewater	1. Industrial Waste	water	CH ₄	104.16	60.0%	37.4%	71%	22	0.01%	19
Handling			N ₂ O	121.52	300.0%	51.1%	304%	1	0.03%	11
	2. Domestic and	Sewage Treatment	CH ₄	257.06	30.9%	10.4%	33%	32	0.01%	18
	Commercial	Plant	N ₂ O	696.60	145.7%	10.4%	146%	5	0.08%	5
	Wastewater	Private Sewerage	CH ₄	439.96	86.8%	10.0%	87%	14	0.03%	9
		Tank	N ₂ O	288.70	71.0%	10.0%	72%	20	0.02%	13
		Human-Waste	CH ₄	16.15	100.0%	12.3%	101%	11	0.00%	29
		Treatment Plant	N ₂ O	6.12	100.0%	33.9%	106%	9	0.00%	33
		Degradation of domestic	CH ₄	520.72	—	—	76%	17	0.03%	8
		wastewater in nature	N ₂ O	50.33	_	_	76%	17	0.00%	24
C. Waste	Municipal Solid	Plastics	CO ₂	2,311.63	4.3%	16.0%	17%	35	0.03%	10
Incineration	Waste	Waste textile	CO ₂	434.15	4.3%	22.4%	23%	34	0.01%	17
			CH ₄	1.28	—	—	101%	12	0.00%	35
			N ₂ O	151.73	_	_	42%	31	0.01%	20
	Industrial	Waste mineral oil	CO ₂	3,410.44	4.8%	104.4%	105%	10	0.30%	2
	Solid Waste	Plastics	CO ₂	3,839.77	4.8%	100.0%	100%	13	0.32%	1
			CH ₄	9.85	111.5%	100.0%	150%	4	0.00%	30
			N ₂ O	1,620.07	58.8%	100.0%	116%	7	0.16%	4
	Specially Contorol	led Industrial Solid Waste	CO ₂	1,604.30	—	—	167%	2	0.22%	3
			CH ₄	1.02	—	—	142%	6	0.00%	34
			N ₂ O	13.61	—	_	159%	3	0.00%	26
D. Other	Decomposition of p	etroleum-derived surface-active agent	CO ₂	530.4	—	—	25%	33	0.01%	15
	Composting of Org		CH ₄	16.5	—	—	74%	19	0.00%	32
			N ₂ O	14.6	—	_	86%	15	0.00%	31
Sub Total	•			20,058.0		•	32%		0.53%	
tal Emissions			(D)	1,203,020.6			2%			•

Table A 7-13 Results of uncertainty assessment of Waste

6) Regarding 6A1, uncertainty of "Anaerobic landfill", which is the largest source under this sub-category, has been used.7) Regarding 6A2, uncertainty of "Gappei-shori johkasou", which is the largest source under this sub-category, has been used. 8) Regarding CH₄ of 6C MSW, uncertainty of "Semi-Continuous Incinerator" has been used.

9) Regarding CH₄ of 6C ISW, uncertainty of "Waste Paper and Waste Wood" has been used.

10) Regarding N₂O of 6C ISW, uncertainty of "Waste Plastics" has been used.

11) Regarding 6C Fuel use of RDF and RPF, uncertainty of "RDF" has been used.

7.2.9. Consideration of the results

The result of uncertainty assessment shows that Japan's uncertainty of total net emissions is approximately 2%. This value is relatively smaller compared to 21.3% of UK indicated in the *Good Practice Guidance (2000)*. It is attributed to the fact that the ratio of Japan's N₂O emission from "4.D.1. Agricultural Soils (Direct Soil Emissions)" to the national total emissions is small compared to that of UK (the ratios of Japan and UK reported in their inventories submitted in 2003 were 0.28% and 4.1%, respectively).

Below are the results of sensitivity analysis with N_2O emissions from this source, uncertainty of emission factor and national total emissions (calculation used the reported values of inventories submitted in 2003).

	N ₂ O Emissions [Gg CO ₂ eq.]	Uncertainty of EF	Uncertainty of Total Emissions	Note
Original	1 3,597.58	129.9%	2.4%	2001's Emissions contained in the GHG inventory submitted in 2003
Case 1	3,597.58	500%	2.6%	EF uncertainty was changed to UK's case
Case 2	71,951.53	129.9%	4.8%	Emissions were changed to be approximately 5% of national total emissions in 2001

Table A 7-14 Sensitivity Analysis on N₂O emissions from "4.D. Agricultural Soils 1 Direct Emissions"

7.2.10. Issues in Uncertainty Assessment

- According to the method indicated in the *Revised 1996 IPCC Guidelines*, only emission sources of which emissions had already been calculated were the subject of uncertainty assessment. No assessment has been made for emission sources not estimated (NE), or of those portions unconfirmed in emission sources for which only partial calculation has been done (PART). Therefore, it should be remembered that the uncertainty of total emissions prepared by compiling the uncertainty of emissions from each source, does not depict the uncertainty of inventory in the context of the realities of emissions.
- > In the sources recalculated, consideration is needed whether to re-assess the uncertainties or not.
- Where it was not possible to carry out a statistical assessment of the uncertainty of activity data, the values were derived from those established by the Committee for the GHGs Emissions Estimations Methods, which have established the uncertainty values in relation to whether the data were derived from specified statistics, or whether they were obtained from total population surveys. But further consideration needs to be given to improve the appropriateness of this approach.
- In carrying out a statistical assessment of uncertainty, it was assumed that the averages of all samples followed a normal distribution. In some cases, however, it means that the emission factor or activity data could, in fact, be negative. Emissions can only be positive under the present IPCC guidelines, so further consideration would need to be given for the possibility to assume that the emission factor or activity data follows some other distribution.

- Consideration on application of probability density function (PDF) with Monte-Carlo analysis is further issue. Further consideration on analysis with more disaggregated sources or each coefficients are needed.
- The number of decimal places to be used when depicting uncertainty was set as follows for the uncertainty assessments conducted, but as the precision of uncertainty assessment varies between emission sources, further consideration needs to be given to the number of decimal places that are effective in uncertainty assessment.

1) Uncertainty of emission factor is given to one decimal place.

2) Uncertainty of activity data is also given to one decimal place.

3) Uncertainty of emissions is given as an integer. (Proportion of total emissions attributable to the uncertainty of a particular source = two decimal places.)

7.2.11. Reference Material

Results of the uncertainty assessment for this year in accordance with Table 6.1 of *GPG* (2000) are indicated below.

						Tier 1 Uncertai	Table 6.1 nty Calculation a	& Reporting									
		IP	A CC		B Gas	C Base year	D 2008	E Activity	F EForRF	G Combined	H Combine		I Type A	J Type B	K Uncertainty	L Uncertainty	M Uncertainty
		Sou	arce 2gory			emissions / removals	emissions / removals	Data Uncertainty	Uncertainty	Uncertainty	Uncertair as % of Te Nationa Emissions 2008	nty otal 1	Sensitivity	Sensitivity	in trend in National Emissions introduced by EForRF	in trend in National Emissions introduced by Activity Data	introduced into the Trend in Total National Emissions
						Input Data	Input Data	Input Data	Input Data	(E^2+F^2)^1/2	$G^{\alpha}D/\Sigma D$	H^2	Note B	D/ ∑ C	Uncertainty I*F Note C	Uncertainty J*E*√2	(K^2+L^2)^1/2
						Gg CO ₂ equivalent	Gg CO ₂	%	%	%	%		%	%	Note C	%	%
Total						1,195,368.82	equivalent 1,203,020.65				2%	0.0%					1%
1A. Fuel	Solid Fuels	Steel Making C			CO ₂	9,244.05	13,778.37	1.2%	3.5%	4%	0.0%	0.0%	0.4%	1.2%	0.0%	0.0%	
Combustion		Steam Coal (im Steam Coal (ind			CO2 CO2	88,401.29 20,125.86	251,694.58 0.00	1.2%	2.0%	2% 2%	0.5%	0.0%	13.6%	21.1%	0.3%	0.4%	
		Hard Coal	ingenious)		CO ₂	0.00	0.00	1.2%	4.5%	5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
		Coke Coal Tar			CO2 CO2	117,790.21 3,173.39	88,490.64 1,626.17	1.2% 1.2%	1.7%	2% 5%	0.2%	0.0%	-2.5% -0.1%	7.4%	0.0%	0.1%	0.1%
		Coal Briquette			CO ₂	310.20	0.00	1.2%	5.0%	5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
		Coke Oven Gas Blast Furnace O			CO2	15,976.84 43,496.15	14,450.56 40,484,38	1.2%	2.0%	2% 4%	0.0%	0.0%	-0.1% -0.3%	1.2%	0.0%	0.0%	
		Converter Furn			CO ₂ CO ₂	9,303.92	9,998.74	1.2%	2.9%	3%	0.0%	0.0%	0.1%	0.8%	0.0%	0.0%	
	Liquid Fuels	Crude Oil for R Crude Oil for P	efinery ower Generatio	n	CO2 CO2	1.91 58,483.38	0.00 21,595.53	2.3% 2.3%	0.8%	2% 2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
		Vitumous Mixtu		•	CO ₂	0.00	0.00	2.3%	0.4%	2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	
		NGL & Conder Naphtha	isate		CO2 CO2	1,380.12 1,297.82	9.01 812.01	2.3% 2.3%	1.6% 0.1%	3% 2%	0.0%	0.0%	-0.1%	0.0%	0.0%	0.0%	0.0%
		Reformed Mate	rial Oil		CO ₂	0.00	0.00	2.3%	0.1%	2%	0.0%	0.0%	0.0%	0.1%	0.0%	0.0%	
		Gasoline Jet Fuel			CO2	103,913.39	133,078.31 13,984,58	2.3%	0.0%	2%	0.3%	0.0%	2.4%	11.1%	0.0%	0.4%	
		Kerosene			CO ₂ CO ₂	9,140.23 64,049.60	13,984.58 48,491.43	2.3% 2.3%	1.0% 0.1%	3% 2%	0.0% 0.1%	0.0% 0.0%	0.4% -1.3%	1.2%	0.0%	0.0%	0.0%
		Gas Oil or Dies	el Oil		CO2	98,847.94	87,397.23	2.3%	1.2%	3%	0.2%	0.0%	-1.0%	7.3%	0.0%	0.2%	0.2%
		Heating Oil A Heating Oil B			CO ₂ CO ₂	74,790.57 1,865.42	50,219.43 71.29	2.3% 2.3%	1.5% 5.0%	3% 6%	0.1%	0.0% 0.0%	-2.1% -0.2%	4.2% 0.0%	0.0%	0.1%	0.1%
		Heating Oil C			CO2	143,715.21	74,093.19	2.3%	0.6%	2%	0.1%	0.0%	-5.9%	6.2%	0.0%	0.2%	0.2%
		Lubricating Oil Asphalt			CO ₂ CO ₂	67.74 5,510.07	192.00 10,779.26	2.3% 2.3%	5.0% 0.6%	6% 2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		Non Asphalt He	avy Oil Produc	'S	CO2	7.76	0.13	2.3%	0.6%	2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		Oil Coke Galvanic Furna	ce Gas		CO ₂ CO ₂	9,505.00 146.60	12,066.13 144.28	2.3% 2.3%	5.0% 2.9%	6% 4%	0.1%	0.0%	0.2%	1.0%	0.0%	0.0%	0.0%
		Refinary Gas			CO ₂	27,354.02	32,073.85	2.3%	5.0%	6%	0.1%	0.0%	0.4%	2.7%	0.0%	0.1%	0.1%
	Gaseous Fuels	LPG			CO ₂ CO ₂	37,373.48 76,303.80	30,266.90 118,417.66	2.3%	0.1%	2% 0%	0.1%	0.0%	-0.6%	2.5%	0.0%	0.1%	0.1%
	Gaseous Fuels	Indigenous Nat	ural Gas		CO2 CO2	2,225.86	2,196.21	0.3%	0.1%	1%	0.0%	0.0%	0.0%	0.2%	0.0%	0.0%	0.0%
		Town Gas* Small Scale Tov	un Car*		CO ₂ CO ₂	34,211.10 1,130.79	80,546.67 1,214.55	0.3%	0.5% 0.1%	1%	0.0%	0.0% 0.0%	3.9% 0.0%	6.7% 0.1%	0.0%	0.0%	0.0%
	Other Fuels		Waste (Plastic	;)	CO2 CO2	5,856.61	4,786.38	16.0%	4.3%	17%	0.1%	0.0%	-0.1%	0.1%	0.0%	0.0%	0.1%
		-	l Waste (Waste) l Waste (Waste)		CO ₂	584.61 20.63	898.95 86.68	22.4% 104.4%	4.3% 4.8%	23% 105%	0.0%	0.0% 0.0%	0.0%	0.1%	0.0%	0.0%	0.0%
			l Waste (Waste)		CO2 CO2	30.87	297.59	104.4%	4.8%	100%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			nd fuel use of M		CO ₂	0.00	367.83	16.0%	4.3%	17%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			nd fuel use of IS nd fuel use of IS	SW (Waste Oli) SW (Waste Plastics)	CO2 CO2	2,018.99 40.83	3,676.73 1,332.89	104.4% 12.3%	4.8% 4.8%	105% 13%	0.3%	0.0% 0.0%	0.1%	0.3%	0.0%	0.5%	0.5%
			nd fuel use of W	aste tire	CO2	524.23	1,022.86	14.5%	4.8%	15%	0.0%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%
1A. Fuel Comb	ustion (Stationa	Fuel use of RDI ary)	e and RPF		CO ₂ CH ₄	25.63 582.68	1,342.27 560.10	10.6%	42.6% 45.9%	44% 47%	0.0%	0.0%	0.1%	0.1%	0.0%	0.0%	0.0%
	0.1 P 1	hr 10 hr			N ₂ O	2,438.69	4,054.81	10.0%	31.4%	33%	0.1%	0.0%	0.1%	0.3%	0.0%	0.0%	0.1%
	Other Fuels		l Waste (Plastic l Waste (Waste i		CH4 N2O	11.33 369.25	2.64 314.16	10.0% 10.0%	100.2% 40.6%	101% 42%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			Waste (Waste	· ·	CH_4	0.03	0.20	100.0%	111.5%	150%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			l Waste (Plastic nd fuel use of M		N2O CH4	3.30	3.25	100.0%	58.8% 179.4%	116% 180%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
					N ₂ O	0.00	0.00	10.0%	111.2%	112%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
		Raw material as fuel use of ISW			CH4 N2O	0.25	0.55	10.0% 10.0%	72.8% 39.6%	74% 41%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			Waste Plastic	i	CH4	0.00	3.44	10.0%	91.7%	92%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
			Waste Wood		N ₂ O CH ₄	0.04 36.94	4.51 77.22	10.0% 100.0%	29.7% 80.2%	31% 128%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
					N ₂ O	6.18	12.91	100.0%	45.3%	110%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		Raw material a	nd fuel use of W	aste tire	CH4 N2O	0.65	1.33	10.0%	90.8% 23.7%	91% 26%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		Fuel use of RDI	F and RPF		CH4	0.00	0.21	10.0%	48.1%	49%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
1A.Fuel	a. Civil Aviatio	pn			N ₂ O CH ₄	0.16	7.73	10.0% 10.0%	30.9% 200.0%	33% 200%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Combustion					CH ₄ N ₂ O	69.75	103.18	10.0%	10000.0%	10000%	0.9%	0.0%	0.0%	0.0%	0.3%	0.0%	0.3%
(Transport)	b. Road Transj	portation			CH4 NrO	266.66 3,901.71	160.81 2,494.53	50.0% 50.0%	40.0% 50.0%	64% 71%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	c. Railways				N ₂ O CH ₄	1.18	0.77	0.0%	0%	14%	0.0%	0.0%	0.0%	0.0%	-0.1%	- 0.1%	- 0.2%
	d. Navigation				N2O	121.38	79.82	-	- 200.0%	11%	0.0%	0.0%	0.0%	0.0%	-	-	-
	a. reavigation				CH4 N2O	26.45 111.58	22.75 95.95	13.0% 13.0%	200.0% 1000.0%	200% 1000%	0.0% 0.1%	0.0% 0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	bi s	lg I	i. Undergroun Mines	d Mining Activities Post-Mining Activities	CH4 CH4	2,551.70 233.53	14.08 18.49	5.4% 10.0%	0.0%	5% 200%	0.0%	0.0%	-0.2%	0.0%	0.0%	0.0%	0.0%
	1. Solid Fuels	a. Coal Mining	ii. Surface	Mining Activities	CH4	19.50	12.20	10.0%	200.0%	200%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		a. Oil	Mines	Post-Mining Activities i. Exploration	CH ₄ CO ₂	1.70	1.06	10.0%	200.0% 25.0%	200% 27%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
					CH_4	0.03	0.02	10.0%	25.0%	27%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
2				ii. Production	N2O CO2	0.00	0.00	10.0%	25.0%	27% 25%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Fuel					CO ₂ CH ₄	12.80	10.37	5.0%	25.0%	25%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
from				iii. Transport	CO ₂	0.00	0.01	5.0% 5.0%	25.0% 25.0%	25% 25%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
1B. Fugitive Emissions from Fuels	Gas			iv. Refining / Storage	CH ₄ CH ₄	0.76	1.64	5.0%	25.0%	25%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Emise	Oil and Natural Gas	b. Natural		ii. Production / Processing	CO2	0.25	0.45	5.0%	25.0%	25%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
[tive]	1 Nat	Gas		iii. Transmission	CH ₄ CH ₄	159.12	283.95 22.77	5.0% 10.0%	25.0% 25.0%	25% 27%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
.Fug	il an	. Nontini	Vantia	iv. Distribution	CH4	13.69	15.45	8.7%	25.0%	26%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
B	2.0	c. Venting and Flaring	Venting	i. oil	CO ₂ CH4	0.01 12.19	0.00 9.88	5.0% 5.0%	25.0% 25.0%	25% 25%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			Flaring	i. oil	CO ₂	28.17	22.82	5.0%	25.0%	25%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
					CH4 N2O	1.22	0.99	5.0% 5.0%	25.0% 25.0%	25% 25%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
				ii. Gas	CO ₂	8.06	14.45	5.0%	25.0%	25%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
					CH_4	1.04	1.87	5.0%	25.0% 25.0%	25% 25%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
L	1	1	1		N2O	0.03	0.05	5.0%	25.0%	25%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

					Tier 1 Uncertain	Table 6.1	Reporting									
		A	C	B Gas	C Base year	D 2008	E Activity	F EForRF	G Combined	H Combine		I Type A	J Type B	K Uncertainty	L Uncertainty	M Uncertainty
		Sou Cate			emissions / removals	emissions / removals	Data Uncertainty	Uncertainty	Uncertainty	Uncertain as % of To National Emissions 2008	tal	Sensitivity	Sensitivity	in trend in National Emissions introduced by EForRF	in trend in National Emissions introduced by Activity Data	introduced into the Trend in Total National Emissions
					Input Data	Input Data	Input Data	Input Data	(E^2+F^2)^1/2	$G^{\alpha}D/\sum D$	H^2	Note B	$D/\sum C$	Uncertainty I*F Note C	Uncertainty J*E*√2	(K^2+L^2)^1/2
					Gg CO2 equivalent	Gg CO ₂ equivalent	%	%	%	%		%	%	%	%	%
Total					1,195,368.82	1,203,020.65				2%	0.0%					1%
	A. Mineral Products	1. Cement Produ 2. Lime Product		CO2 CO2	37,966.28 7,321,64	27,996.35	10.0%	3.0%	10% 16%	0.2%	0.0%	-0.9%	2.3%	0.0%	0.3%	0.3%
		3. Limestone &	Limestone	CO ₂	10,657.49	11,840.20	4.8%	16.4%	17%	0.2%	0.0%	0.1%	1.0%	0.0%	0.1%	0.1%
	B. Chemical	Dolomite Use 4. Soda Ash Pro 1. Ammonia Pro	duction and Use	CO2 CO2	869.92 581.44 3,384.68	308.28 308.04 1.989.83	3.9% 6.5% 5.0%	3.5% 15.0% 22.5%	5% 16% 23%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
ses	Industries	Chemical Indus 2. Nitric Acid,		CO2 CO2	1,045.76 765.70	1,989.83 754.23 502.71	5.0%	22.3% 77.2% 46.0%	23% 77% 46%	0.0%	0.0%	-0.1% 0.0%	0.2%	0.0%	0.0%	0.0%
Proces		3. Adipic Acid 4. Carbide		N2O N2O	7,501.25	759.45	2.0%	9.0%	9%	0.0%	0.0%	-0.6%	0.1%	-0.1%	0.0%	0.1%
Industrial Processes		4. Carbide 5. Other	Carbon Black	CH4 CH4	0.42	0.66	10.0%	100.0% 54.8%	100%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
2. Indu			Ethylene Dichloroethylene	CH ₄ CH ₄	1.88 0.28	2.05 0.34	5.0% 5.0%	77.2% 100.7%	77% 101%	0.0%	0.0% 0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			Styrene Methanol	CH ₄ CH ₄	1.45 3.52	1.76	5.0% 5.0%	113.2% 113.2%	113% 113%	0.0%	0.0% 0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	C. Metal	1. Iron and steel	Coke	CH4 CO2	324.84 356.09	96.32 155.77	5.0%	98.5% 0.0%	99% 5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Production	2. Ferroalloy		CH4 CH4	15.47	12.72	5.0%	163.0%	163%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	C. Metal Production	3. Aluminium	Aluminium and Magnesium Foundries	PFCs SF6	69.74 119.50	14.67	5.0%	33.0% 0.0%	33%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	E. Production		missions (HCFC-22)	HFCs HFCs	16,965.00 480.12	469.17 232.24	5.0% 10.0%	2.0%	5% 100%	0.0%	0.0%	-1.4%	0.0%	0.0%	0.0%	0.0%
	of F-gas			PFCs SF ₆	762.85 4,708.30	523.80 1,288.21	10.0% 10.0%	100.0% 100.0%	100% 100%	0.0% 0.1%	0.0%	0.0%	0.0% 0.1%	0.0%	0.0%	0.0% 0.3%
		at it.	Domestic manufacturing Refrigerator stock disposal	HFCs HFCs HFCs	11.34 0.00 0.00	369.11 0.00 0.00	40.0% 40.0% 40.0%	50.0% 50.0% 0.0%	64% 64% 40%	0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0% 0.0%	0.0%	0.0%	0.0% 0.0% 0.0%
_		Re frigeration and Air nditioning Equipment	Commercial manufacturing Refrigerator stock	HFCs HFCs	42.48	8,268.98 0.00	40.0% 40.0% 40.0%	50.0% 50.0%	40% 64% 64%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
(F-gas		jeratio ning E	disposal Stationary manufacturing	HFCs HFCs	0.00	0.00 2,080.03	40.0% 40.0%	0.0%	40% 64%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
ce sse s	seg		Air-Conditioning stock disposal Mobile manufacturing	HFCs HFCs HFCs	0.00 0.00 786.58	0.00 0.00 2.517.98	40.0% 40.0% 40.0%	50.0% 0.0% 50.0%	64% 40% 64%	0.0% 0.0% 0.1%	0.0%	0.0%	0.0% 0.0% 0.2%	0.0%	0.0% 0.0% 0.1%	0.0%
ial Pro	a of F-g	C0 1-	Air-Conditioning stock disposal	HFCs	0.00	0.00	40.0%	50.0%	64% 40%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Industrial Processes (F-gas)	Consumption of F	2. Foam Blowing	stock	HFCs HFCs	451.76 0.00	148.85 137.53	50.0% 50.0%	50.0% 50.0%	71% 71%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
ei		3. Fire Extingui: 4. Aerosols / MD		HFCs HFCs HFCs	0.00 0.00 1,365.00	6.35 69.88 605.41	40.0% 40.0% 40.0%	50.0% 0.0%	64% 40% 40%	0.0%	0.0%	NA 0.0% -0.1%	NA 0.0% 0.1%	NA 0.0% 0.0%	NA 0.0% 0.0%	NA 0.0% 0.0%
	Ŀ.		MDI manufacturing stock	HFCs HFCs	0.00	6.31 207.91	40.0%	0.0%	40% 40%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		5. Solvents 7. Semiconducto	r Manufacture	PFCs HFCs PFCs	10,263.55 3,144.23 157.89	1,318.27 145.68 2,756.49	40.0% 40.0% 40.0%	0.0% 50.0% 50.0%	40% 64% 64%	0.0% 0.0% 0.1%	0.0%	-0.8% -0.3% 0.2%	0.1% 0.0% 0.2%	0.0% -0.1% 0.1%	0.1% 0.0% 0.1%	0.1% 0.1% 0.2%
		8. Electrical	manufacturing	SF6 SF6	1,128.66	952.48 443.88	40.0% 40.0%	50.0%	64% 64% 50%	0.1%	0.0%	0.2%	0.2% 0.1% 0.0%	0.1%	0.0%	0.2%
			stock ay Silicon Rectifiers	SF6 PFCs	1,444.99	424.19 2.79	40.0% 40.0%	50.0% 0.0%	64% 40%	0.0%	0.0%	-0.1% 0.0%	0.0%	0.0%	0.0%	0.0%
3. SOPU	D. Other A. Enteric Fermentatio	Anaesthesia Dairy Cattle Non-Dairy Cattl	P	N ₂ O CH ₄ CH ₄	287.07 4,044.60 3,322.55	160.44 3,265.41 3,418.98	5.0% 5.0% 5.0%	0.0% 14.2% 18.0%	5% 15% 19%	0.0% 0.0% 0.1%	0.0%	0.0% -0.1% 0.0%	0.0% 0.3% 0.3%	0.0%	0.0%	0.0%
Iture		Buffalo Sheep		CH ₄ CH ₄	0.25	0.09	100.0% 100.0%	50.0% 50.0%	112% 112%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0% 0.0%	0.0%
4. Agricul ture		Goat Swine Horse		CH4 CH4 CH4	2.22 261.74 43.37	1.24 226.65 31.42	100.0% 0.8% 100.0%	50.0% 50.0% 50.0%	112% 50% 112%	0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0% 0.0% 0.0%
4	B. Manure Management	Dairy Cattle		CH4 CH4 N2O	2,587.79 840.93	1,876.70 614.37	10.0%	77.0% 90.1%	78%	0.1%	0.0%	-0.1%	0.2%	0.0%	0.0%	0.1%
		Non-Dairy Cattl Buffalo	e	CH ₄ N ₂ O	93.83 869.12	97.20 894.71	10.0% 10.0%	71.8% 125.1%	73% 125%	0.0%	0.0%	0.0%	0.0% 0.1%	0.0%	0.0%	0.0%
		Swine		CH4 N2O CH4	0.01 0.04 333.44	0.00 0.01 287.81	100.0% 100.0% 0.8%	100.0% 100.0% 106.1%	141% 141% 106%	0.0%	0.0% 0.0% 0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		Poultry		N ₂ O CH ₄	1,479.89 73.82	1,278.05 62.07	0.8%	91.6% 53.4%	92% 53%	0.1%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%
		(Hen, Broiler) Sheep		N20 CH4	2,288.25 0.13 2.20	1,942.76 0.07 1.18	2.0% 100.0% 100.0%	79.4% 100.0% 100.0%	79% 141% 141%	0.1% 0.0% 0.0%	0.0%	0.0%	0.2%	0.0%	0.0%	0.0%
		Goat		N2Q CH4 N2Q	0.10 9.54	0.05 5.34	100.0% 100.0%	100.0% 100.0%	141% 141%	0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0%
	C. Rice	Horse Continuously Fl	aadad	CH4 N2O	5.01 43.04 242.62	3.63 31.18 195.70	100.0% 100.0% 0.3%	100.0% 100.0% 116.3%	141% 141% 116%	0.0%	0.0% 0.0% 0.0%	0.0%	0.0% 0.0% 0.0%	0.0%	0.0%	0.0%
1	C. Rice Cultivation			CH₄	242.62	195.70			32%	0.0%	0.0%	-0.1% 0.0%	0.3% 0.1%	0.0%	0.0%	0.0%
	Cultivation	Intermittently Flooded	Straw amendment Various compost amendment	CH ₄ CH ₄	4,578.50 1,188.09	3,850.09 884.98	0.3% 0.3%	31.7% 31.9%	32%	0.0%						
	D. Agricultura	Intermittently Flooded 1. Direct Soil	Various compost amendment No-amendment Synthetic Fertilizers	CH4 CH4 N2O	1,188.09 950.47 1,909.02	884.98 682.95 1,282.53	0.3% 0.3% 0.3% 10.0%	31.9% 46.3% 138.3%	32% 46% 139%	0.0% 0.0% 0.1%	0.0%	-0.1%	0.1%	-0.1%	0.0%	0.0%
		Intermittently Flooded	Various compost amendment No-amendment	CH4 CH4 N20 N20 N20 N20	1,188.09 950.47	884.98 682.95	0.3% 0.3% 0.3%	31.9% 46.3%	32% 46%	0.0%	0.0%					
	D. Agricultura	Intermittently Flooded 1. Direct Soil Emissions 2. Pasture, Rang	Various compost amendment No-amendment Synthetic Fertilizers Animal Waste Applied to Soils N-Fixing Crops Crop residues Organic soil e and Paddock Manure	CH4 CH4 N20 N20 N20 N20 N20 N20 N20 N20	1,188.09 950.47 1,909.02 1,345.05 97.18 626.85 120.40 11.91	884.98 682.95 1,282.53 1,048.87 82.85 581.01 116.81 13.12	0.3% 0.3% 0.3% 10.0% 10.0% 10.0% 10.0% 10.0%	31.9% 46.3% 138.3% 151.3% 98.0% 210.6% 711.6% 132.5%	32% 46% 139% 152% 99% 211% 712% 133%	0.0% 0.0% 0.1% 0.0% 0.1% 0.1% 0.1% 0.1%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	-0.1% 0.0% 0.0% 0.0% 0.0%	0.1% 0.1% 0.0% 0.0% 0.0%	-0.1% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0%	0.1% 0.0% 0.0% 0.0% 0.0%
	D. Agricultura Soils	Intermittently Flooded I. Direct Soil Emissions 2. Pasture, Rang 3. Indirect Emissions	Various compost amendment No-amendment Synthetic Fertilizers Animal Waste Applied to Soils N-Fixing Crops Crop residues Organic soil	CH4 CH4 N20 N20 N20 N20 N20 N20 N20 N20 N20 N20	1,188.09 950.47 1,909.02 1,345.05 97.18 626.85 120.40	884.98 682.95 1,282.53 1,048.87 82.85 581.01 116.81	0.3% 0.3% 10.0% 10.0% 10.0% 10.0% 10.0%	31.9% 46.3% 138.3% 151.3% 98.0% 210.6% 711.6%	32% 46% 139% 152% 99% 211% 712%	0.0% 0.1% 0.1% 0.0% 0.0% 0.1%	0.0% 0.0% 0.0% 0.0% 0.0%	-0.1% 0.0% 0.0% 0.0%	0.1% 0.1% 0.0% 0.0%	-0.1% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0%	0.1% 0.0% 0.0% 0.0%
	D. Agricultura Soils F. Field Burning of Agricultural	Intermittently Flooded 1. Direct Soil Emissions 2. Pasture, Rang 3. Indirect	Various compost amendment No-amendment Synthetic Fertilizers Animal Waste Applied to Solls N-Fixing Copp Crop residues Organic soil a md Paddock Manure Atmospheric Deposition N Leaching & Run-off	CH4 CH4 N20 N20 N20 N20 N20 N20 N20 N20 N20	1,188.09 950.47 1,909.02 1,345.05 97.18 626.85 120.40 11.97 2,151.92 8.19 1.578.59 2,151.92 8.19 1.86 2.64	884.98 682.95 1,282.53 1,048.87 82.85 581.01 116.81 13.12 1,304.28 1,620.61 7.500 1.70 1.56	0.3% 0.3% 0.3% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0%	31.9% 46.3% 138.3% 151.3% 98.0% 210.6% 711.6% 132.5% 74.5% 96.4% 186.0% 184.3%	32% 46% 139% 152% 99% 211% 712% 133% 75% 97% 186% 185%	0.0% 0.1% 0.1% 0.0% 0.1% 0.1% 0.1% 0.1%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	-0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0	-0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
	D. Agricultura Soils F. Field Burning of	Intermittently Flooded I. Direct Soil Emissions 2. Pasture, Rang 3. Indirect Emissions	Various compost amendment No-amendment Synthetic Fertilizers Animal Waste Applied to Solls N-Fixing Copp Crop residues Organic soil e and Paddock Manure Atmospheric Deposition N. Leaching & Run-off Wheat	CH4 CH4 N20 N20 N20 N20 N20 N20 N20 N20 CH4 N20 CH4 N20 CH4	1,188.09 950.47 1,909.02 1,345.05 97.18 626.85 120.40 11.91 1,578.59 2,151.92 8,19 1,86 2,24 1,86 2,24 1,86 2,24 1,33.03	884.98 682.95 1,282.53 1,048.87 82.85 581.01 116.81 13.12 1,304.28 1,620.61 7.50 1.70 1.56 1.34 24.50	0.3% 0.3% 0.3% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 50.0%	31.9% 46.3% 138.3% 98.0% 210.6% 711.6% 132.5% 96.4% 186.0% 184.3% 185.2% 418.0%	32% 46% 139% 99% 211% 712% 133% 97% 97% 186% 185% 185% 185% 421%	0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	-0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0	-0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
	D. Agricultura Soils F. Field Burning of Agricultural	Intermittently Flooded I. Direct Soil Emissions 2. Pasture, Rang 3. Indirect Emissions	Various compost amendment No-amendment Synthetic Fertilizers Animal Waste Applied to Solls N-Fixing Crops Crop residues Organic soil e and Paddock Manure Atmospheric Deposition N. Leaching & Run-off Wheat Barley	CH4 CH4 N ₂ 0 N ₂ 0 N ₂ 0 N ₂ 0 N ₂ 0 N ₂ 0 CH4 N ₂ 0 CH4 N ₂ 0 CH4 N ₂ 0 CH4	1,188.09 950.47 1,999.02 1,345.05 97.18 626.85 120.40 11.91 1.578.39 2,151.92 8.19 1.586 2.64 2.241	884.98 682.95 1,282.53 1,048.87 82.85 581.01 116.81 13.12 1,304.28 1,620.61 7.50 1.70 1.56 1.34	0.3% 0.3% 0.3% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0%	31.9% 46.3% 151.3% 98.0% 210.6% 711.6% 132.5% 74.5% 96.4% 186.0% 184.3% 185.2%	32% 46% 13% 52% 99% 211% 712% 133% 75% 97% 188% 185%	0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	-0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.1% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.0% 0.0	-0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
	D. Agricultura Soils F. Field Burning of Agricultural	Intermittently Flooded I. Direct Soil Emissions 2. Pasture, Rang 3. Indirect Emissions	Various compost amendment No-amendment Synthetic Fertilizers Animal Waste Applied to Solls N-Fixing Crops Crop residues Organies soil e and Paddock Manure Atmospheric Deposition N. Leaching & Run-off Wheat Barley Maize Oats Rye	CH4 CH4 N20 N20 N20 N20 N20 N20 N20 CH4 N20 CH4 N20 CH4 N20 CH4 N20 CH4 N20 CH4 N20 CH4 N20 CH4 N20 CH4 N20 CH4 N20 CH4 N20 CH4 N20 N20 N20 N20 N20 N20 N20 N20	1,188,09 950,47 1,390,02 1,345,05 97,18 626,85 120,40 1,1578,59 2,151,92 8,19 1,578,59 2,151,92 8,19 1,366 2,44 2,44 3,403 2,802 0,55 0,24 0,02 0,0	884.98 682.95 1.282.53 82.85 85.10.048.87 82.85 85.10.11.16.81 13.1212 1.304.28 1.620.61 7.505 7.505 7.50 1.70 1.56 1.34 24.50 20.79 0.76 6 0.066 0.004 0.022	0.3% 0.3% 0.3% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0%	31.9% 46.3% 188.3% 98.0% 210.6% 711.6% 182.5% 186.0% 186.0% 186.0% 186.8% 186.8% 186.8% 185.2% 185.2% 185.2% 169.2%	32% 46% 13% 52% 39% 15% 52% 99% 113% 133% 75% 133% 185% 185% 185% 185% 185% 156% 130% 130% 154%	0.0% 0.1% 0.1% 0.1% 0.0% 0.1% 0.1% 0.1%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	-0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1%	-0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
	D. Agricultura Soils F. Field Burning of Agricultural	Intermittently Flooded 1. Direct Soil Emissions 2. Pasture, Rang 3. Indirect Emissions 1. Cereals	Various compost amendment No-amendment Synthetic Fertilizers Animal Waste Applied to Solls N-Fixing Copps Corpo residues Organies soil e and Paddock Manure Atmospheric Deposition N. Leaching & Run-off Wheat Barley Maize Oats Rege Rice	CH4 CH4 N40 N40 N40 N40 N40 N40 N40 N4	1,188,00 950,47 1,590,02 1,345,05 97,18 626,85 120,40 11,91 1,578,59 2,151,92 8,19 1,578,59 2,151,92 8,19 1,358 2,44 2,45 2,51	884.98 682.95 1.282.53 1.048.87 82.285 581.01 116.881 13.12 1.304.28 1.620.61 7.50 1.304.28 1.620.61 7.50 1.304.28 1.620.61 0.707 0.767 0.666 0.004 0.002 2.0.13 8.044 8.044 8.044 0.022 0.015 0.055 0.005 0	0.3% 0.3% 0.3% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0%	31.9% 46.3% 183.3% 98.0% 210.6% 210.6% 210.6% 210.6% 210.6% 210.6% 210.6% 210.6% 210.6% 210.6% 184.3% 185.2% 188.0% 418.0% 418.0% 155.7% 160.2% 155.7% 160.2% 175.8%	32% 46% 13% 99% 211% 712% 713% 75% 97% 133% 75% 97% 188% 185% 135% 125% 156% 130% 130% 156% 130%	0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	-0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.1% 0.1% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1%	-0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
	D. Agricultura Soils F. Field Burning of Agricultural	Intermittently Flooded I. Direct Soil Emissions 2. Pasture, Rang 3. Indirect Emissions	Various compost amendment No-amendment Synthetic Fertilizers Animal Waste Applied to Solls N-Fixing Crops Crop residues Organies soil e and Paddock Manure Atmospheric Deposition N. Leaching & Run-off Wheat Barley Maize Oats Rye	CH4 CH4 N20 N20 N20 N20 N20 N20 N20 CH4 N20 CH4 N20 CH4 N20 CH4 N20 CH4 N20 CH4 N20 CH4 N20 CH4 N20 CH4 N20 CH4 N20 CH4 N20 CH4 N20 CH4 N20 CH4 N20 CH4 N20 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4	1,188,09 99,04.74 1,365,05 79,18 1,365,05 79,18 50,68,85 1,20,40 1,19,19 1,378,59 2,41, 3,305 2,44, 3,505 2,44, 3,505 2,44, 3,505 2,44, 3,505 2,44, 3,505 2,44, 3,505 2,44, 3,505 2,44, 3,505 2,44, 3,505 2,44, 3,505 2,44, 3,505 2,44, 3,505 2,44, 3,505 2,450 2,	884.98 682.95 25 1,282.53 1,048.87 82.85 5 581.01 116.81 13.12 1,304.28 1,620.61 1,56 1,24 24.50 20.79 0.76 0.066 0.044 0.021 20.13 8.04 0.021 20.13 8.04 0.021 20.13 8.04 0.021 20.13 8.04 0.021 20.13 8.04 0.021 20.13 8.04 0.021 20.13 8.04 0.021 20.13 8.04 0.021 20.13 1.05 1	0.3% 0.3% 0.3% 0.0% 10.0	31.9% 46.3% 188.3% 98.0% 210.6% 711.6% 741.6% 741.6% 74.5% 182.5% 185.2% 195.2%195.2% 195.2% 195.2% 195.2%195.2% 195.2% 195.2%195.2% 195.2% 195.2%	32% 46% 13% 46% 15% 99% 15% 99% 11% 712% 133% 186% 185% 185% 185% 185% 185% 130% 130% 130% 130% 185%	0.0%5 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	-0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	-0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
	D. Agricultura Soils F. Field Burning of Agricultural	Intermittently Flooded 1. Direct Soil Emissions 2. Pasture, Rang 3. Indirect Emissions 1. Cereals	Various compost amendment No-amendment Synthetic Fertilizers Animal Waste Applied to Solls N-Fixing Copps Corpo residues Organies soil e and Paddock Manure Atmospheric Deposition N. Leaching & Run-off Wheat Barley Maize Oats Rege Rice Peas	CH4 CH4 N20 N20 N20 N20 N20 N20 CH4 CH4 CH4 N20 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4	1,188.09 990,47 1,3900,02 1,3450,05 97,18 0,058,85 1,20,40 1,19,19 1,578,59 2,451,92 2,451,92 2,451,92 2,451,92 2,451,92 2,451,92 2,451,92 2,451,92 2,451,92 2,451,92 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0	884.98 682.95 1.282.53 1.048.87 1.82.85 581.01 116.81 1.312 1.304.28 1.620.61 7.500 1.700 1.555 1.342 2.4.50 2.4.50 2.0.73 0.076 0.066 0.044 0.021 0.118 8.044 0.021 0.118 8.044 0.021 0.038 0.039 0.059 0.	0.3% 0.3% 0.3% 0.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0%	31.9% 46.3% 138.3% 151.3% 98.0% 210.6% 711.6% 132.5% 132.5% 132.5% 135.2% 186.0% 185.2% 185.2% 185.2% 185.2% 195.2	32% 46% 46% 139% 152% 99% 21% 152% 99% 133% 133% 133% 133% 135% 135% 155% 155	0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	-0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1%	-0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
	D. Agricultura Soils F. Field Burning of Agricultural	Intermittently Flooded 1. Direct Soil Emissions 2. Pasture, Rang 3. Indirect Emissions 1. Cereals	Various compost amendment No-amendment Synthetic Fertilizers Animal Waste Applied to Soils N-Fixing Coops Corpo residues Organisesoil e and Paddock Manure Atmospheric Deposition N. Leaching & Run-off Wheat Barley Maize Oats Rye Rice Peas Soybeans	CH ₄ CH ₄ N ₅ 0 N ₅ 0 N ₅ 0 N ₅ 0 N ₅ 0 CH ₄ N ₅ 0 CH ₄ CH ₄ N ₅ 0 CH ₄ CH ₅ CH	1,188.09 990,47 1,3900,02 1,3450,05 97,18 1,06,08 38 1,199 1,197 2,04,0 1,197 2,04,07,07 2,04,07,07,07 2,04,07,07,07,07,07,07,	884.98 682.95 25 1,282.53 1,048.87 82.85 581.01 11.61.81 13.12 12 1.304.28 1.620.61 7.50 1.55 1.57 0.676 0.666 0.044 0.02 0.05 0.04	0.3% 0.3% 0.3% 0.0% 10.0%10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 10.0	31.9% 44.35% 138.3% 151.35% 98.0% 210.6% 132.5% 96.4% 182.5% 185.2% 185.2% 185.2% 185.5% 185.5% 185.5% 185.5% 185.5% 185.5% 185.5% 185.5% 185.2% 185.2% 185.2% 185.2% 175.0% 175.	32% 46% 15% 15% 15% 59% 211% 712% 13% 13% 13% 13% 13% 185% 185% 185% 185% 185% 185% 185% 185	0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	-0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1%	0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
	D. Agricultura Soils F. Field Burning of Agricultural	Intermittently Flooded I. Direct Soil Emissions 2. <u>Pasture, Rang</u> 3. Indirect <u>Emissions</u> 1. Cereals 2. Pulse	Various compost amendment No-amendment Synthetic Fertilizers Animal Waste Applied to Solls N-Fixing Cops Corpo residues Organisesil e and Paddock Manure Atmospheric Deposition N. Leaching & Run-off Wheat Barley Maize Oats Rye Rice Peas Soybeans Other (Adzuki beans) Other (kidney beans) Other (peanuts)	CH4 CH4 N ₂ O N ₂ O N ₂ O N ₂ O N ₂ O CH4 N ₂ O	1,188.09 95047 150902 1345405 97.18 15659 77.18 10902 1345405 11919 1578.59 2.64 2.64 2.64 2.64 2.64 2.64 2.64 2.64	884 98 682 95 1.282.53 1.048.87 82.85 551.01 1.16.81 1.31.22 1.304.28 1.620.61 7.50 1.56 1.434 2.4.50 2.0.77 0.750 0.750 0.044 0.022 20.13 8.644 0.022 20.13 8.644 0.022 20.13 8.644 0.022 2.53 0.666 0.30 0.666 0.30 0.022 0.090 0.010 0.044 0.022 0.090 0.010 0.010 0.022 0.090 0.010 0.022 0.000 0.010 0.022 0.000 0.010 0.022 0.000 0.010 0.010 0.022 0.000 0.010 0.022 0.000 0.010 0.022 0.000 0.010 0.022 0.000 0.022 0.000 0.010 0.022 0.000 0.010 0.010 0.010 0.010 0.022 0.000 0.022 0.000 0.022 0.000 0.022 0.000 0.022 0.000 0.022 0.000 0.022 0.000 0.022 0.000 0.022 0.000 0.022 0.000 0.022 0.000 0.022 0.000 0.022 0.000 0.022 0.000 0.022 0.000 0.022 0.000 0.022 0.000 0.000 0.022 0.000 0.022 0.000 0.022 0.000 0.022 0.000 0.022 0.000 0.022 0.000 0.022 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000000	0.3% 0.3% 0.3% 10.0% 10.	31.9% 46.35% 183.3% 191.3% 98.0% 711.6% 711.6% 711.6% 711.6% 71.1.6% 7	32% 46% 139% 139% 139% 139% 139% 139% 130% 131% 131% 131% 135% 135% 135% 135% 135	0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	-0.1% -0.1% -0.0%	0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0	-0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
	D. Agricultura Soils F. Field Burning of Agricultural	Intermittently Flooded 1. Direct Soil Emissions 2. Pasture, Rang 3. Indirect Emissions 1. Cereals	Various compost amendment No-amendment Synthetic Fertilizers Animal Waste Applied to Solls N-Fixing Coops Corpo residues Organisesoil e and Paddock Manure Atmospheric Deposition N. Leaching & Run-off Wheat Barley Maize Oats Rye Rice Peas Soybeans Other (Adzuki beans) Other (kidney beans) Other (peanuts) Potatoes	CH ₄ CH ₄ N ₅ O N ₅ O N ₅ O N ₅ O N ₅ O N ₅ O CH ₄ N ₅ O CH ₄ N ₅ O CH ₄ N ₅ O CH ₄ N ₅ O CH ₄ CH ₄ N ₅ O CH ₄ CH ₄ N ₅ O CH ₄ CH ₄ N ₅ O CH ₄ CH ₄ N ₅ O CH ₄ CH ₄ N ₅ O CH ₄ CH ₄ CH ₄ CH ₄ N ₅ O CH ₄ CH ₄ CH ₄ N ₅ O CH ₄ CH ₄ CH ₄ CH ₄ N ₅ O CH ₄ CH ₄ N ₅ O CCH ₄ CH ₄ CH ₄ N ₅ O CCH ₅ CH ₄ N ₅ O CCH ₅ CH ₄ N ₅ O CCH ₅ CH ₅ C	1,188.09 95047 150902 1345405 97,18 154505 12440 11919 1578.59 2.641 2.6	884 98 682 95 1.282 53 1.048 87 82 85 551 01 1.16 81 1.3122 1.304.28 1.620.61 7.50 1.56 1.434 2.450 2.0.77 0.750 0.750 0.750 0.750 0.750 0.750 0.227 0.066 0.044 0.022 0.018 0.022 0.050 0.022 0.066 0.333 0.022 0.090 0.010 0.044 0.022 0.050 0.050 0.022 0.050 0.022 0.050	0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.0% 1	31.9% 44.35% 45.35% 98.0%	32% 46% 139% 139% 139% 132% 99% 132% 139% 132% 131% 135% 135% 185% 185% 185% 135% 130% 1421% 421% 421% 421% 421% 421% 421% 42	0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	-0.1% -0.1% -0.0%	0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	-0.1% -0.1% -0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
	D. Agricultura Soils F. Field Burning of Agricultural	Intermittently Flooded I. Direct Soil Emissions 2. <u>Pasture, Rang</u> 3. Indirect <u>Emissions</u> 1. Cereals 2. Pulse	Various compost amendment No-amendment Synthetic Fertilizers Animal Waste Applied to Solls N-Fixing Cops Corpo residues Organisesil e and Paddock Manure Atmospheric Deposition N. Leaching & Run-off Wheat Barley Maize Oats Rye Rice Peas Soybeans Other (Adzuki beans) Other (kidney beans) Other (peanuts)	CH ₄ CH ₄ N ₂ O N ₂ O N ₂ O N ₂ O N ₂ O N ₂ O CH ₄ N ₂ O CCH ₄ N ₂ O	1,188.09 990,47 1,3900,02 1,3450,05 97,18 10,00 11,919 1578,59 2,614 2,644 2,644 2,644 2,644 2,644 2,644 2,264 2,264 2,264 2,264 2,264 2,264 4,022 2,025 2,0	884.98 682.95 1,282.53 1,048.87 82.85 581.01 116.81 13.12 1.304.28 1.620.61 7.50 1.55 20.77 0.155 0.07 0.05 0.04 0.02 0.03 0.04 0.02 0.03 0.04 0.02 0.03 0.04 0.02 0.03 0.04 0.02 0.03 0.04 0.02 0.03 0.04 0.02 0.03 0.04 0.04 0.02 0.03 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.05 0.04 0.05 0.	0.3% 0.3% 0.3% 0.3% 0.0% 0.0% 0.0% 0.0%	31.9% 46.3% 58.3% 58.3% 58.3% 59.6% 59.6% 59.6% 59.6% 59.6% 59.6% 59.6% 59.6% 59.6% 59.6% 59.6% 59.6% 59.6% 59.6% 59.6% 50.6%	32% 46% 139% 139% 139% 132% 99% 133% 137% 135% 135% 135% 135% 155% 155% 155% 155	0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	-0.1 % 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.	0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	-0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

					Tier 1 Uncertai	Table 6.1 nty Calculation a	& Reporting									
		А		В	С	D	E	F	G	Н		I	J	К	L	М
		IPC Sour Cateş	rce	Gas	Base year emissions / removals	2008 emissions / removals	Activity Data Uncertainty	EForRF Uncertainty	Combined Uncertainty (E^2+F^2)*1/2	Combine Uncertain as % of Te Nationa Emissions 2008	ity xtal l	Type A Sensitivity	Type B Sensitivity	Uncertainty in trend in National Emissions introduced by EForRF Uncertainty	Uncertainty in trend in National Emissions introduced by Activity Data Uncertainty	
					Input Data Gg CO ₂	Input Data Gg CO ₂	Input Data %	Input Data %	(E^2+P^2)^1/2	G*D/∑D %	H^2	Note B %	B/⊻C %	Note C %	J*E*√2 %	(K*2+L*2)*1/2 %
					equivalent	equivalent										
Total					1,195,368.82	1,203,020.65				2%	0.0%					1%
			emaining Forest Land d to Forest Land	CO ₂ CO ₂	-72,020.59 -406.91	-79,869.29 -65.00	_	_	6% 91%	-0.4% 0.0%	0.0%	-0.6% 0.0%	-6.7% 0.0%		_	
		2. Land converce	u to Porest Lanu	CU ₂ CH ₄	8.31	21.52	85.3%	25.0%	89%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
LULUCF	P. Crapland	1. Cropland rem	aining Crapland	N2O	0.84 IE,NA,NE,NO	2.18 IE,NA,NE,NO	85.3%	75.6%	114%	0.0%	0.0%	0.0% NA	0.0% NA	0.0% NA	0.0%	0.0%
ī		2. Land converte		CO2 CO2	2,579.15	223.33			25%	0.0%	0.0%	-0.2%	0.0%	NA	-	NA
5.]				CH4	NE,NO	NE,NO	-	-	-	0.0%	0.0%	NA	NA	NA	NA	NA
	C. Grassland	1. Grassland ren	naining Grassland	N2O CO2	92.52 IE,NA,NE	7.38 IE,NA,NE	-	-	74%	0.0%	0.0%	0.0% NA	0.0% NA	- NA		NA
		2. Land converte	d to Grassland	CO2	-563.16	-743.73	-	-	42%	0.0%	0.0%	0.0%	-0.1%			-
				CH4 N2O	NE,NO NE,NO	NE,NO NE,NO	_	_	_	0.0%	0.0%	NA NA	NA NA	NA NA	NA NA	NA NA
		1. Wetlands rem		CO ₂	NE,NO	NE,NO	-	-	-	0.0%	0.0%	NA	NA	NA	NA	NA
		2. Land converte	d to Wetlands	CO ₂ CH ₄	89.63 NE.NO	92.06 NE NO			26%	0.0%	0.0%	0.0% NA	0.0% NA	- NA	- NA	- NA
				N ₂ O	NENO	NE,NO	_	_	_	0.0%	0.0%	NA	NA	NA	NA	NA
	E. Settlements	1. Settlements re	emaining Settlements d to Settlements	CO2	-636.29	-770.91	-	-	76% 9%	0.0%	0.0%	0.0%	-0.1%	-	-	-
		2. Land converte	u to Settlements	CO ₂ CH ₄	5,362.15 NE,NO	1,601.42 NE,NO			- 9%	0.0%	0.0%	-0.3% NA	0.1% NA	NA	NA	NA
				N ₂ O	NE,NO	NE,NO	-	-	-	0.0%	0.0%	NA	NA	NA	NA	NA
		1. Other Land re 2. Land converte	maining Other Land d to Other Land	CO2 CO2	- 1,585.53	- 387.51			- 28%	0.0%	0.0%	NA -0.1%	NA 0.0%	NA	NA	NA
		2. Land converte		CH ₄	NO	NO	-	-	- 20%	0.0%	0.0%	NA	NA	NA	NA	NA
	G. Other			N2O CO2	NO 550.22	NO 305.63	- 9.0%	-50.0%	- 51%	0.0%	0.0%	NA 0.0%	NA 0.0%	NA 0.0%	NA 0.0%	NA 0.0%
		1. Managed Was	om agricultural lime application Kitchen Garbage	CO ₂ CH ₄	1,320.61	461.41	32.4%	42.4%	53%	0.0%	0.0%	-0.1%	0.0%	0.0%	0.0%	0.0%
	Disposal	Disposal on Land	Waste Paper	CH_4	3,060.53	1,425.95	42.7%	42.4%	60%	0.1%	0.0%	-0.1%	0.1%	-0.1%	0.1%	
	on Land	Land	Waste Textile Waste Wood	CH ₄ CH ₄	198.78 966.07	91.71 950.05	42.9% 56.6%	43.8%	61% 71%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
6. Waste			Sewage Sludge	CH_4	118.29	39.48	32.0%	44.2%	55%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
6. V			Other Sewage Sludge Human Waste Sludge	CH ₄ CH ₄	589.70 260.93	196.56 81.83	32.0% 32.6%	44.2% 44.2%	55% 55%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			Water Purification Sludge	CH4 CH4	72.66	36.59	31.7%	108.6%	113%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			Organic Sludge from Manufacture Livestock Waste	CH_4	1,017.00	239.49	33.4% 49.4%	54.0% 46.9%	63%	0.0%	0.0%	-0.1%	0.0%	0.0%	0.0%	0.0%
		3. Other	Illegal Disposal	CH ₄ CH ₄	7.74	27.21 46.99	49.4%	46.9%	68% 79%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	B. Wastewater	1. Industrial Wa		CH4	112.52	104.16	37.4%	60.0%	71%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Handling	2. Domestic and	Sewage Treatment	<u>N₂Q</u> CH4	122.21 181.48	121.52 257.06	51.1% 10.4%	300.0% 30.9%	304% 33%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
		Commercial	Plant	N2Q	491.78	696.60	10.4%	145.7%	146%	0.1%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%
		Wastewater	Private Sewerage Tank	CH ₄ N ₂ O	451.84 468.72	439.96 288.70	10.0% 10.0%	86.8% 71.0%	87% 72%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
			Human-Waste	CH_4	110.14	16.15	12.3%	100.0%	101%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			Treatment Plant Degradation of domestic	N2O	69.56 1.264.60	6.12 520.72	33.9% 10.0%	100.0% 75.4%	106% 76%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			wastewater in nature	CH ₄ N ₂ O	137.38	50.33	10.0%	75.4%	76%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	C. Waste Incineration	Municipal Solid		CO2	5,040.90	2,311.63	16.0%	4.3%	17%	0.0%	0.0%	-0.2%	0.2%	0.0%	0.0%	0.0%
	incineration	waste	Waste textile	CO2 CH4	503.19 9.75	434.15 1.28	22.4%	4.3% 100.2%	23% 101%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
				N ₂ O	317.82	151.73	10.0%	40.6%	42%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			Waste Mineral Oil Plastics	CO2 CO2	3,651.84 2,120.24	3,410.44 3,839.77	104.4% 100.0%	4.8% 4.8%	105% 100%	0.3%	0.0%	0.0% 0.1%	0.3%	0.0%	0.4%	0.4%
		a muste		CU2 CH4	3.59	9.85	100.0%	111.5%	150%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		Specially Cont-	olled Industrial Solid Waste	N2O	1,195.67 946.78	1,620.07 1,604.30	100.0%	58.8% 133.1%	116% 167%	0.2%	0.0%	0.0%	0.1%	0.0%	0.2%	0.2%
		Specially Contor	oneu muustriai 30iiu waste	CO ₂ CH ₄	946.78	1,604.30	100.0%	133.1% 100.3%	167%	0.2%	0.0%	0.1%	0.1%	0.1%	0.2%	
				N ₂ O	5.95	13.61	100.0%	123.2%	159%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	D. Oher	Decomposition o Composting of O	f petroleum-derived surface-active agent rganic Waste	CO ₂ CH ₄	702.83	530.41 16.50	10.0%	22.4%	25% 74%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		- inposting of O		N2O	12.83	14.62	10.0%	85.7%	86%	0.0%	0.0%	0.0%	0.0%	0.0%		

Annex 8. Hierarchical Structure of Japan's National GHG Inventory File System

Multiple MS Excel files have been used when estimating Japanese inventory. The explanation of each MS Excel file and the hierarchical structure of Japanese National GHGs Inventory (JNGI) file system are shown below.

category	file name	contents
	JPN-2010-1990-v1.1.xls \sim	Common reporting format provided by UNFCCC secretariat
	JPN-2010-2008-v1.1.xls	
1. Energy	1A-L3-nonCO2-1990-2010.xls \sim	Non-CO ₂ emissions from stationary facilities
	1A-L3-nonCO2-2007-2010.xls	
	1A-L3-CO2-1990-2010.xls \sim	CO ₂ emissions from fuel combustions at stationary facilities
	1A-L3-CO2-2007-2010.xls	·
	1A-L3-NOxSO2-2010.xls	Emissions of Non-CO ₂ from stationary combustion
	1A-L2-MAP-IEF-1990-2010.xls \sim	Implied Emission Factors of Non-CO2 from stationary combustion
	1A-L2-MAP_IEF-2008-2010.xls	
	1A-L2-nonCO2-ADEF-2010.xls	Activity Data and Emission Factors of Non-CO2 from fuel combustion
	1A-L2-EBEF-2010.xls	Emission Factors for CO ₂ from fuel combustion
	1A-L1-EB-2010.xls	Data of the General Energy Statistics using in Mobile (CH4, N2O), Fugitive emissions from
		fuels and IP sector
	1A3-L3-CH4N2O-2010.xls	GHG emissions from Mobile Combustion (transport sector) (except Non-CO ₂ from Car)
	1A3-L2-ADEF-2010.xls	Activity Data and Emission Factors for Mobile Combustion (transport sector)
	1B-L3-2010.xls	Fugitive GHG emissions from fuels
	1B-L2-ADEF-2010.xls	Activity Data and Emission Factors for Fugitive Emissions from Fuels
2. Industrial Processes	2-L2-ADEF-2010.xls	Activity Data and Emission Factors of Caotegory2 (except F-gas)
	2-L3-2010.xls	CHG emissions from Category2 (Industrial Processes)
	2-L3-Fgas-2010.xls	F-gas (HFCs, PFCs, SF ₆) emissions
3. Solvent and Other Product Use	3-L3-2010.xls	N2O emissions from anesthesia
4. Agriculture	4A-L3-CH4-2010.xls	CIL amissions from antonia formantation
+. Agriculture	4B-L3-CH4N2O-2010.xls	CH4 emissions from enteric fermentation GHG emissions from manure management
	4C-L3-CH4-2010.xls	0
	4D-L3-N2O-2010.xls	CH ₄ emissions from rice cultivation
		N2O emissions from agricultural soils
	4F-CH4N2OCO-2010.xls	GHG emissions from field burning of agricultural residues
	4-L2-ADEF-2010.xls	Activity Data and Emission Factors of Caotegory4
5. LULUCF	5-L3-nonCSC-2010.xls	GHG emissions excluindg carbon stock change
	5A-L3-CO2-2010.xls	CO ₂ emissions and removals from forest land
	5B-L3-CO2-2010.xls	CO ₂ emissions and removals from cropland
	5C-L3-CO2-2010.xls	CO ₂ emissions and removals from grassland
	5D-L3-CO2-2010.xls	CO ₂ emissions and removals from wetlands
	5E-L3-CO2-2010.xls	CO ₂ emissions and removals from settlements
	5F-L3-CO2-2010.xls	CO ₂ emissions and removals from other land
	5-L2-DOM-2010.xls	Carbon stock changes for dead organic matters (DOM)
	5-L2-Soil-2010.xls	Carbon stock changes for soils
	5-L2-LB-2010.xls	Carbon stock changes for living biomass
	5-L2-LandArea-2010.xls	Land area for each land use category
	5-L2-nonCSC-2010.xls	Activity data for GHG emissions excluindg carbon stock change
6. Waste	6A3-L2-AD-2010.xls	Activity data of solid waste disposal on land (other)
	6A-L3-2010.xls	GHGs emissions from solid waste disposal on land
	6A-L2-AD-2010.xls	Activity data of solid waste disposal on land
	6B-L3-2010.xls	CHGs emissions from wastewater handling
	6B-L2-AD-2010.xls	Activity data of wastewater handling
	6B-L2-EF-2010.xls	Emission Factor of wastewater handling
	6C-L3-nonCO2-2010.xls	GHGs emissions from waste incineration (exclude CO ₂)
	6C-L2-AD-2010.xls	Activity data of waste incineration
	6C-L3-CO2-2010.xls	CO ₂ emissions from waste incineration
	6C-L3-Energy-2010.xls	GHGs (CO2, CH4, N2O, CO, NOx, SOx, NMVOC) Emissions from the incineration of waste
		for energy and use as alternative fuels
	6D-L3-2010.xls	GHGs emissions from other waste
	6D-L2-2010.xls	Activity data of other waste
7. Other	7-L3-2010.xls	CO Emissions from tobaccos
Memo Item	1C-L3-bunker-2010.xls	CHGs emissions from bunker fuels

Table A 8-1 Explanation of each MS Excel file

Level 1 Cate and Cate 1 Level 3 Cate and Cate 1 Level 3 Cate and Cate 1 Level 2 Cate and Cate 1 Level 1 Level 1 Level 1 Level 2 Cate and Cate 1 Level 2 Cate and Cate 2 Cate and Cate 2 Data and Cate 2 Level 1 Level 1 Level 1 Level 1 Level 2 Cate and Cate 2 Cate and Cate 2 Data and Cate 2 Data and Cate 2 Cate	Check Check Check Check CRF Reporter Transition Files CRF	ws the hierarchical of Japanese National GHGs inventory ("INGT) filing explanations of calculations are given both in English and Japanese, some guerase explanation. This contain confidential data which are not submitted to UNFCCC. This contain confidential data which are not submitted to UNFCCC. This are generated from GF Reporter. 2010 us file is developed to check emissions data included in estimation s (it is not submitted to UNFCCC). 2010 us file is developed to check emissions data included in estimation s (it is not submitted to UNFCCC). 2010 us file is developed to check emissions data included in estimation s (it is not submitted to UNFCCC). 2010 us file is developed to check emissions data included in estimation s (it is not submitted to UNFCCC). 2010 us 5:E1:3:CC0:2010 us 6:E1:3:CC0:2010 us 5:E1:3:CC0:2010 u	L4-verification-2010.xls	IA-I3-c02-1990-2010.xls IA-I3-nonC02-1990-2010.xls IA-I3-c02-2010.xls IA-I3-c02-1990-2010.xls IA-I3-c02-2010.xls SA-I3-C02-2010.xls IA-I3-c02-2010.xls IA-I3-c02-2010.xls SA-I3-C02-2010.xls IA-I3-c02-2010.xls IA-I3-c02-2010.xls SA-I3-C02-2010.xls IA-I3-c02-2010.xls IA-I3-c02-2010.xls SA-I3-C02-2010.xls SF-I3-C02-2010.xls IA-I3-c02-2010.xls SF-I3-C02-2010.xls IA-I3-c02-2010.xls IA-I3-c02-2010.xls SF-I3-C02-2010.xls IA-I3-c02-2010.xls IA-I3-c02-2010.xls SF-I3-C02-2010.xls IA-I3-c13-c010.xls IA-I3-c14-2010.xls SF-I3-C02-2010.xls IA-I3-c14-2010.xls GC-I3-c02-2010.xls GC-I3-c02-2010.xls IA-I3-c14-2010.xls GC-I3-c02-2010.xls GC-I3-c02-2010.xls IA-I3-c14-2010.xls GC-I3-c02-2010.xls GC-I3-c02-2010.xls GOID-2010-2010.xls GC-I3-c02-2010.xls GC-I3-c02-2010.xls IA-I3-c14-2010.xls GC-I3-C14-2010.xls GC-I3-C13-2010.xls GOID-2010-2010.xls GC-I3-G12-2010.xls GC-I3-G12-G10-2010.xls IA-I3-c14-2010.xls GC-I3-C12-C12-C12-C12-C12-C12-C12-C12-C12-C12	Image: Constrained by the state of the s
--	--	--	--------------------------	---	---

Annex 9. Summary of Common Reporting Format

"Summary.2 Table" of the CRF indicated below shows emissions and removals for every year. During 1990-1994, Japan had reported only potential emissions of HFCs, PFCs, and SF₆. In Table.10 of the CRF showing the trend each year, between 1990 and 1994, the potential emissions of HFCs, PFCs, and SF₆ are shown, and from 1995 onward, actual emissions of HFCs, PFCs, SF₆ are shown.

9.1. Emissions¹ and Removals in 1990

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 1990 Submission 2010 v1.1 JAPAN

GREENHOUSE GAS SOURCE AND	CO2 ⁽¹⁾	CH ₄	N ₂ O	HFCs ⁽²⁾	PFCs ⁽²⁾	SF6 ⁽²⁾	Total
SINK CATEGORIES			co	2 equivalent (Gg			
Total (Net Emissions) ⁽¹⁾	1,079,971.57	31,902.66	31,583.73	17,930.00	5,670.00	38,240.00	1,205,297.96
1. Energy	1,068,282.77	3,917.06	6,643.22				1,078,843.04
A. Fuel Combustion (Sectoral Approach)	1,068,246.14	879.91	6,643.11				1,075,769.16
1. Energy Industries	324,253.21	29.73	923.83				325,206.77
 Manufacturing Industries and Construction 	371,298.00	345.83	1,242.55				372,886.39
3. Transport	211,053.69	297.23	4,204.42				215,555.34
4. Other Sectors	161,641.24	207.12	272.31				162,120.66
5. Other	NO	NO	NO				NO
B. Fugitive Emissions from Fuels	36.62	3,037.14	0.11				3,073.88
1. Solid Fuels	NE,NO	2,806.43	NE,NO				2,806.43
Oil and Natural Gas	36.62	230.71	0.11				267.45
2. Industrial Processes	62,183.29	357.58	8,266.95	17,930.00	5,670.00	38,240.00	132,647.82
A. Mineral Products	57,396.76	NA,NO	NA,NO				57,396.76
B. Chemical Industry	4,430.44	338.22	8,266.95	NA	NA	NA	13,035.62
C. Metal Production	356.09	19.36	NO	IE,NE	IE,NA,NE	IE,NA,NE	375.45
D. Other Production	IE						IE
E. Production of Halocarbons and SF ₆				NE,NO	NE,NO	NE,NO	NE,NO
F. Consumption of Halocarbons and $SF_6^{(2)}$				17,930.00	5,670.00	38,240.00	61.840.00
G. Other	NO	NO	NO	NE.NO	NE,NO	NE,NO	NE,NO
3. Solvent and Other Product Use	NA,NE	110	287.07	TIL, TO	112,110	112,110	287.07
4. Agriculture	T T I, T L	17,843.55	13,471.22				31,314.77
A. Enteric Fermentation		7,676.61	10,471.22				7,676.61
B. Manure Management		3,094.12	5,533.01				8,627.13
C. Rice Cultivation		6,959.68	5,555.01				6,959.68
D. Agricultural Soils ⁽³⁾		0,557.00 NA	7,840.93				7,840.93
E. Prescribed Burning of Savannas		NE	7,840.95 NE				7,040.95 NE
F. Field Burning of Agricultural Residues		113.13	97.28				210.41
G. Other		NO	NO				NO
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-63,460,27	8.31	93.36				-63,358.60
A. Forest Land	-72,427.50	8.31	0.84				-72,418.35
B. Cropland	2,579.15	NE,NO	92.52				2,671.66
C. Grassland	-563.16	NE,NO	92.32 NE.NO				-563.16
D. Wetlands		NE,NO					
	89.63		NE,NO				89.63
E. Settlements	4,725.86	NE,NO	NE,NO				4,725.86
F. Other Land	1,585.53	NO	NO				1,585.53
G. Other	550.22	NA,NE	NA,NE				550.22
6. Waste	12,965.78	9,776.16	2,821.91				25,563.86
A. Solid Waste Disposal on Land	NA,NE,NO	7,627.64					7,627.64
B. Waste-water Handling		2,120.57	1,289.65				3,410.22
C. Waste Incineration	12,262.95	13.47	1,519.44				13,795.86
D. Other	702.83	14.48	12.83				730.14
7. Other (as specified in Summary 1.A)	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
Memo Items: ⁽⁴⁾							
International Bunkers	30,829.18	42.30	275.80				31,147.29
Aviation	13,189.32	7.84	130.44				13,327.60
Marine	17,639.86	34.47	145.36				17,819.69
Multilateral Operations	17,039.80 NO	NO	145.50 NO				NO
CO ₂ Emissions from Biomass	18,747.30	110	110				18,747.30
COL LAINSSIONS HOILI DIVILIASS	10,747.50						10,747.50
	Tot	al CO ₂ Equivale	nt Emissions wi	thout Land Use, L	and-Use Change	and Forestry	1,268,656.56
				with Land Use, L	÷		1,205,297.96

Total CO₂ Equivalent Emissions with Land Use, Land-Use Change and Forestry 1,205,297.96

(1) For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

 $^{(3)}$ Parties which previously reported CO2 from soils in the Agriculture sector should note this in the NIR.

⁽⁴⁾ See footnote 8 to table Summary 1.A.

¹ Potential emissions of HFCs, PFCs and SF₆ are reported due to the generation of CRF Reporter

9.2. Emissions² and Removals in 1991

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 1991 Submission 2010 v1.1 JAPAN

GREENHOUSE GAS SOURCE AND	CO2 ⁽¹⁾	CH ₄	N ₂ O	HFCs ⁽²⁾	PFCs ⁽²⁾	SF6 ⁽²⁾	Total
SINK CATEGORIES	•		co	2 equivalent (Gg)	,		
Total (Net Emissions) ⁽¹⁾	1,082,095.52	31,660.07	31,054.34	18,070.00	6,370.00	43,498.00	1,212,747.93
1. Energy	1,076,094.66	3,680.19	6,911.40				1,086,686.2
A. Fuel Combustion (Sectoral Approach)	1,076,040.99	885.43	6,911.24				1,083,837.6
1. Energy Industries	326,986.60	31.17	960.73				327,978.5
Manufacturing Industries and Construction	366,272.65	345.88	1,304.35				367,922.8
3. Transport	222,466.79	299.61	4,367.41				227,133.8
4. Other Sectors	160,314.95	208.77	278.75				160,802.4
5. Other	NO	NO	NO				NO
B. Fugitive Emissions from Fuels	53.67	2,794.76	0.16				2,848.5
1. Solid Fuels	NE,NO	2,538.33	NE,NO				2,538.3
Oil and Natural Gas	53.67	256.43	0.16				310.2
2. Industrial Processes	63,736.24	347.49	7,539.75	18,070.00	6,370.00	43,498.00	139,561.4
A. Mineral Products	58,999.14	NA,NO	NA,NO				58,999.14
B. Chemical Industry	4,414.06	329.15	7,539.75	NA	NA	NA	12,282.9
C. Metal Production	323.04	18.34	NO	IE,NE	IE,NA,NE	IE,NA,NE	341.3
D. Other Production	IE						Ι
E. Production of Halocarbons and SF ₆				NE,NO	NE,NO	NE,NO	NE,NO
F. Consumption of Halocarbons and $SF_6^{(2)}$				18,070.00	6,370.00	43,498.00	67,938.0
G. Other	NO	NO	NO	NE,NO	NE,NO	NE,NO	NE,NO
3. Solvent and Other Product Use	NA,NE		356.85				356.8
4. Agriculture		17,965.41	13,275.85				31,241.2
A. Enteric Fermentation		7,787.91	,				7,787.9
B. Manure Management		3,089.18	5,501.83				8,591.0
C. Rice Cultivation		6,977.75					6,977.7
D. Agricultural Soils ⁽³⁾		NA	7,682.15				7,682.1
E. Prescribed Burning of Savannas		NE	NE				N
F. Field Burning of Agricultural Residues		110.57	91.88				202.4
G. Other		NO	NO				NO
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-70,719.95	6.22	87.56				-70,626.1
A. Forest Land	-79,841.22	6.22	0.63				-79,834.3
B. Cropland	1,685.43	NE,NO	86.93				1,772.3
C. Grassland	-581.15	NE,NO	NE,NO				-581.1
D. Wetlands	83.45	NE,NO	NE,NO				83.4
E. Settlements	5,639.89	NE,NO	NE,NO				5,639.8
F. Other Land	1,766.36	NL,NO NO	NE,NO				1,766.3
	527.29	NA,NE					527.2
G. Other			NA,NE				
6. Waste	12,984.57	9,660.76	2,882.93				25,528.2
A. Solid Waste Disposal on Land	NA,NE,NO	7,557.81	1 211 47				7,557.8
B. Waste-water Handling	12 208 12	2,078.27	1,311.47				3,389.7
C. Waste Incineration D. Other	12,298.12 686.45	13.07 11.60	1,561.19 10.28				13,872.3
				NANG	NANG	NA NO	
7. Other (as specified in Summary 1.A)	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
Memo Items: ⁽⁴⁾							
Memo Items: `` International Bunkers	32,531.98	44.64	291.02				32,867.6
Aviation	13 919 12	44.04 8.27	137.65				32,807.0

wento ttems.					
International Bunkers	32,531.98	44.64	291.02		32,867.64
Aviation	13,919.12	8.27	137.65		14,065.05
Marine	18,612.86	36.36	153.37		18,802.60
Multilateral Operations	NO	NO	NO		NO
CO ₂ Emissions from Biomass	18,870.94				18,870.94

 Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry
 1,283,374.10

 Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry
 1,212,747.93

⁽¹⁾ For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

⁽³⁾ Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

 $^{^2}$ Potential emissions of HFCs, PFCs and SF₆ are reported due to the generation of CRF Reporter

9.3. Emissions³ and Removals in 1992

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 1992 Submission 2010 v1.1 JAPAN

GREENHOUSE GAS SOURCE AND	CO2 ⁽¹⁾	CH4	N ₂ O	HFCs ⁽²⁾	PFCs ⁽²⁾	SF6 ⁽²⁾	Total
SINK CATEGORIES			CO	2 equivalent (Gg)			
Total (Net Emissions) ⁽¹⁾	1,090,934.38	31,395.25	31,186.12	19,750.00	6,370.00	47,800.00	1,227,435.75
1. Energy	1,083,521.18	3,427.78	7,085.11				1,094,034.07
A. Fuel Combustion (Sectoral Approach)	1,083,464.23	900.44	7,084.94				1,091,449.6
1. Energy Industries	333,717.45	31.86	932.36				334,681.67
Manufacturing Industries and Construction	358,399.05	342.14	1,403.39				360,144.5
3. Transport	226,859.69	302.67	4,459.34				231,621.7
4. Other Sectors	164,488.04	223.76	289.85				165,001.6
5. Other	NO	NO	NO				NO
B. Fugitive Emissions from Fuels	56.95	2,527.34	0.17				2,584.4
 Solid Fuels 	NE,NO	2,267.52	NE,NO				2,267.5
Oil and Natural Gas	56.95	259.82	0.17				316.9
2. Industrial Processes	63,392.03	322.22	7,452.41	19,750.00	6,370.00	47,800.00	145,086.6
A. Mineral Products	58,770.62	NA,NO	NA,NO				58,770.6
B. Chemical Industry	4,296.37	304.45	7,452.41	NA	NA	NA	12,053.2
C. Metal Production	325.05	17.76	NO	IE,NE	IE,NA,NE	IE,NA,NE	342.8
D. Other Production	IE						Ι
E. Production of Halocarbons and SF ₆				NE,NO	NE,NO	NE,NO	NE,NO
F. Consumption of Halocarbons and $SF_6^{(2)}$				19,750.00	6,370.00	47,800.00	73,920.0
G. Other	NO	NO	NO	NE,NO	NE,NO	NE,NO	NE,NO
3. Solvent and Other Product Use	NA,NE		413.01				413.0
4. Agriculture		18.054.57	13,146.60				31,201.1
A. Enteric Fermentation		7,830.19					7,830.1
B. Manure Management		3,061.96	5,457.83				8,519.7
C. Rice Cultivation		7,059.04	,				7,059.0
D. Agricultural Soils ⁽³⁾		NA	7,602.87				7,602.8
E. Prescribed Burning of Savannas		NE	NE				N
F. Field Burning of Agricultural Residues		103.39	85.90				189.2
G. Other		NO	NO				NO
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-70,003.07	4.34	82.33				-69,916.4
A. Forest Land	-79,781.74	4.34	0.44				-79,776.9
B. Cropland	1,779.45	NE,NO	81.89				1,861.3
C. Grassland	-509.59	NE,NO	01.09 NE,NO				-509.5
D. Wetlands	255.97	NE,NO	NE,NO				255.9
E. Settlements	6,329.85	NE,NO	NE,NO				6,329.8
		,	,				,
F. Other Land	1,445.88	NO	NO				1,445.8
G. Other	477.11	NA,NE	NA,NE				477.1
6. Waste	14,024.24	9,586.35	3,006.65				26,617.2
A. Solid Waste Disposal on Land	NA,NE,NO	7,521.69					7,521.6
B. Waste-water Handling	10.005.51	2,039.32	1,296.47				3,335.7
C. Waste Incineration	13,325.34	13.42	1,699.63				15,038.4
D. Other	698.90	11.91	10.55				721.3
7. Other (as specified in Summary 1.A)	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
Memo Items: ⁽⁴⁾		_					
Memo Items: International Bunkers	32,937.28	45.03	294.87				33,277.1
Aviation	14 216 76	43.03	294.87				14 365 8
Aviation	14 216 76	8 4 5	140.601				

Memo nems:					
International Bunkers	32,937.28	45.03	294.87		33,277.18
Aviation	14,216.76	8.45	140.60		14,365.81
Marine	18,720.51	36.58	154.28		18,911.37
Multilateral Operations	NO	NO	NO		NO
CO ₂ Emissions from Biomass	18,419.27				18,419.27
	·				

 Total CO₂ Equivalent Emissions without Land Use, Land-Use Change and Forestry
 1,297,352.15

 Total CO₂ Equivalent Emissions with Land Use, Land-Use Change and Forestry
 1,227,435.75

⁽¹⁾ For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

 $^{(3)}$ Parties which previously reported CO2 from soils in the Agriculture sector should note this in the NIR.

 $^{^{3}}$ Potential emissions of HFCs, PFCs and SF₆ are reported due to the generation of CRF Reporter

9.4. Emissions⁴ and Removals in 1993

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 1993 Submission 2010 v1.1 JAPAN

GREENHOUSE GAS SOURCE AND	CO2 ⁽¹⁾	CH ₄	N_2O	HFCs ⁽²⁾	PFCs ⁽²⁾	SF6 ⁽²⁾	Total		
SINK CATEGORIES	CO ₂ equivalent (Gg)								
Total (Net Emissions) ⁽¹⁾	1,081,048.45	31,144.61	30,837.67	21,310.00	8,860.00	45,410.00	1,218,610.7.		
1. Energy	1,077,153.57	3,260.02	7,041.57				1,087,455.1		
A. Fuel Combustion (Sectoral Approach)	1,077,100.35	920.79	7,041.41				1,085,062.5		
1. Energy Industries	315,598.93	31.65	944.29				316,574.8		
2. Manufacturing Industries and Construction	357,488.75	344.27	1,342.19				359,175.2		
3. Transport	231,727.93	295.51	4,432.21				236,455.6		
4. Other Sectors	172,284.75	249.36	322.72				172,856.8		
5. Other	NO	NO	NO				NO		
B. Fugitive Emissions from Fuels	53.21	2,339.23	0.16				2,392.6		
 Solid Fuels 	NE,NO	2,075.76	NE,NO				2,075.7		
2. Oil and Natural Gas	53.21	263.46	0.16				316.8		
2. Industrial Processes	62,640.55	320.55	7,302.85	21,310.00	8,860.00	45,410.00	145,843.9		
A. Mineral Products	58,232.77	NA,NO	NA,NO				58,232.7		
B. Chemical Industry	4,077.03	303.85	7,302.85	NA	NA	NA	11,683.7		
C. Metal Production	330.76	16.70	NO	IE,NE	IE,NA,NE	IE,NA,NE	347.4		
D. Other Production	IE						Ι		
E. Production of Halocarbons and SF ₆				NE,NO	NE,NO	NE,NO	NE,NO		
F. Consumption of Halocarbons and $SF_6^{(2)}$				21,310.00	8,860.00	45,410.00	75,580.0		
G. Other	NO	NO	NO	NE,NO	NE,NO	NE,NO	NE,NC		
3. Solvent and Other Product Use	NA,NE		411.66				411.6		
4. Agriculture		18,137.02	12,987.68				31,124.7		
A. Enteric Fermentation		7,781.42					7,781.42		
B. Manure Management		3,002.79	5,364.14				8,366.9		
C. Rice Cultivation		7,247.60					7,247.6		
D. Agricultural Soils ⁽³⁾		NA	7,538.38				7,538.3		
E. Prescribed Burning of Savannas		NE	NE				N		
F. Field Burning of Agricultural Residues		105.20	85.17				190.3		
G. Other		NO	NO				NO		
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-72,519.72	23.91	79.20				-72,416.6		
A. Forest Land	-79,741.25	23.91	2.43				-79,714.9		
B. Cropland	958.79	NE,NO	76.77				1,035.5		
C. Grassland	-586.63	NE,NO	NE,NO				-586.6		
D. Wetlands	110.32	NE,NO	NE,NO				110.3		
E. Settlements	4,465,81	NE.NO	NE.NO				4,465.8		
F. Other Land	1,791.69	NO	NO				1,791.6		
G. Other	481.56	NA,NE	NA,NE				481.5		
6. Waste	13.774.05	9.403.11	3.014.71				26.191.8		
A. Solid Waste Disposal on Land	NA,NE,NO	7,389.63	5,014.71				7,389.6		
B. Waste-water Handling	117,112,110	1,987.68	1,300.14				3,287.82		
C. Waste Incineration	13,093.30	13.35	1,703.54				14,810.1		
D. Other	680.75	12.45	1,703.34				704.2		
7. Other (as specified in Summary 1.A)	NA,NO	NANO	NA.NO	NA,NO	NA,NO	NA,NO	NA,NO		
······································	1124,110	1111,110	111,110	111,110	1111,110	1111,110	11139110		

Memo Items: (4)					
International Bunkers	34,935.20	49.40	310.66		35,295.26
Aviation	13,856.19	8.23	137.03		14,001.45
Marine	21,079.01	41.17	173.63		21,293.81
Multilateral Operations	NO	NO	NO		NO
CO ₂ Emissions from Biomass	17,568.73				17,568.73

Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry	1,291,027.34
Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry	1,218,610.73

⁽¹⁾ For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

⁽³⁾ Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

⁴ Potential emissions of HFCs, PFCs and SF₆ are reported due to the generation of CRF Reporter

9.5. Emissions⁵ and Removals in 1994

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 1994 Submission 2010 v1.1 JAPAN

GREENHOUSE GAS SOURCE AND	CO2 ⁽¹⁾	CH ₄	N ₂ O	HFCs ⁽²⁾	PFCs ⁽²⁾	SF6 ⁽²⁾	Total
SINK CATEGORIES	÷		co	2 equivalent (Gg			
Total (Net Emissions) ⁽¹⁾	1,139,480.00	30,462.87	32,015.60	28,840.00	12,274.00	45,410.00	1,288,482.48
1. Energy	1,133,202.63	2,899.35	7,359.81				1,143,461.79
A. Fuel Combustion (Sectoral Approach)	1,133,151.48	919.82	7,359.66				1,141,430.95
1. Energy Industries	356,359.51	33.80	1,019.62				357,412.94
2. Manufacturing Industries and Construction	365,870.51	353.67	1,500.60				367,724.78
3. Transport	243,681.03	297.21	4,513.41				248,491.64
4. Other Sectors	167,240.42	235.14	326.03				167,801.5
5. Other	NO	NO	NO				NC
B. Fugitive Emissions from Fuels	51.15	1,979.53	0.16				2,030.84
1. Solid Fuels	NE,NO	1,712.96	NE,NO				1,712.9
Oil and Natural Gas	51.15	266.57	0.16				317.8
2. Industrial Processes	63,915.39	320.85	8,298.10	28,840.00	12,274.00	45,410.00	159,058.3
A. Mineral Products	59,226.91	NA,NO	NA,NO				59,226.91
B. Chemical Industry	4,342.73	303.40	8,298.10	NA	NA	NA	12,944.2
C. Metal Production	345.76	17.45	NO	IE,NE	IE,NA,NE	IE,NA,NE	363.2
D. Other Production	IE						II
E. Production of Halocarbons and SF ₆				NE,NO	NE,NO	NE,NO	NE,NC
F. Consumption of Halocarbons and $SF_6^{(2)}$				28,840.00	12,274.00	45,410.00	86,524.0
G. Other	NO	NO	NO	NE,NO	NE,NO	NE,NO	NE,NC
3. Solvent and Other Product Use	NA.NE		438.02				438.02
4. Agriculture		17,999.87	12.711.60				30,711.4
A. Enteric Fermentation		7.691.89					7,691.89
B. Manure Management		2,942.69	5,250.91				8,193.6
C. Rice Cultivation		7,263.40	.,				7,263.4
D. Agricultural Soils ⁽³⁾		NA	7,378.07				7,378.0
E. Prescribed Burning of Savannas		NE	NE				NI
F. Field Burning of Agricultural Residues		101.90	82.61				184.5
G. Other		NO	NO				NC
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-73,906.93	17.75	65.70				-73,823.4
A. Forest Land	-79,708.43	17.75	1.80				-79,688.8
B. Cropland	858.10	NE,NO	63.90				922.00
C. Grassland	-535.33	NE,NO	NE,NO				-535.3
D. Wetlands	-333.33	NE,NO	NE,NO				-355.5.
E. Settlements	3,387.45	NE,NO	NE,NO				3,387.4
F. Other Land	1,678.13	NO	NO				1,678.1
G. Other	292.73	NA,NE	NA,NE				292.7
6. Waste	16,268.90	9,225.05	3,142.37				28,636.3
A. Solid Waste Disposal on Land	NA,NE,NO	7,277.88	10/175				7,277.88
B. Waste-water Handling		1,921.54	1,264.75				3,186.2
C. Waste Incineration	15,566.99	14.48	1,867.73				17,449.2
D. Other	701.91	11.15	9.88				722.9
7. Other (as specified in Summary 1.A)	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NC
Memo Items: ⁽⁴⁾							
International Bunkers	36,093.69	50.02	322.19				36,465.9
	15 066 40	0.05	1.40.00				15 00 4 4

Memo Items: (*)					
International Bunkers	36,093.69	50.02	322.19		36,465.90
Aviation	15,066.49	8.95	149.00		15,224.44
Marine	21,027.20	41.06	173.19		21,241.46
Multilateral Operations	NO	NO	NO		NO
CO ₂ Emissions from Biomass	17,803.39				17,803.39

 Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry
 1,362,305.95

 Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry
 1,288,482.48

⁽¹⁾ For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

 $^{(3)}$ Parties which previously reported CO2 from soils in the Agriculture sector should note this in the NIR.

 $^{^{5}}$ Potential emissions of HFCs, PFCs and SF₆ are reported due to the generation of CRF Reporter

9.6. Emissions and Removals in 1995

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 1995 Submission 2010 v1.1 JAPAN

GREENHOUSE GAS SOURCE AND	CO2 ⁽¹⁾	CH ₄	N ₂ O	HFCs ⁽²⁾	PFCs ⁽²⁾	SF6 ⁽²⁾	Total		
SINK CATEGORIES	CO ₂ equivalent (Gg)								
Total (Net Emissions) ⁽¹⁾	1,152,534.98	29,530.80	32,386.94	20,260.17	14,240.36	16,961.45	1,265,914.71		
1. Energy	1,145,814.21	2,563.75	8.016.20				1,156,394.10		
A. Fuel Combustion (Sectoral Approach)	1,145,763.29	953.88	8,016.04				1,154,733.21		
1. Energy Industries	344,948.18	34.42	1,414.03				346,396.63		
2. Manufacturing Industries and Construction	370,533.58	356.12	1,616.18				372,505.88		
3. Transport	251,166.53	308.40	4,649.84				256,124.77		
4. Other Sectors	179,115.00	254.94	335.99				179,705.94		
5. Other	NO	NO	NO				NC		
B. Fugitive Emissions from Fuels	50.92	1,609.87	0.16				1,660.9		
1. Solid Fuels	NE,NO	1,344.68	NE,NO				1,344.68		
Oil and Natural Gas	50.92	265.19	0.16				316.20		
2. Industrial Processes	64,123.88	322.37	8,212.71	20,260.17	14,240.36	16,961.45	124,120.95		
A. Mineral Products	59,338.51	NA,NO	NA,NO				59,338.51		
B. Chemical Industry	4,428.15	304.45	8,212.71	NA	NA	NA	12,945.31		
C. Metal Production	357.22	17.92	NO	IE,NE	69.74	119.50	564.38		
D. Other Production	IE						II		
E. Production of Halocarbons and SF ₆				17,445.12	762.85	4,708.30	22,916.27		
F. Consumption of Halocarbons and $SF_6^{(2)}$				2,815.05	13,407.78	12,133.65	28,356.48		
G. Other	NO	NO	NO	NO	NO	NO	NC		
3. Solvent and Other Product Use	NA,NE		437.58				437.58		
4. Agriculture		17,684.43	12,393.71				30,078.14		
A. Enteric Fermentation		7,606.42					7,606.42		
B. Manure Management		2,893.04	5,151.97				8,045.01		
C. Rice Cultivation		7,082.74					7,082.74		
D. Agricultural Soils ⁽³⁾		NA	7,160.48				7,160.48		
E. Prescribed Burning of Savannas		NE	NE				NE		
F. Field Burning of Agricultural Residues		102.22	81.27				183.49		
G. Other		NO	NO				NC		
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-73,937.51	8.66	57.26				-73,871.60		
A. Forest Land	-79,685.05	8.66	0.88				-79,675.51		
B. Cropland	806.37	NE,NO	56.38				862.75		
C. Grassland	-516.69	NE,NO	NE,NO				-516.69		
D. Wetlands	286.24	NE,NO	NE,NO				286.24		
E. Settlements	3,357.10	NE,NO	NE,NO				3,357.10		
F. Other Land	1,511.02	NO	NO				1,511.02		
G. Other	303.50	NA,NE	NA,NE				303.50		
6. Waste	16,534.40	8.951.59	3,269.50				28,755.48		
A. Solid Waste Disposal on Land	NA,NE,NO	7,064.55	3,207.50				7,064.55		
B. Waste-water Handling		1,860.70	1,247.18				3,107.88		
C. Waste Incineration	15,866.57	14.86	2,012.15				17,893.58		
D. Other	667.83	11.48	10.17				689.48		
7. Other (as specified in Summary 1.A)	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO		
Memo Items: ⁽⁴⁾									
Internotional Punkawa	28 170 77	51.56	242.20				20 572 71		

Memo Items: "					
International Bunkers	38,179.77	51.56	342.39		38,573.71
Aviation	16,922.99	10.06	167.36		17,100.41
Marine	21,256.78	41.50	175.03		21,473.30
Multilateral Operations	NO	NO	NO		NO
CO ₂ Emissions from Biomass	18,487.35				18,487.35

Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry	1,339,786.30
Total CO ₂ Equivalent Emissions with Land Use, Land-Use Change and Forestry	1,265,914.71

⁽¹⁾ For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

⁽³⁾ Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

9.7. Emissions and Removals in 1996

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 1996 Submission 2010 v1.1 JAPAN

GREENHOUSE GAS SOURCE AND	CO ₂ ⁽¹⁾	CH ₄	N ₂ O	HFCs ⁽²⁾	PFCs ⁽²⁾	SF6 ⁽²⁾	Total
SINK CATEGORIES		•	co	2 equivalent (Gg			
Total (Net Emissions) ⁽¹⁾	1,160,267.57	28,875.54	33,401.01	19,906.20	14,783.02	17,535.35	1,274,768.68
1. Energy	1,157,955.60	2,514.03	8,173.64				1,168,643.20
A. Fuel Combustion (Sectoral Approach)	1,157,906.23	953.53	8,173.48				1,167,033.25
1. Energy Industries	345,134.72	36.21	1,443.08				346,614.00
Manufacturing Industries and Construction	378,808.43	373.10	1,692.52				380,874.00
3. Transport	256,750.56	314.17	4,736.70				261,801.43
4. Other Sectors	177,212.53	230.05	301.19				177,743.70
5. Other	NO	NO	NO				NC
B. Fugitive Emissions from Fuels	49.37	1,560.49	0.15				1,610.0
1. Solid Fuels	NE,NO	1,297.15	NE,NO				1,297.1
Oil and Natural Gas	49.37	263.34	0.15				312.8
2. Industrial Processes	63,885.48	312.02	9,220.07	19,906.20	14,783.02	17,535.35	125,642.13
A. Mineral Products	59,111.36	NA,NO	NA,NO				59,111.36
B. Chemical Industry	4,394.13	293.80	9,220.07	NA	NA	NA	13,908.00
C. Metal Production	379.99	18.22	NO	IE,NE	65.88	143.40	607.48
D. Other Production	IE						II
E. Production of Halocarbons and SF ₆				16,052.32	1,007.80	4,182.50	21,242.6
F. Consumption of Halocarbons and $SF_6^{(2)}$				3,853.88	13,709.34	13,209.45	30,772.6
G. Other	NO	NO	NO	NO	NO	NO	NC
3. Solvent and Other Product Use	NA,NE	110	420.94	110	110	110	420.94
4. Agriculture	111,112	17.302.30	12.120.14				29,422.44
A. Enteric Fermentation		7.551.46	12,120.14				7.551.40
B. Manure Management		2,859.09	5.089.03				7,948.1
C. Rice Cultivation		6,793.69	5,007.05				6,793.6
D. Agricultural Soils ⁽³⁾		NA	6,952.75				6,952.7
E. Prescribed Burning of Savannas		NE	0,952.15 NE				0,952.11
F. Field Burning of Agricultural Residues		98.06	78.35				176.4
G. Other		NO	78.55 NO				NC
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-78,524.37	28.37	50.65				-78,445.3
A. Forest Land		28.37					1
	-83,518.74		2.88				-83,487.49
B. Cropland	645.53	NE,NO	47.77				693.3
C. Grassland	-517.95	NE,NO	NE,NO				-517.9
D. Wetlands	512.57	NE,NO	NE,NO				512.5
E. Settlements	2,645.83	NE,NO	NE,NO				2,645.8
F. Other Land	1,415.70	NO	NO				1,415.7
G. Other	292.70	NA,NE	NA,NE				292.7
6. Waste	16,950.85	8,718.83	3,415.58				29,085.20
A. Solid Waste Disposal on Land	NA,NE,NO	6,866.36					6,866.30
B. Waste-water Handling		1,825.45	1,268.27				3,093.72
C. Waste Incineration	16,310.38	15.23	2,136.87				18,462.49
D. Other	640.47	11.79	10.44				662.7
7. Other (as specified in Summary 1.A)	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NC
Memo Items: (4)							
International Bunkers	30,958.25	35.39	285.44				31,279.0
		10.0.1	100.00				

Memo Items: (*)					
International Bunkers	30,958.25	35.39	285.44		31,279.08
Aviation	18,441.91	10.96	182.38		18,635.25
Marine	12,516.34	24.43	103.06		12,643.83
Multilateral Operations	NO	NO	NO		NO
CO ₂ Emissions from Biomass	18,547.51				18,547.51
	•				

 Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry
 1,353,214.03

 Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry
 1,274,768.68

⁽¹⁾ For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

 $^{(3)}$ Parties which previously reported CO2 from soils in the Agriculture sector should note this in the NIR.

9.8. Emissions and Removals in 1997

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 1997 Submission 2010 v1.1 JAPAN

GREENHOUSE GAS SOURCE AND	CO2 ⁽¹⁾	CH ₄	N ₂ O	HFCs ⁽²⁾	PFCs ⁽²⁾	SF6 ⁽²⁾	Total
SINK CATEGORIES			CO	2 equivalent (Gg)		
Total (Net Emissions) ⁽¹⁾	1,155,671.46	27,825.53	34,081.73	19,905.11	16,164.62	14,998.12	1,268,646.5
1. Energy	1.154.944.87	2,220.85	8.413.15				1,165,578.8
A. Fuel Combustion (Sectoral Approach)	1,154,896.90	943.60	8,413.00				1,164,253.5
1. Energy Industries	342,054.20	38.04	1,489.79				343,582.0
2. Manufacturing Industries and Construction	381,139.14	355.14	1,833.93				383,328.2
3. Transport	258,734.10	315.25	4,784.51				263,833.8
4. Other Sectors	172,969.46	235.18	304.77				173,509.4
5. Other	NO	NO	NO				N
B. Fugitive Emissions from Fuels	47.97	1,277.25	0.15				1,325.3
1. Solid Fuels	NE,NO	1,006.86	NE,NO				1,006.8
Oil and Natural Gas	47.97	270.39	0.15				318.5
2. Industrial Processes	62,156.48	260.90	9,792.47	19,905.11	16,164.62	14,998.12	123,277.6
A. Mineral Products	57,431.64	NA,NO	NA,NO				57,431.6
B. Chemical Industry	4,340.36	242.58	9,792.47	NA	NA	NA	14,375.4
C. Metal Production	384.48	18.33	NO	IE,NE	59.43	191.20	653.4
D. Other Production	IE						I
E. Production of Halocarbons and SF ₆				15,077.99	1,416.80	2,581.20	19,075.9
F. Consumption of Halocarbons and $SF_6^{(2)}$				4,827.12	14,688.39	12,225.72	31,741.2
G. Other	NO	NO	NO	NO	NO	NO	NO
3. Solvent and Other Product Use	NA,NE		404.60				404.6
4. Agriculture		16,856.19	11,931.70				28,787.8
A. Enteric Fermentation		7,505.45					7,505.4
B. Manure Management		2,816.67	5,031.14				7,847.8
C. Rice Cultivation		6,440.28					6,440.2
D. Agricultural Soils ⁽³⁾		NA	6,824.44				6,824.4
E. Prescribed Burning of Savannas		NE	NE				N
F. Field Burning of Agricultural Residues		93.79	76.12				169.9
G. Other		NO	NO				NO
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-78,977.11	34.31	42.51				-78,900.2
A. Forest Land	-83,509.03	34.31	3.48				-83,471.2
B. Cropland	520.23	NE,NO	39.03				559.2
C. Grassland	-480.04	NE,NO	NE,NO				-480.0
D. Wetlands	124.99	NE,NO	NE,NO				124.9
E. Settlements	2,182.64	NE,NO	NE,NO				2,182.6
F. Other Land	1,880.48	NO	NO				1,880.4
G. Other	303.61	NA,NE	NA.NE				303.6
6. Waste	17,547.22	8,453.28	3,497.31				29,497.8
A. Solid Waste Disposal on Land	NA,NE,NO	6,647.53	5,457151				6,647.5
B. Waste-water Handling		1,778.73	1,278.09				3,056.8
C. Waste Incineration	16,891.99	14.70	2,208.32				19,115.0
D. Other	655.23	12.32	10.91				678.4
7. Other (as specified in Summary 1.A)	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
······································				,			
Memo Items: ⁽⁴⁾							
nemo nemo.							

Memo Items: (4)					
International Bunkers	35,432.29	43.17	323.34		35,798.80
Aviation	19,134.37	11.37	189.23		19,334.97
Marine	16,297.92	31.80	134.12		16,463.84
Multilateral Operations	NO	NO	NO		NO
CO ₂ Emissions from Biomass	19,107.10				19,107.10

Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry	1,347,546.87
Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry	1,268,646.57

⁽¹⁾ For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

⁽³⁾ Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

9.9. Emissions and Removals in 1998

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 1998 Submission 2010 v1.1 JAPAN

GREENHOUSE GAS SOURCE AND	CO2 ⁽¹⁾	CH ₄	N ₂ O	HFCs ⁽²⁾	PFCs ⁽²⁾	SF6 ⁽²⁾	Total
SINK CATEGORIES		•	co	2 equivalent (Gg)			
Total (Net Emissions) ⁽¹⁾	1,119,695.28	27,004.30	32,572.03	19,415.96	13,411.82	13,624.11	1,225,723.5
1. Energy	1.125.025.86	2.053.27	8.301.23				1.135.380.3
A. Fuel Combustion (Sectoral Approach)	1,124,983.13	915.30	8,301.10				1,134,199.5
1. Energy Industries	332,405.28	39.83	1,518.38				333,963.4
 Manufacturing Industries and Construction 	357,831.92	318.89	1,773.85				359,924.6
3. Transport	257,853.86	304.24	4,685.71				262,843.8
4. Other Sectors	176,892.07	252.34	323.16				177,467.5
5. Other	NO	NO	NO				NO
B. Fugitive Emissions from Fuels	42.73	1,137.98	0.13				1,180.8
1. Solid Fuels	NE,NO	872.46	NE,NO				872.4
Oil and Natural Gas	42.73	265.52	0.13				308.3
2. Industrial Processes	56,094.98	243.52	8,577.87	19,415.96	13,411.82	13,624.11	111,368.2
A. Mineral Products	51,997.28	NA,NO	NA,NO				51,997.28
B. Chemical Industry	3,804.58	227.37	8,577.87	NA	NA	NA	12,609.8
C. Metal Production	293.11	16.15	NO	IE,NE	49.40	406.30	764.9
D. Other Production	IE						Ι
E. Production of Halocarbons and SF ₆				14,053.43	1,389.50	2,103.20	17,546.1
F. Consumption of Halocarbons and $SF_6^{(2)}$				5,362.53	11,972.92	11,114.61	28,450.0
G. Other	NO	NO	NO	NO	NO	NO	NO
3. Solvent and Other Product Use	NA,NE		377.05				377.0
4. Agriculture		16,557.57	11,796.95				28,354.5
A. Enteric Fermentation		7,466.79					7,466.7
B. Manure Management		2,770.83	4,986.39				7,757.2
C. Rice Cultivation		6,229.14					6,229.1
D. Agricultural Soils ⁽³⁾		NA	6,734.83				6,734.8
E. Prescribed Burning of Savannas		NE	NE				N
F. Field Burning of Agricultural Residues		90.82	75.74				166.5
G. Other		NO	NO				NO
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-78,945.74	10.68	35.87				-78,899.1
A. Forest Land	-83,497.46	10.68	1.08				-83,485.7
B. Cropland	532.07	NE,NO	34.79				566.8
C. Grassland	-462.66	NE,NO	NE,NO				-462.6
D. Wetlands	398.98	NE.NO	NE.NO				398.9
E. Settlements	2,243.56	NE,NO	NE,NO				2,243.5
F. Other Land	1,539.79	NO NO	ND,NO				1,539.7
G. Other	299.97	NA,NE	NA,NE				299.9
6. Waste A. Solid Waste Disposal on Land	17,520.19 NA,NE,NO	8,139.26 6,379.23	3,483.05				29,142.5 6,379.2
B. Waste-water Handling	INA,INE,INO	1,733.07	1,260.62				2,993.7
C. Waste Incineration	16,911.07	1,733.07	2,211.41				19,137.0
D. Other	609.12	14.52	2,211.41				632.5
				NA NO	NA,NO	NA NO	
7. Other (as specified in Summary 1.A)	NA,NO	NA,NO	NA,NO	NA,NO	INA,INO	NA,NO	NA,NC
. (4)							
Memo Items: ⁽⁴⁾	27.261.00	45.55	240.52				27.7.17.5
International Bunkers	37,361.08	45.77	340.73				37,747.5

Wento items.		((
International Bunkers	37,361.08	45.77	340.73		37,747.59
Aviation	20,001.55	11.89	197.80	i la	20,211.24
Marine	17,359.53	33.89	142.93		17,536.35
Multilateral Operations	NO	NO	NO		NO
CO ₂ Emissions from Biomass	17,556.58				17,556.58

Total CO ₂ Equivalent Emissions without Land Use, Land-Use Change and Forestry	1,304,622.70
Total CO_2 Equivalent Emissions with Land Use, Land-Use Change and Forestry	1,225,723.51

⁽¹⁾ For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

 $^{(3)}$ Parties which previously reported CO2 from soils in the Agriculture sector should note this in the NIR.

9.10. Emissions and Removals in 1999

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 1999 Submission 2010 v1.1 JAPAN

GREENHOUSE GAS SOURCE AND	CO2 ⁽¹⁾	CH ₄	N ₂ O	HFCs ⁽²⁾	PFCs ⁽²⁾	SF6 ⁽²⁾	Total
SINK CATEGORIES			co	2 equivalent (Gg)		
Total (Net Emissions) ⁽¹⁾	1,154,185.91	26,386.48	26,143.68	19,934.44	10,395.49	9,309.93	1,246,355.94
1. Energy	1,160,138.37	2,071.78	8.522.43				1,170,732.5
A. Fuel Combustion (Sectoral Approach)	1,160,100.31	943.36	8,522.31				1,169,565.98
1. Energy Industries	349,785.30	42.68	1,648.32				351,476.3
2. Manufacturing Industries and Construction	365,065.79	321.92	1,836.38				367,224.10
3. Transport	260,017.18	302.99	4,679.03				264,999.20
4. Other Sectors	185,232.04	275.76	358.57				185,866.3
5. Other	NO	NO	NO				NC
B. Fugitive Emissions from Fuels	38.06	1,128.42	0.12				1,166.6
1. Solid Fuels	NE,NO	865.69	NE,NO				865.6
Oil and Natural Gas	38.06	262.73	0.12				300.9
2. Industrial Processes	56,085.86	236.22	2,000.86	19,934.44	10,395.49	9,309.93	97,962.8
A. Mineral Products	51,697.48	NA,NO	NA,NO				51,697.4
B. Chemical Industry	4,133.89	220.14	2,000.86	NA	NA	NA	6,354.8
C. Metal Production	254.49	16.08	NO	IE,NE	29.12	645.30	944.9
D. Other Production	IE						П
E. Production of Halocarbons and SF ₆				14,260.55	1,270.88	1,529.60	17,061.0
F. Consumption of Halocarbons and SF ₆ ⁽²⁾				5,673.89	9,095.49	7,135.03	21,904.4
G. Other	NO	NO	NO	NO	NO	NO	NC
3. Solvent and Other Product Use	NA,NE		362.53				362.5
4. Agriculture		16,237.60	11,707.36				27,944.90
A. Enteric Fermentation		7,407.75					7,407.75
B. Manure Management		2,717.58	4,933.09				7,650.6
C. Rice Cultivation		6,024.77					6,024.7
D. Agricultural Soils ⁽³⁾		NA	6,700.50				6,700.5
E. Prescribed Burning of Savannas		NE	NE				N
F. Field Burning of Agricultural Residues		87.51	73.77				161.2
G. Other		NO	NO				NC
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-79,368.15	5.20	32.67				-79,330.2
A. Forest Land	-83,485.70	5.20	0.53				-83,479.9
B. Cropland	496.72	NE,NO	32.14				528.8
C. Grassland	-496.64	NE,NO	NE,NO				-496.6
D. Wetlands	375.29	NE,NO	NE,NO				375.2
E. Settlements	1,840.66	NE,NO	NE,NO				1,840.6
F. Other Land	1,607.99	NO	NO				1,607.9
G. Other	293.52	NA,NE	NA,NE				293.5
6. Waste	17.329.84	7.835.68	3.517.82				28,683.34
A. Solid Waste Disposal on Land	NA,NE,NO	6,124.41	-,				6,124.4
B. Waste-water Handling		1,684.76	1,223.85				2,908.6
C. Waste Incineration	16,677.27	14.02	2,282.92				18,974.2
D. Other	652.58	12.48	11.05				676.1
7. Other (as specified in Summary 1.A)	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NC
Memo Items: ⁽⁴⁾							
	26 022 40	42.75	220.04				26 205 26

Memo Items: (4)					
International Bunkers	36,022.49	43.75	329.04		36,395.28
Aviation	19,576.46	11.63	193.60		19,781.70
Marine	16,446.03	32.11	135.44		16,613.59
Multilateral Operations	NO	NO	NO		NO
CO ₂ Emissions from Biomass	18,260.06				18,260.06

Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry	1,325,686.22
Total CO ₂ Equivalent Emissions with Land Use, Land-Use Change and Forestry	1,246,355.94

⁽¹⁾ For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

⁽³⁾ Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

9.11. Emissions and Removals in 2000

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2000 Submission 2010 v1.1 JAPAN

CO2 ⁽¹⁾	CH ₄	N ₂ O	HFCs ⁽²⁾	PFCs ⁽²⁾	SF6 ⁽²⁾	Total
	•	co	2 equivalent (Gg))		
1,173,985.23	25,795.81	28,726.95	18,800.40	9,519.49	7,188.49	1,264,016.3
1,180,059,51	1,998,70	8.558.89				1,190,617.09
/ /	955.55	8,558.78	i i i			1,189,537.8
357,574.13	43.64	1,717.58				359,335.3
376,757.53	344.21	1,891.96				378,993.7
259,076.39	297.91	4,586.55				263,960.8
186,615.43	269.78	362.69				187,247.9
NO	NO	NO				NO
36.03	1,043.15	0.11				1,079.2
NE,NO	769.13	NE,NO				769.1
36.03	274.02	0.11				310.1
56,731.35	195.78	4,690.09	18,800.40	9,519.49	7,188.49	97,125.6
52,410.87	NA,NO	NA,NO				52,410.8
4,072.06	178.95	4,690.09	NA	NA	NA	8,941.0
248.42	16.84	NO	IE,NE	17.78	1,027.70	1,310.7
IE						Ι
			12,659.84	1,359.00	860.40	14,879.2
			6,140.56	8,142.70	5,300.39	19,583.6
NO	NO	NO	NO	NO	NO	N
NA.NE		340.99				340.9
	16.053.21	11.624.36				27,677.5
	7,369.97	,				7,369.9
	2,677.89	4,884.82				7,562.7
	5,919.76	,				5,919.7
	NA	6,667.48				6,667.4
						N
						157.6
	NO	NO				NO
-80.299.49	7.75	29.51				-80,262.2
,						-83,467.2
						368.4
	,					-580.0
						-380.0
		· · · · ·				
· · · · · · · · · · · · · · · · · · ·	,					1,469.0
,						1,261.2
	,					332.8
,	/	3,483.11				28,517.3
NA,NE,NO	,	1 0 1 1 1 2				5,877.4
10.007.00	,	,				2,847.7
						19,111.1
					N4 N5	681.0
NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
36 731 00	45.17	222.20				37,110.3
19.542.61	45.17	355.50 191.78				19.746.0
	1,180,059.51 1,180,023.48 357,574.13 376,757.53 259,076.39 186,615.43 NO 36.03 NE,NO 36.03 56,731.35 52,410.87 4,072.06 248.42 IE 0 NO NA,NE 0 0 0 0 0 0 0 0 0 0 0 0 0	1,173,985.23 25,795.81 1,180,059.51 1,998.70 1,180,059.51 1,998.70 1,180,023.48 955.55 357,574.13 43.64 1 376,757.53 344.21 259,076.39 297.91 186,615.43 269.78 NO NO 36.03 1,043.15 NE,NO 769.13 36.03 274.02 56,731.35 195.78 52,410.87 NA,NO 4,072.06 178.95 248.42 16.84 IE 16,053.21 7,369.97 2,677.89 2,677.89 2,677.89 3,5,919.76 NA NO NO NA NE 85.60 NO NO NO 16,053.21 7,369.97 2,677.89 2,677.89 339.69 NE NO NO 333.69 NE,NO 333.69 NE,NO	CO 1,173,985.23 25,795.81 28,726.95 1,180,059.51 1,998.70 8,558.89 1,180,023.48 955.55 8,558.78 3357,574.13 43.64 1,717.58 3376,757.53 344.21 1,891.96 259,076.39 297.91 4,586.55 186,615.43 269.78 362.69 NO NO NO 36.03 1,043.15 0.11 NE,NO 769.13 NE,NO 36.03 274.02 0.11 56,731.35 195.78 4,690.09 52,410.87 NA,NO NA,NO 4,072.06 178.95 4,690.09 248.42 16.84 NO MO NO NO NO NO NO NO NO NO NO NO NO 16,053.21 11,624.36 7,369.97 2,677.89 2,677.89 4,884.82 5,919.76 NA	CO2 equivalent (Gg. 1,173,985.23 25,795.81 28,726.95 18,800.40 1,180,059.51 1,998,70 8,558.89 1 1,180,023.48 955.55 8,558.78 1 3376,757.53 344.21 1,891.96 1 3376,757.53 344.21 1,891.96 1 259,076.39 297.91 4,586.55 1 186,615.43 269.78 362.69 1 NO NO NO 1 1 NE,NO 769.13 NE,NO 1 1 36.03 1,043.15 0.11 1 1 NE,NO 769.13 NE,NO 1 8 36.03 274.02 0.11 1 1 S54,731.35 195.78 4,690.09 NA 248.42 16.84 NO IE,NE IE 1 12,659.84 1 NO NO NO NO NO NO NO NO N	CO2 equivalent (Gg) 1,173,985.23 25,795.81 28,726.95 18,800.40 9,519.49 1,180,059.51 1,998,70 8,558.89	CO2 equivalent (Gg) 1,173,985.23 25,795.81 28,726.95 18,800.40 9,519.49 7,188.49 1,180,055.51 1,998.70 8,558.89 3375,754.13 43.64 1,717.58 3376,757.53 344.21 1,891.96 259,076.39 297.91 4,586.55 186,615.43 269.778 362.69 NO NO NO NO 360.31 1,043.15 0.11

36,731.88	45.17	333.30				37,110.35
19,542.61	11.61	191.78				19,746.00
17,189.28	33.55	141.52				17,364.35
NO	NO	NO				NO
18,846.04						18,846.04
	19,542.61 17,189.28 NO	19,542.61 11.61 17,189.28 33.55 NO NO	19,542.61 11.61 191.78 17,189.28 33.55 141.52 NO NO NO	19,542.61 11.61 191.78 17,189.28 33.55 141.52 NO NO NO	19,542.61 11.61 191.78 17,189.28 33.55 141.52 NO NO NO	19,542.61 11.61 191.78 17,189.28 33.55 141.52 NO NO O

Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry	1,344,278.60
Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry	1,264,016.38

⁽¹⁾ For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

 $^{(3)}$ Parties which previously reported CO2 from soils in the Agriculture sector should note this in the NIR.

9.12. Emissions and Removals in 2001

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2001 Submission 2010 v1.1 JAPAN

GREENHOUSE GAS SOURCE AND	CO2 ⁽¹⁾	CH ₄	N ₂ O	HFCs ⁽²⁾	PFCs ⁽²⁾	SF6 ⁽²⁾	Total
SINK CATEGORIES	•		co	2 equivalent (Gg			
Total (Net Emissions) ⁽¹⁾	1,157,667.84	25,003.61	25,281.02	16,167.97	7,902.31	5,962.42	1,237,985.17
1. Energy	1,167,417.88	1,764.50	8,563.54				1,177,745.91
A. Fuel Combustion (Sectoral Approach)	1,167,385.44	926.32	8,563.43				1,176,875.19
1. Energy Industries	349,730.24	43.69	1,940.98				351,714.92
 Manufacturing Industries and Construction 	366,481.77	318.74	1,844.14				368,644.65
3. Transport	261,120.73	292.20	4,409.50				265,822.43
4. Other Sectors	190,052.70	271.69	368.82				190,693.20
5. Other	NO	NO	NO				NO
B. Fugitive Emissions from Fuels	32.44	838.18	0.10				870.72
 Solid Fuels 	NE,NO	570.30	NE,NO				570.30
Oil and Natural Gas	32.44	267.88	0.10				300.42
2. Industrial Processes	54,612.77	147.50	1,414.89	16,167.97	7,902.31	5,962.42	86,207.86
A. Mineral Products	50,645.94	NA,NO	NA,NO				50,645.94
B. Chemical Industry	3,756.12	131.66	1,414.89	NA	NA	NA	5,302.67
C. Metal Production	210.71	15.84	NO	IE,NE	15.73	1,147.20	1,389.48
D. Other Production	IE						IE
E. Production of Halocarbons and SF ₆				9,713.43	1,082.60	788.70	11,584.73
F. Consumption of Halocarbons and SF ₆ ⁽²⁾				6,454.54	6,803.99	4,026.52	17,285.04
G. Other	NO	NO	NO	NO	NO	NO	NO
3. Solvent and Other Product Use	NA,NE		343.60				343.60
4. Agriculture		15,871.12	11,536.77				27,407.89
A. Enteric Fermentation		7,325.24					7,325.24
B. Manure Management		2,652.15	4,839.23				7,491.39
C. Rice Cultivation		5,810.23					5,810.23
D. Agricultural Soils ⁽³⁾		NA	6,627.58				6,627.58
E. Prescribed Burning of Savannas		NE	NE				NE
F. Field Burning of Agricultural Residues		83.49	69.96				153.45
G. Other		NO	NO				NO
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-80,608.76	12.34	26.86				-80,569.55
A. Forest Land	-83,466.39	12.34	1.25				-83,452.79
B. Cropland	277.52	NE,NO	25.61				303.13
C. Grassland	-591.16	NE,NO	NE,NO				-591.16
D. Wetlands	359.36	NE,NO	NE,NO				359.36
E. Settlements	1,216.49	NE,NO	NE,NO				1,216.49
F. Other Land	1,348.11	NO	NO				1,348.11
G. Other	247.31	NA,NE	NA,NE				247.31
6. Waste	16,245.95	7,208.14	3,395.37				26,849.46
A. Solid Waste Disposal on Land	NA,NE,NO	5,597.70					5,597.70
B. Waste-water Handling		1,583.41	1,193.07				2,776.48
C. Waste Incineration	15,615.42	12.59	2,189.52				17,817.53
D. Other	630.53	14.44	12.79				657.75
7. Other (as specified in Summary 1.A)	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO
(4)							
Memo Items: ⁽⁴⁾	33 571 42	40.10	305.92				33 917 44

Memo Items: "					
International Bunkers	33,571.42	40.10	305.92		33,917.44
Aviation	18,721.34	11.13	183.72		18,916.19
Marine	14,850.08	28.97	122.20		15,001.25
Multilateral Operations	NO	NO	NO		NO
CO ₂ Emissions from Biomass	17,203.99				17,203.99

Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry	1,318,554.72
Total CO ₂ Equivalent Emissions with Land Use, Land-Use Change and Forestry	1,237,985.17

⁽¹⁾ For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

⁽³⁾ Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

9.13. Emissions and Removals in 2002

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2002 Submission 2010 v1.1 JAPAN

CO2 ⁽¹⁾	CH ₄	N ₂ O	HFCs ⁽²⁾	PFCs ⁽²⁾	SF6 ⁽²⁾	Total
	·	co	2 equivalent (Gg)		,	
1,194,086.55	24,056.63	24,538.82	13,692.82	7,388.02	5,579.50	1,269,342.3
1.207.914.35	1.331.48	8.260.22	,			1,217,506.0
, , ,	/	.,				1,217,068.5
, ,	35.64	,				383,281.1
	322.96	1,853.15				375,140.5
255,478.88	281.62	4,148.14				259,908.6
198,067.58	284.82	385.86				198,738.2
NO	NO	NO				NO
30.94	406.44	0.10				437.4
NE,NO	118.34	NE,NO				118.3
30.94	288.10	0.10				319.1
52,474.69	141.54	1,238.77	13,692.82	7,388.02	5,579.50	80,515.3
48,698.58	NA,NO	NA,NO				48,698.5
3,555.16	124.90	1,238.77	NA	NA	NA	4,918.8
220.95	16.64	NO	IE,NE	14.83	1,123.30	1,375.7
IE						Ι
			6,456.62	1,009.92	860.40	8,326.9
			7,236.20	6,363.26	3,595.80	17,195.2
NO	NO	NO	NO	NO	NO	NO
NA,NE		334.05				334.0
	15,680.36	11,481.98				27,162.3
	7,276.12					7,276.1
	2,630.65	4,810.72				7,441.3
	5,693.94					5,693.9
	NA	6,603.55				6,603.5
	NE	NE				N
	79.65	67.71				147.3
	NO	NO				NO
-81,938.77	20.53	24.29				-81,893.9
-83,458,96	20.53	2.08				-83,436.3
		22.21				274.2
-567.44	,	NE.NO				-567.4
	,					105.1
	,	,				269.1
	,	,				1,191.4
						269.8
	,					
· · · · · · · · · · · · · · · · · · ·	7	3,199.51				25,718.5 5,317.3
INA, INE, INO	,	1 177 67				2,709.7
15 059 23	,	,				17,088.3
		,				603.0
			NANO	NANO	NA NO	NA,NO
11/1,110	117,110	114,110	11/1,110	114,110	11/4,110	11/23,111
26 729 02	12.00	225 74				27.107.6
						37,107.6
	1,194,086.55 1,207,914.35 1,207,883.41 3,81,372.56 n 372,964.40 255,478.88 198,067.58 NO 30.94 NE,NO 30.94 52,474.69 48,698.58 3,555.16 220.95 IE NO NO NA,NE NO NA,NE	1,194,086.55 24,056.63 1,207,914.35 1,331.48 1,207,883.41 925.05 381,372.56 35.64 n 372,964.40 322.96 255,478.88 281.62 198,067.58 284.82 NO NO NO 30.94 406.44 NE,NO 118.34 30.94 285.10 24,090 220.95 52,474.69 141.54 48,698.58 NA,NO 33,555.16 124.90 220.95 16.64 IE 10 10 10 NO NO NO NO NO NO NO NO 13,555.16 124.90 220.95 16.64 IE 10 10 10 10 NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NA IE 15,680.36 7,7276.12	CO 1,194,086.55 24,056.63 24,538.82 1,207,914.35 1,331.48 8,260.22 1,207,883.41 925.05 8,260.12 381,372.56 35.64 1,872.98 n 372,964.40 322.96 1,853.15 255,478.88 281.62 4,148.14 198,067.58 284.82 385.86 NO NO NO 30.94 406.44 0.10 NE,NO 118.34 NE,NO 30.94 288.10 0.10 S2,474.69 141.54 1,238.77 48,698.58 NA,NO NA,NO 3,555.16 124.90 1,238.77 220.95 16.64 NO MO NO NO NO NO NO NO NO NO NO NO NO 13,555.16 124.90 1,238.77 220.95 16.64 NO NO NO NO	CO2 equivalent (Gg) 1,194,086.55 24,056.63 24,538.82 13,692.82 1,207,914.35 1,331.48 8,260.22 381,372.56 35.64 1,872.98 n 372,964.40 322.96 1,853.15 255,478.88 281.62 4,148.14 198,067.58 284.82 385.86 NO NO NO 30.94 406.44 0.10 30.94 406.44 0.10 30.94 406.44 0.10 30.94 406.44 0.10 30.94 408.44 NE,NO 30.94 486.44 NO 30.94 428.10 0.10 30.94 486.44 NO 3.555.16 124.90 1,238.77 NA 220.95 16.64 NO IE,NE 1E 48.698.58 NA,NO NO NO NO NO NO NO 16.64 NO IE,NE 16.64 <	CO2 equivalent (Gg) 1,194,086.55 24,056.63 24,538.82 13,692.82 7,388.02 1,207,914.35 1,331.48 8,260.22	CO2 equivalent (Gg) 1,194,086.55 24,056,63 24,538,82 13,692,82 7,388,02 5,579,50 1,207,914.35 1,331,48 8,260,22 <t< td=""></t<>

Memo nems:					
International Bunkers	36,728.93	42.96	335.74		37,107.63
Aviation	21,149.32	12.57	207.55		21,369.44
Marine	15,579.61	30.39	128.19		15,738.19
Multilateral Operations	NO	NO	NO		NO
CO ₂ Emissions from Biomass	17,917.42				17,917.42

Total CO ₂ Equivalent Emissions without Land Use, Land-Use Change and Forestry	1,351,236.28
Total CO_2 Equivalent Emissions with Land Use, Land-Use Change and Forestry	1,269,342.34

⁽¹⁾ For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

 $^{(3)}$ Parties which previously reported CO2 from soils in the Agriculture sector should note this in the NIR.

9.14. Emissions and Removals in 2003

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2003 Submission 2010 v1.1 JAPAN

GREENHOUSE GAS SOURCE AND	CO2 ⁽¹⁾	CH ₄	N ₂ O	HFCs ⁽²⁾	PFCs ⁽²⁾	SF6 ⁽²⁾	Total
SINK CATEGORIES		÷	co	2 equivalent (Gg			
Total (Net Emissions) ⁽¹⁾	1,189,771.03	23,518.64	24,239.66	13,760.99	7,181.45	5,253.91	1,263,725.6
1. Energy	1,213,919.42	1,286.15	8,012.31				1,223,217.8
A. Fuel Combustion (Sectoral Approach)	1,213,884.96	896.79	8,012.21				1,222,793.9
1. Energy Industries	395,368.37	36.29	1,908.25				397,312.9
2. Manufacturing Industries and Construction	373,169.95	339.74	1,854.57				375,364.2
3. Transport	252,947.16	269.69	3,877.18				257,094.0
4. Other Sectors	192,399.48	251.08	372.20				193,022.7
5. Other	NO	NO	NO				N
B. Fugitive Emissions from Fuels	34.46	389.36	0.11				423.9
 Solid Fuels 	NE,NO	93.86	NE,NO				93.8
Oil and Natural Gas	34.46	295.49	0.11				330.0
2. Industrial Processes	52,110.77	133.88	1,259.55	13,760.99	7,181.45	5,253.91	79,700.5
A. Mineral Products	48,564.63	NA,NO	NA,NO				48,564.6
B. Chemical Industry	3,304.57	117.37	1,259.55	NA	NA	NA	4,681.4
C. Metal Production	241.57	16.50	NO	IE,NE	15.21	1,125.53	1,398.8
D. Other Production	IE						Ι
E. Production of Halocarbons and SF ₆				5,459.50	965.60	812.60	7,237.7
F. Consumption of Halocarbons and $SF_6^{(2)}$				8,301.49	6,200.65	3,315.79	17,817.9
G. Other	NO	NO	NO	NO	NO	NO	NO
3. Solvent and Other Product Use	NA,NE		320.83				320.8
4. Agriculture		15,525.10	11,413.30				26,938.4
A. Enteric Fermentation		7,163.64					7,163.6
B. Manure Management		2,595.28	4,780.26				7,375.5
C. Rice Cultivation		5,690.55					5,690.5
D. Agricultural Soils ⁽³⁾		NA	6,568.87				6,568.8
E. Prescribed Burning of Savannas		NE	NE				N
F. Field Burning of Agricultural Residues		75.62	64.17				139.7
G. Other		NO	NO				NO
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-91,830.97	3.90	20.32				-91,806.7
A. Forest Land	-92,981.66	3.90	0.40				-92,977.3
B. Cropland	259.04	NE,NO	19.93				278.9
C. Grassland	-575.93	NE,NO	NE,NO				-575.9
D. Wetlands	70.02	NE,NO	NE,NO				70.0
E. Settlements	175.29	NE,NO	NE,NO				175.2
F. Other Land	975.90	NO	NO				975.9
G. Other	246.37	NA,NE	NA,NE				246.3
6. Waste	15,571.81	6,569.62	3,213.34				25,354.7
A. Solid Waste Disposal on Land	NA,NE,NO	5,047.67	3,213.34				<u>25,354.7</u> 5,047.6
B. Waste-water Handling	11/1,112,110	1,491.29	1,184.57				2,675.8
C. Waste Incineration	15.055.29	1,491.29	2,016.48				17,088.5
D. Other	516.53	13.87	12.28				542.6
7. Other (as specified in Summary 1.A)	NANO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO	NA,NO

Memo Items: (7)					
International Bunkers	37,506.71	45.52	340.95		37,893.18
Aviation	20,387.64	12.12	200.08		20,599.83
Marine	17,119.07	33.40	140.87		17,293.34
Multilateral Operations	NO	NO	NO		NO
CO ₂ Emissions from Biomass	18,296.50				18,296.50

Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry	1,355,532.43
Total CO ₂ Equivalent Emissions with Land Use, Land-Use Change and Forestry	1,263,725.68

⁽¹⁾ For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

⁽³⁾ Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

9.15. Emissions and Removals in 2004

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2004 Submission 2010 v1.1 JAPAN

GREENHOUSE GAS SOURCE AND	CO2 ⁽¹⁾	CH ₄	N ₂ O	HFCs ⁽²⁾	PFCs ⁽²⁾	SF6 ⁽²⁾	Total
SINK CATEGORIES		•	co	2 equivalent (Gg)			
Total (Net Emissions) ⁽¹⁾	1,189,570.87	23,075.24	24,319.08	10,550.55	7,478.30	5,095.89	1,260,089.93
1. Energy	1,214,020.04	1,261.19	7,791.89				1,223,073.12
A. Fuel Combustion (Sectoral Approach)	1,213,985.05	888.22	7,791.78				1,222,665.05
1. Energy Industries	390,980.48	35.27	1,908.71				392,924.47
 Manufacturing Industries and Construction 	378,732.62	343.53	1,936.77				381,012.9
3. Transport	252,413.86	249.68	3,569.82				256,233.30
4. Other Sectors	191,858.09	259.74	376.49				192,494.32
5. Other	NO	NO	NO				NC
B. Fugitive Emissions from Fuels	34.99	372.96	0.11				408.0
1. Solid Fuels	NE,NO	66.51	NE,NO				66.5
Oil and Natural Gas	34.99	306.45	0.11				341.50
2. Industrial Processes	52,448.98	143.54	1,657.60	10,550.55	7,478.30	5,095.89	77,374.80
A. Mineral Products	48,837.63	NA,NO	NA,NO				48,837.63
B. Chemical Industry	3,353.51	126.53	1,657.60	NA	NA	NA	5,137.64
C. Metal Production	257.84	17.01	NO	IE,NE	14.80	1,111.02	1,400.67
D. Other Production	IE						II
E. Production of Halocarbons and SF ₆				1,469.74	866.84	764.80	3,101.3
F. Consumption of Halocarbons and $SF_6^{(2)}$				9,080.81	6,596.66	3,220.06	18,897.5
G. Other	NO	NO	NO	NO	NO	NO	NC
3. Solvent and Other Product Use	NA,NE		297.54				297.54
4. Agriculture		15,400.02	11,344.85				26,744.83
A. Enteric Fermentation		7,064.07	,				7,064.0
B. Manure Management		2,550.19	4,751.79				7,301.9
C. Rice Cultivation		5,712.00	.,				5,712.00
D. Agricultural Soils ⁽³⁾		NA	6,530.53				6,530.5
E. Prescribed Burning of Savannas		NO	NO				NO
F. Field Burning of Agricultural Residues		73.75	62.53				136.2
G. Other		NO	NO				NC
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-91,922.49	12.12	17.36				-91,893.0
A. Forest Land	-92,975.53	12.12	1.23				-92,962.19
B. Cropland	223.56	NE,NO	16.13				239.6
C. Grassland	-609.54	NE,NO	NE,NO				-609.54
D. Wetlands		,	,				
	64.79	NE,NO	NE,NO				64.7
E. Settlements	198.80	NE,NO	NE,NO				198.8
F. Other Land	939.15	NO	NO				939.1
G. Other	236.27	NA,NE	NA,NE				236.27
6. Waste	15,024.34	6,258.38	3,209.83				24,492.55
A. Solid Waste Disposal on Land	NA,NE,NO	4,774.50					4,774.50
B. Waste-water Handling		1,454.94	1,192.19				2,647.12
C. Waste Incineration	14,517.64	15.38	2,005.62				16,538.65
D. Other	506.70	13.56	12.01				532.28
7. Other (as specified in Summary 1.A)	NA,NO	NA,NO	NA,NO	NA	NA	NA,NO	NA,NC
· · · · (4)							
Memo Items: ⁽⁴⁾	20.112.15	10.00	055.45				20.515
International Bunkers	39,113.12	47.56	355.43				39,516.1
Aviation	21,190.20	12.59	207.95				21,410.75

International Bunkers	39,113.12	47.56	355.43		39,516.11
Aviation	21,190.20	12.59	207.95		21,410.75
Marine	17,922.92	34.97	147.47		18,105.36
Multilateral Operations	NO	NO	NO		NO
CO ₂ Emissions from Biomass	18,188.60				18,188.60

Total CO ₂ Equivalent Emissions without Land Use, Land-Use Change and Forestry	1,351,982.94
Total CO_2 Equivalent Emissions with Land Use, Land-Use Change and Forestry	1,260,089.93

⁽¹⁾ For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

 $^{(3)}$ Parties which previously reported CO2 from soils in the Agriculture sector should note this in the NIR.

9.16. Emissions and Removals in 2005

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2005 Submission 2010 v1.1 JAPAN

GREENHOUSE GAS SOURCE AND	CO2 ⁽¹⁾	CH ₄	N ₂ O	HFCs ⁽²⁾	PFCs ⁽²⁾	SF6 ⁽²⁾	Total
SINK CATEGORIES	CO ₂ equivalent (Gg)						
Total (Net Emissions) ⁽¹⁾	1,199,819.81	22,676.37	23,855.43	10,562.88	7,002.07	4,478.46	1,268,395.02
1. Energy	1,217,723.96	1,268.08	7,754.75				1,226,746.80
A. Fuel Combustion (Sectoral Approach)	1,217,686.36	872.34	7,754.63				1,226,313.34
1. Energy Industries	406,037.97	34.78	2,133.79				408,206.54
2. Manufacturing Industries and Construction	371,219.42	338.70	1,933.72				373,491.84
3. Transport	247,009.69	236.48	3,306.99				250,553.16
Other Sectors	193,419.28	262.39	380.13				194,061.80
5. Other	NO	NO	NO				NO
B. Fugitive Emissions from Fuels	37.60	395.74	0.12				433.46
 Solid Fuels 	NE,NO	73.56	NE,NO				73.56
Oil and Natural Gas	37.60	322.18	0.12				359.90
2. Industrial Processes	53,751.45	133.87	1,299.94	10,562.88	7,002.07	4,478.46	77,228.66
A. Mineral Products	50,430.49	NA,NO	NA,NO				50,430.49
B. Chemical Industry	3,079.03	116.98	1,299.94	NA	NA	NA	4,495.95
C. Metal Production	241.93	16.89	NO	IE,NE	14.80	1,157.31	1,430.93
D. Other Production	IE						IE
E. Production of Halocarbons and SF ₆				816.01	837.49	645.63	2,299.13
F. Consumption of Halocarbons and $SF_6^{(2)}$				9,746.87	6,149.78	2,675.51	18,572.16
G. Other	NO	NO	NO	NA,NO	NO	NO	NA,NO
3. Solvent and Other Product Use	NA,NE		266.41				266.41
4. Agriculture		15,317.13	11,248.51				26,565.64
A. Enteric Fermentation		7,002.30	· · ·				7,002.30
B. Manure Management		2,503.33	4,749.43				7,252.76
C. Rice Cultivation		5,739.10	· · ·				5,739.10
D. Agricultural Soils ⁽³⁾		NA	6,437.81				6,437.81
E. Prescribed Burning of Savannas		NO	NO				NO
F. Field Burning of Agricultural Residues		72.40	61.27				133.66
G. Other		NO	NO				NO
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-86,146.63	9.14	14.19				-86,123.30
A. Forest Land	-87,513.41	9.14	0.93				-87,503.33
B. Cropland	199.03	NE,NO	13.27				212.30
C. Grassland	-667.97	NE,NO	NE,NO				-667.97
D. Wetlands	62.00	NE,NO	NE,NO				62.00
E. Settlements	737.69	NE,NO	NE,NO				737.69
F. Other Land	804.77	NO	NO				804.77
G. Other	231.25	NA,NE	NA,NE				231.25
6. Waste	14,491.04	5,948.15	3,271.62				23,710.81
A. Solid Waste Disposal on Land	NA,NE,NO	4,515.31	5,271.02				4,515.31
B. Waste-water Handling	INA,IVE,IVO	1,404.00	1,162.55				2,566.55
C. Waste Incineration	13,984.22	14.27	2,096.16				16,094.65
D. Other	506.81	14.58	12.91				534.30
7. Other (as specified in Summary 1.A)	NANO	NA,NO	NA,NO	NA	NA	NA,NO	NA,NO
n O mer (us specificu in Summury 1.A)	114,110	111,110	110,110	ITA	MA	1179,110	111,110
Memo Items: ⁽⁴⁾							
International Bunkers	41,564.88	52.15	375.86				41,992.88
Aviation	21,336.33	12.68	209.39				21,558.39

International Bunkers	41,564.88	52.15	375.86		41,992.88
Aviation	21,336.33	12.68	209.39		21,558.39
Marine	20,228.55	39.47	166.47		20,434.49
Multilateral Operations	NO	NO	NO		NO
CO ₂ Emissions from Biomass	21,743.33				21,743.33

Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry	1,354,518.32
Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry	1,268,395.02

⁽¹⁾ For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

⁽³⁾ Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

9.17. Emissions and Removals in 2006

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2006 Submission 2010 v1.1 JAPAN

GREENHOUSE GAS SOURCE AND	CO2 ⁽¹⁾	CH ₄	N ₂ O	HFCs ⁽²⁾	PFCs ⁽²⁾	SF6 ⁽²⁾	Total
SINK CATEGORIES		•	co	2 equivalent (Gg			
Total (Net Emissions) ⁽¹⁾	1,184,811.12	22,264.91	23,866.97	11,737.25	7,315.75	4,910.86	1,254,906.86
1. Energy	1,199,296.45	1,306.48	7,580.70				1,208,183.62
A. Fuel Combustion (Sectoral Approach)	1,199,260.56	897.97	7,580.58				1,207,739.11
1. Energy Industries	394,358.50	36.77	2,122.70				396,517.96
2. Manufacturing Industries and Construction	373,270.57	350.06	1,971.89				375,592.52
3. Transport	243,632.49	220.22	3,111.27				246,963.98
4. Other Sectors	187,998.99	290.93	374.73				188,664.64
5. Other	NO	NO	NO				NC
B. Fugitive Emissions from Fuels	35.89	408.51	0.11				444.5
1. Solid Fuels	NE,NO	68.12	NE,NO				68.12
Oil and Natural Gas	35.89	340.39	0.11				376.39
2. Industrial Processes	53,753.94	133.09	1,624.72	11,737.25	7,315.75	4,910.86	79,475.61
A. Mineral Products	50,462.73	NA,NO	NA,NO	,	,	,	50,462.73
B. Chemical Industry	3,113.66	115.93	1,624.72	NA	NA	NA	4,854.32
C. Metal Production	177.55	17.16	NO	IE,NE	14.82	1,091.08	1,300.62
D. Other Production	IE						II
E. Production of Halocarbons and SF_6				938.25	879.14	1,366.36	3,183.75
F. Consumption of Halocarbons and $SF_6^{(2)}$				10,799.00	6,421.79	2,453.41	19,674.20
G. Other	NO	NO	NO	NA,NO	NO	NO	NA,NC
3. Solvent and Other Product Use	NA,NE	110	242.34	111,110	110	110	242.34
4. Agriculture	INA,ITE	15.218.93	11,256.44				26,475.37
A. Enteric Fermentation		6,999.93	11,230.44				6,999.93
B. Manure Management		2,438.80	4,756.36				7,195.16
C. Rice Cultivation		5,707.49	4,750.50				5,707.49
D. Agricultural Soils ⁽³⁾		NA	6,437.33				6,437.33
E. Prescribed Burning of Savannas		NA	0,437.33 NO				0,437.5. NC
F. Field Burning of Agricultural Residues		72.72	62.75				135.47
G. Other		12.12 NO	02.73 NO				155.47 NC
	01 004 43						
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-81,894.43	2.44	12.06				-81,879.94
A. Forest Land	-83,399.26	2.44	0.25				-83,396.57
B. Cropland	256.71	NE,NO	11.81				268.52
C. Grassland	-682.17	NE,NO	NE,NO				-682.17
D. Wetlands	78.31	NE,NO	NE,NO				78.31
E. Settlements	448.83	NE,NO	NE,NO				448.83
F. Other Land	1,172.81	NO	NO				1,172.81
G. Other	230.34	NA,NE	NA,NE				230.34
6. Waste	13,655.17	5,603.97	3,150.71				22,409.85
A. Solid Waste Disposal on Land	NA,NE,NO	4,202.57					4,202.57
B. Waste-water Handling		1,371.03	1,162.77				2,533.81
C. Waste Incineration	13,132.81	13.29	1,972.81				15,118.91
D. Other	522.36	17.08	15.13				554.57
7. Other (as specified in Summary 1.A)	NA,NO	NA,NO	NA,NO	NA	NA	NA,NO	NA,NO
Memo Items: ⁽⁴⁾							
International Bunkers	38,991.92	48.99	352.50				39,393.41
Aviation	19,964.61	11.87	195.93				20,172.40
Marine	19,027.31	37.12	156.58				19,221.01
Multilateral Operations	NO	NO	NO				NO

M arine	19,027.31	37.12	156.58				19,221.01	
Multilateral Operations	NO	NO	NO				NO	
CO ₂ Emissions from Biomass	21,975.94						21,975.94	
Total CO ₂ Equivalent Emissions without Land Use, Land-Use Change and Forestry								

Total CO₂ Equivalent Emissions with Land Use, Land-Use Change and Forestry 1,254,906.86

⁽¹⁾ For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

 $^{(3)}$ Parties which previously reported CO2 from soils in the Agriculture sector should note this in the NIR.

9.18. Emissions and Removals in 2007

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2007 Submission 2010 v1.1 JAPAN

GREENHOUSE GAS SOURCE AND	CO2 ⁽¹⁾	CH ₄	N ₂ O	HFCs ⁽²⁾	PFCs ⁽²⁾	SF6 ⁽²⁾	Total
SINK CATEGORIES	002		co	2 equivalent (Gg			
Total (Net Emissions) ⁽¹⁾	1,218,760.28	21,747.85	22,582.87	13,273.00	6,411.99	4,407.45	1,287,183.45
1. Energy	1,232,942.56	1,269.34	7,515.51				1,241,727.42
A. Fuel Combustion (Sectoral Approach)	1,232,905.03	852.87	7,515.39				1,241,273.30
1. Energy Industries	446,857.86	42.19	2,191.15				449,091.21
2. Manufacturing Industries and Construction	370,203.05	353.42	2,014.29				372,570.76
3. Transport	237,757.13	205.18	2,953.25				240,915.56
4. Other Sectors	178,086.99	252.08	356.70				178,695.77
5. Other	NO	NO	NO				NO
B. Fugitive Emissions from Fuels	37.53	416.47	0.12				454.12
1. Solid Fuels	NE,NO	51.48	NE,NO				51.48
2. Oil and Natural Gas	37.53	364.99	0.12				402.64
2. Industrial Processes	53,622.10	134.15	860.18	13,273.00	6,411.99	4,407.45	78,708.89
A. Mineral Products	50,217.04	NA,NO	NA,NO				50,217.04
B. Chemical Industry	3,193.05	116.85	860.18	NA	NA	NA	4,170.08
C. Metal Production	212.02	17.30	NO	IE,NE	14.69	1,089.34	1,333.35
D. Other Production	IE					,	IE
E. Production of Halocarbons and SF_6				497.61	783.02	1,198.82	2,479.45
F. Consumption of Halocarbons and $SF_6^{(2)}$				12,775.40	5,614.28	2,119.29	20,508.96
G. Other	NO	NO	NO	NA,NO	NO	NO	NA,NO
3. Solvent and Other Product Use	NA,NE	NO	159.95	111,110	110	110	159.95
4. Agriculture	TTA, TTE	15,074.04	11,071.57				26,145.60
A. Enteric Fermentation		6,974.46	11,0/1.37				6,974.46
B. Manure Management		2,374.32	4,773.28				7,147.61
C. Rice Cultivation		5,652.17	4,775.28				5,652.17
D. Agricultural Soils ⁽³⁾		5,052.17 NA	6,233.27				6,233.27
E. Prescribed Burning of Savannas		NA	0,255.27 NO				0,255.27 NO
F. Field Burning of Agricultural Residues		73.09	65.01				138.10
· · ·		73.09 NO					
G. Other	01.01.1.1.4		NO				NO
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-81,814.46	2.04	8.90				-81,803.52
A. Forest Land	-82,873.48	2.04	0.21				-82,871.23
B. Cropland	242.63	NE,NO	8.70				251.33
C. Grassland	-674.15	NE,NO	NE,NO				-674.15
D. Wetlands	134.94	NE,NO	NE,NO				134.94
E. Settlements	230.71	NE,NO	NE,NO				230.71
F. Other Land	799.93	NO	NO				799.93
G. Other	324.96	NA,NE	NA,NE				324.96
6. Waste	14,010.08	5,268.28	2,966.75				22,245.11
A. Solid Waste Disposal on Land	NA,NE,NO	3,909.38					3,909.38
B. Waste-water Handling		1,328.75	1,141.75				2,470.50
C. Waste Incineration	13,448.88	12.40	1,809.28				15,270.56
D. Other	561.20	17.75	15.72				594.67
7. Other (as specified in Summary 1.A)	NA,NO	NA,NO	NA,NO	NA	NA	NA,NO	NA,NO
							-
Memo Items: ⁽⁴⁾							
International Bunkers	37,230.51	47.81	335.79				37,614.11
Aviation	18,358.58	10.91	180.16				18,549.66
Marine	18,338.58	36.90	155.63				19,064.45
Multilateral Operations	NO	NO	NO				17,004.45 NO
CO ₂ Emissions from Biomass	22,957.60	110	10				22,957.60
COL LAINSSIONS HOM DIGMASS	22,757.00						22,757.00

 Total CO2 Equivalent Emissions without Land Use, Land-Use Change and Forestry
 1,368,986.97

 Total CO2 Equivalent Emissions with Land Use, Land-Use Change and Forestry
 1,287,183.45

(1) For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

⁽³⁾ Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

⁽⁴⁾ See footnote 8 to table Summary 1.A.

9.19. Emissions and Removals in 2008

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS (Sheet 1 of 1)

Inventory 2008 Submission 2010 v1.1

JAPAN

GREENHOUSE GAS SOURCE AND	CO2 ⁽¹⁾	CH ₄	N ₂ O	HFCs ⁽²⁾	PFCs ⁽²⁾	SF6 ⁽²⁾	Total
SINK CATEGORIES		÷	cò	2 equivalent (Gg		•	
Total (Net Emissions) ⁽¹⁾	1,135,598.76	21,304.17	22,469.24	15,265.42	4,616.01	3,761.22	1,203,014.83
1. Energy	1,152,023.11	1,243.11	7,188.80				1,160,455.02
A. Fuel Combustion (Sectoral Approach)	1,151,985.27	834.69	7,188.68				1,160,008.64
1. Energy Industries	419,515.20	40.58	2,127.78				421,683.56
2. Manufacturing Industries and Construction	336,374.80	341.44	1,945.09				338,661.33
3. Transport	227,980.07	189.01	2,773.47				230,942.56
4. Other Sectors	168,115.20	263.66	342.33				168,721.20
5. Other	NO	NO	NO				NC
B. Fugitive Emissions from Fuels	37.84	408.42	0.12				446.38
1. Solid Fuels	NE,NO	45.83	NE,NO				45.83
Oil and Natural Gas	37.84	362.59	0.12				400.55
2. Industrial Processes	50,283.91	121.49	1,262.15	15,265.42	4,616.01	3,761.22	75,310.20
A. Mineral Products	47,384.08	NA,NO	NA,NO	,	,	,	47,384.08
B. Chemical Industry	2,744.06	106.46	1,262.15	NA	NA	NA	4,112.67
C. Metal Production	155.77	15.03	NO	IE,NE	14.67	652.47	837.94
D. Other Production	IE						IF
E. Production of Halocarbons and SF ₆				701.41	523.80	1,288.21	2,513.42
F. Consumption of Halocarbons and $SF_6^{(2)}$				14,564.01	4,077.55	1,820.54	20,462.09
G. Other	NO	NO	NO	NA,NO	NO	NO	NA,NC
3. Solvent and Other Product Use	NA,NE		160.44				160.44
4. Agriculture		14,959.90	10,884.99				25,844.89
A. Enteric Fermentation		6,944.81	10,004.77				6,944.81
B. Manure Management		2,327.53	4,767.61				7,095.15
C. Rice Cultivation		5,613.73	.,				5,613.73
D. Agricultural Soils ⁽³⁾		NA	6,050.08				6,050.08
E. Prescribed Burning of Savannas		NO	NO				NC
F. Field Burning of Agricultural Residues		73.84	67.29				141.13
G. Other		NO	NO				NC
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-78,838.97	21.52	9.57				-78,807.88
A. Forest Land	-79,934.29	21.52	2.18				-79,910.58
B. Cropland	223.33	NE,NO	7.38				230.72
C. Grassland	-743.73	NE,NO	7.58 NE,NO				-743.73
	-743.73 92.06	,	,				
D. Wetlands		NE,NO	NE,NO				92.06
E. Settlements	830.50	NE,NO	NE,NO				830.50
F. Other Land	387.51	NO	NO				387.51
G. Other	305.63	NA,NE	NA,NE				305.63
6. Waste	12,130.71	4,958.15	2,963.30				20,052.15
A. Solid Waste Disposal on Land	NA,NE,NO	3,591.44					3,591.44
B. Waste-water Handling		1,338.06	1,163.27				2,501.33
C. Waste Incineration	11,600.29	12.15	1,785.41				13,397.85
D. Other	530.41	16.50	14.62				561.53
7. Other (as specified in Summary 1.A)	NA,NO	NA,NO	NA,NO	NA	NA	NA,NO	NA,NO
Memo Items: ⁽⁴⁾							
International Bunkers	34,821.13	44.19	314.39				35,179.71
Aviation	17,517.99	10.41	171.92				17,700.32
Marine	17,303.14	33.78	142.48				17,479.40
Multilateral Operations	NO	NO	NO				NO
CO ₂ Emissions from Biomass	21,597.08						21,597.08
	Tot	al CO2 Equivale	nt Emissions w	ithout Land Use, L	and-Use Change	and Forestry	1,281,822.71
		- 1		s with Land Use, L	ě	•	1,203,014.83

⁽¹⁾ For CO₂ from Land Use, Land-use Change and Forestry the net emissions/removals are to be reported. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

(2) Actual emissions should be included in the national totals. If no actual emissions were reported, potential emissions should be included.

⁽³⁾ Parties which previously reported CO₂ from soils in the Agriculture sector should note this in the NIR.

⁽⁴⁾ See footnote 8 to table Summary 1.A.

Annex 10. Japan's Information Required under Article 7, Paragraph 1 of

the Kyoto Protocol

The government of Japan submits this information in accordance with paragraph 2, Decision 15/CMP.1. Correspondence between requirement and contents of this information are shown in the table below.

Related part of guidelines for information under KP 7.1	Section of this report	page			
Section D	10.1. Greenhouse Gas Inventory Information	Annex 10-1			
paragraph 4	10.1.1. Steps taken to improve estimates in areas that were previously adjusted				
paragraphs 5 - 9	10.1.2. Information of Article 3, paragraph 3 and paragraph 4				
Section E					
paragraphs 11	paragraphs 11 10.2.1. Information on ERU, CER, t-CER, 1-CER, AAU and RMU				
paragraphs 12-17	aragraphs 12-17 10.2.2. Information on discrepancy and other issues				
paragraph 18	10.2.3. Calculation of its commitment period reserve in accordance with decision 11/CMP.1 (Article 17 of the Kyoto Protocol)				
Section F	10.3. Changes in national systems in accordance with Article 5, paragraph 1	Annex 10-2			
Section G	10.4. Changes in national registries	Annex 10-2			
	10.4.1 Summary of changes made on national registry of Japan in 2009				
	10.4.2 Information relevant to the changes made on national registry of Japan	Annex 10-3			
Section H	10.5. Minimization of adverse impacts in accordance with Article 3, paragraph 14	Annex 10-4			

10.1. Greenhouse Gas Inventory Information

10.1.1. Steps taken to improve estimates in areas that were previously adjusted

Japan has not taken any step on this issue because there was no specific area that was previously adjusted in the initial review and the annual inventory review for the 2007 and 2009 submissions.

10.1.2. Information of Article 3, paragraph 3 and paragraph 4

See the information of Article 3, paragraphs 3 and 4 (Annex 11) that Japan submitted according to the paragraph 2 of Decision 15/CP10.

10.2. Information on ERU, CER, t-CER, l-CER, AAU and RMU

10.2.1. Information on ERU, CER, t-CER, l-CER, AAU and RMU

For information on ERUs, CERs, t-CERs, 1-CERs, AAUs and RMUs in Japan's National Registry, see the annex "Standard Electric Format for Reporting of Information on Kyoto Protocol Units" submitted on the basis of Decision 14/CMP. 1.

10.2.2. Information on discrepancy and other issues

There is no phenomenon on discrepancy or other issues to be reported under paragraphs 12 to 17 in Decision 13/CMP.1.

10.2.3. Calculation of its commitment period reserve in accordance with decision 11/CMP.1 (Article 17 of the Kyoto Protocol)

Japan's commitment period reserve is 5,335,431,899 t-CO₂ equivalent, the same as the value reported in the previous submission.

10.3. Changes in national systems in accordance with Article 5, paragraph 1

In Japan's national system, there has been no change that shall be reported under paragraph 21 of Decision 15/CMP.1 since the previous submission.

10.4. Changes in national registries

10.4.1. Summary of changes made on national registry of Japan in 2009

Reporting Items	Descriptions of Changes
15/CMP.1, annex II, para 32. (a)	Contact of the registry administrator (RSA) of Japan was changed as
Change of name or contact	follows:
	(Before) Mr. Reo Kawamura, reo_kawamura@env.go.jp
	(After) Mr. Yasushi Ninomiya, yasushi_ninomiya@env.go.jp
15/CMP.1, annex II, para 32. (b)	No change
Change of cooperation	
arrangement	
15/CMP.1, annex II, para 32. (c)	No change
Change to database or the	
capacity of national registry	
15/CMP.1, annex II, para 32. (d)	No change
Change of conformance to	
technical standards	N 1
15/CMP.1, annex II, para 32. (e)	No change
Change of procedures to	
minimize dicrepancies	No shares
15/CMP.1, annex II, para 32. (f)	No change
Change of security measures	Information on which halfings and there stimp is made withinks
	· · ·
	•
15/CMP.1, annex II, para 32. (g) Change of a list of publicly accessible information	Information on unit holdings and transactions is made publicly available on the basis of SEF to meet the requirement specified in decision 13/CMP.1. In April 2009, the information for 2008 was published. The following information is not published due to confidentiality concerns: - Unit holdings at an individual account level

	- Identity of accounts to which Japan's registry transferred units and those from which it acquired units. In addition, for better readability, information on units is not associated with their respective serial numbers.
15/CMP.1, annex II, para 32. (h)	No change
Change of the internet address	
15/CMP.1, annex II, para 32. (i)	No change
Change of measures for ensuring	
data integrity	
15/CMP.1, annex II, para 32. (j)	No change
Change of test results	

10.4.2. Information relevant to the changes made on national registry of Japan

- In March 2009, a new function which allows account holders to obtain notifications for the completion of retirement, cancellation, and replacement on the Kyoto units that the account holders transferred to the government holding account was released. This function also allows Japan's registry administrators to refer to the history of these notifications having been obtained by the account holders. This function does not require international communications; therefore, there is no impact on the functions of the international transaction log (ITL) and other national registries.
- In March 2009, a new function to allow Japan's registry administrators to create an XML file containing information on the unit holdings and transactions, which is necessary for the preparation of the Standard Electronic Format (SEF), was added. This change was made on the basis of the change request approved through the relevant RSA process introduced by the ITL Administrator (UNFCCC secretariat). This function does not require international communications; therefore, there is no impact on the functions of the ITL and other national registries.
- Public information on the unit holdings and transactions conducted was updated in April 2009, on the basis of the SEF for 2008, for the purpose of meeting the requirement specified in decision 13/CMP.1. Some information, which is requested to be made publicly available in decision 13/CMP.1, has not been made so due mostly to confidentiality concerns.
- In April 2009, some documents of the Data Exchange Standards for registry systems under the Kyoto Protocol (DES), which were prepared by the secretariat of the UNFCCC, were revised. The reasons are that the asynchronous responses to out-of-sequence messages became unnecessary, and that the place for describing information relevant to account management was changed. The revised documents and their impacts on Japan's registry are described as follows:
 - The DES main text (version 1.1.2) was released. There is no change made on Japan's registry in relation to the release.
 - The DES annex B (Web Services and Functions for Transaction Processing, version 1.1.2) was released. There is no change made on Japan's registry in relation to the release.
 - The DES annex E (List of checks and Response Codes for Message Processing, version 1.1.5) was released. Explanation on deleting asynchronous responses to out-of-sequence messages and reference to COP and CMP decisions relevant to each response code were added, and their formats were revised. There is no change made on Japan's registry in

relation to the release.

- The DES annex K (Description Language (WSDL) Documentation, version 1.1.1) was released. Information relevant to account management was deleted. There is no change made on Japan's registry in relation to the release.
- The DES annex L (WSDL Examples and Instructions, version 1.1.1) was released. Information relevant to account management was deleted. There is no change made on Japan's registry in relation to the release.
- The DES annex M (EU-ETS Supplementary Scheme Web Service Documentation, version 1.0) was released. Information relevant to account management and details of Generic web service were newly prepared as annex M. There is no change made on Japan's registry in relation to the release.
- In April 2009, information on Japan's registry administrator was changed.
- In November 2009, a new function which allows account holders to prepare applications for changing their account information registered in the national registry system was added. This function does not require international communications; therefore, there is no impact on the functions of the ITL and other national registries.
- In November 2009, a new function to export the above mentioned applications to the registry system for its processing was added. This function does not require international communications; therefore, there is no impact on the functions of the ITL and other national registries.
- In November 2009, a new function to send, when a transaction is completed, an e-mail to notify the account holders within the Japanese registry system involved in the transaction of the completion. This function does not require international communications; therefore, there is no impact on the functions of the ITL and other national registries.
- In November 2009, some documents of DES were revised in order to clarify the process of time-out. The revised documents and their impacts on Japan's registry are described as follows:
 - The DES main text (version 1.1.3) was released. The process of time-out was clarified. There is no change made on Japan's registry in relation to the release.
 - The DES annex E (List of checks and Response Codes for Message Processing, version 1.1.6) was released. Some response codes were deleted, and explanation on response codes was revised. There is no change made on Japan's registry in relation to the release.

10.5. Minimization of adverse impacts in accordance with Article 3, paragraph 14

Under the Article 3, paragraph 14 of the Kyoto Protocol, Annex I countries are to strive to implement the commitments mentioned in Article 3, paragraph 1 in such a way as to minimize adverse social, environmental and economic impacts on developing country Parties, particularly those identified in Article 4, paragraph 8 and 9, of the Convention.

However, we were unable to assess the degree to which such efforts undertaken by Japan led to the minimization of the types of adverse effects described above, as the methods to evaluate these efforts are currently under discussion internationally, and Japan hopes the future progress of discussions on such evaluation methods.

Annex 11. Supplementary Information on LULUCF activities under

Article 3, Paragraphs 3 and 4 of the Kyoto Protocol

11.1. Summary of removal related trends, and emission and removals from KP LULUCF activities

Japan reports supplementary information on Afforestation/Reforestation, Deforestation, Forest management and Revegetation as LULUCF activities under Article 3, Paragraphs 3 and 4 of the Kyoto Protocol. Table A 11-1 shows the activity coverage and other information relating to activities under Article 3.3 and elected activities under Article 3.4. The net removals in FY2008 by those activities are 44,066Gg-CO₂ e.q. (Table A11-2).

Table A 11-1 Activity coverage and other information relating to activities under Article 3.3 and elected activities under Article 3.4 (CRF-Table NIR 1)

		Change in carbon pool reported ⁽¹⁾				Greenhouse gas sources reported ⁽²⁾							
Activity		Above- ground biomass	Below- ground biomass		Dead wood	Soil	Fertilizati on ⁽³⁾	Drainage of soils under forest managem	Disturbance associated with land- use	Liming		mass burni	ng ⁽⁴⁾
							N ₂ O	N ₂ O	N ₂ O	CO ₂	CO2	CH ₄	N ₂ O
	Afforestation and Reforestation	R	R	R	R	R	IE			NE	IE	R	R
activities	Deforestation	R	R	R	R	R			R	R	NO	NO	NO
	Forest Management	R	R	R	R	R	IE	NO		NE	IE	R	R
Article 3.4	Cropland Management	NA	NA	NA	NA	NA			NA	NA	NA	NA	NA
activities	Grazing Land Management	NA	NA	NA	NA	NA				NA	NA	NA	NA
	Revegetation	R	R	R	IE	NR				R	NO	NO	NO

Table A11-2 Accounting summary for activities under Article 3.3 and 3.4 of the Kyoto Protocol

Act	ivities	1990(BY)	2008	Ассон	Accounting quantity (reference)	
		GgCO ₂ eq	GgCO ₂ eq	GgCO ₂ eq	note	GgCO ₂ eq
AR			-392			-392
D			2,431			2,431
FM			-45,389			
	ARD net emission/ offset		2,039	-165,000	limit of FM offset×5	-2,039
	FM Cap			-238,333	FM Cap×5	-43,350
RV		-46	-716	-46	BY removal×1	-671
Tot	al		-44,066			-44,020

*The removals by forest management in FY2008 after application of 3.3 offset are lower than the upper limit (13 Mt-C) given in the Annex to decision 16/CMP.1.

*Methodologies for estimation and accounting of Article 3.3 and 3.4 activities are continuously reviewed. The values in Table A11-2 are estimated by using the current methodologies, and are only reported and not accounted for in the 2010 submission since Japan elected entire commitment period accounting. The issuance of removal units from LULUCF activities under the Kyoto Protocol is to be performed at the end of the first commitment period.

*Total values and results of summing up each element are not always same because of display digit.

11.2. General information

11.2.1. Definition of forest and any other criteria

The Japan's definitions of forest are identified as the following, in accordance with decision 16/CMP.1 and the requirement from GPG-LULUCF

Minimum value for forest area:	0.3 [ha]
Minimum value for tree crown cover:	30 [%]
Minimum value for tree height:	5 [m]
Minimum value for forest width:	20 [m]

Forest with minimum values for forest area, tree crown cover and forest width (mentioned above) are consistent with forests under the existing forest planning system in Japan. Although minimum value for tree height is not defined under the existing system, these forests usually reach tree height of 5m at maturity in situ under the composition of tree species and climate condition in Japan. Each prefecture has surveyed and compiled information on resources of forests under the forest planning system into Forest Registers, which is primarily intended to prepare for establishing forest plans. Therefore, forests under the forest planning system are considered as forests under the Kyoto Protocol and Forest registers are suitable as basic data source for reporting. This is the same concept as used for reporting of LULUCF forest sector under the Convention.

Definitions of forest mentioned above are consistent with those in the Global Forest Resources Assessment 2005 (FRA2005) by Food and Agriculture Organization of the United Nation (FAO) in 2005 (Table A11-3).

Category	Definition
Forest	Land on which trees and/or bamboo grow collectively, together with those trees and bamboo, or any other land that is provided for collective growth of trees and/or bamboo which are 0.3 hectares or more. Lands that are utilized mainly for agriculture, residential use or other similar purposes, and trees and bamboo on these lands are not included.
Forest with standing trees	Forest that has tree crown cover of 30 percent or higher (including young stands).
Forest with less standing trees (Cut-over forests, lesser stocked forests)	Forest that does not fall under "forest with standing trees" or "bamboo forest".
Bamboo forest	Forest that does not fall under "forest with standing trees" and is mainly dominated by bamboo (excluding bamboo grass).

Table A11-3 Japan's forest category and definition used in reporting to FAO

Before 1996, Japan classified forests with standing trees into two sub-categories, "Intensively managed forest" and "Semi-natural forest" in Forestry Status Survey. Since 2002, Japan has introduced new sub-categories which are "Ikusei-rin forest" and "Tennensei-rin forest". In these new sub-categories, degrees of human-induced activities in forest management and stratification of forest have been taken into account. In ikusei-rin forests, intensively managed forests regenerated mainly by planting after felling and semi-natural forests regenerated by supplementary works such as site preparation are included. Definitions of intensively managed forest, semi-natural forest, ikusei-rin forest and tennensei-rin forest are shown below.

ikusei-mi forest and tennensei-mi forest									
Sub-categorie	es by regeneration method	Sub-cate	egories by management types						
Intensively	Forest regenerated by	Ikusei-rin	Forest where practices for						
managed	planting and so on.	forest	establishment and maintenance of						
forest			single-storied forests						
			("Ikusei-tansou-rin" practices) have						
			been carried out after clear						
			cutting ,or where forest practices for						
			establishment and maintenance of						
			multi-storied forests						
			("Ikusei-fukusou-rin" practices)						
Semi-natural	Forest which is not		have been carried out after selective						
forest	classified as intensively		cutting (including temporally						
	managed forest.		single-storied forest in practice).						
		Tennensei-rin	Forest where practices which						
		forest	establishment and maintenance of						
			forests mainly depending on natural						
			power are carried out. These						
			practices include logging						
			prohibition for land and natural						
			environment conservation and						
			preservation of the species.						

Table A11-4	Definitions of intensively managed forest, semi-natural forest,
	ikusei-rin forest and tennensei-rin forest

11.2.2. Elected activities under Article 3, paragraph 4 of the Kyoto Protocol

Japan elected Forest Management and Revegetation defined by decision 16/CMP.1 in paragpaph 6 of the Annex, as "additional human-induced activities related to changes in greenhouse gas emissions by sources and removals by sinks in the agricultural soils and the land-use change and forestry categories" defined by Article 3, paragraph 4 of the Kyoto Protocol.

11.2.2.1. Forest Management

Forest Management is defined by decision 16/CMP.1 in paragraph 1(f) of the Annex as "a system of practices for stewardship and use of forest land aimed at fulfilling relevant ecological (including biological diversity), economic and social functions of the forest in a sustainable manner". Japan interprets the definition of "Forest Management" as the following with recalling GPG-LULUCF which the party is requested to use in accordance with decision 16/CMP.1, paragraph 2

- In "Ikusei-rin forest", activities for "Forest Management" are appropriate forest practices including regeneration (land preparation, soil scarification, planting and etc.), tending (weeding, pre-commercial cutting and etc.), thinning and harvesting which have been carried out since 1990.
- In "Tennensei-rin forest" activities for "Forest Management" are practices for protection or conservation of forests including controlling logging activities and land-use change which have been carried out by laws.

11.2.2.2. Revegetation

Revegetation is defined by decision 16/CMP.1 ANNEX paragraph 1(e) as "a direct human-induced activity to increase carbon stocks on sites through the establishment of vegetation that covers a minimum area of 0.05 hectares and does not meet the definitions of afforestation and reforestation".

Japan interprets the definition of "Revegetation" as the following with recalling GPG-LULUCF.

• Practices for creation of "park and green space", "public green space", and "private green space guaranteed by administration" which have been carried out in settlements since 1990¹. Activities which cover less than an area of 0.05 hectares or meet the definitions of afforestation and reforestation are not included in "revegetation".

11.2.3. Description of how the definitions of each activity under Article 3.3 and each elected activity under Article 3.4 have been implemented and applied consistently over time

The forest definition explained in section 11.2.1 is not changed over time. Same forest definition is used for Afforestation and Reforestation (AR) and Deforestation (D) under Article 3.3 as well as Forest management (FM) under Article 3.4. The definitions of Forest management and Revegetation explained in section 11.2.2 above have been implemented and applied consistently over time.

11.2.4. Description of precedence conditions and/or hierarchy among Article 3.4 activities, and how they have been consistently applied in determining how land was classified

Japan interprets that forest management activities are occurred in only forest land and revegetation activities are occurred in only settlements and wetlands. Therefore, there is no overlapping between forest management and revegetation.

11.3. Land-related information

11.3.1. Spatial assessment unit used for determining the area of the units of land under Article **3.3**

In accordance with the definition of forest explained in section 11.2.1, Japan determines spatial assessment unit used for determining the area of the units of land under Article 3.3 as 0.3 [ha].

11.3.2. Methodology used to develop the land transition matrix

11.3.2.1. Description of land transition matrix (CRF-NIR table 2)

Table A11-5 shows the land transition matrix related to the activities under Article 3.3 and Article 3.4. Forest management area in Japan is estimated by using the narrow approach concept which described in section 4.2.7.1, Chapter 4 of GPG-LULUCF. Therefore, new forest management area is identified every year due to the progress of forest management practices in managed forest which previously had not been categorized as forest management area. This area appears as the land transition from "Other" to "Forest Management" in table A11-5. In a similar fashion, sites where revegetation practices are newly performed become new RV area and appears as the land transition from "Other" to "Revegetation" in table A11-5.

While there are some cases that activity categories of land before transition cannot be separated at the moment (e.g. deforestation in FM land and deforestation in non-FM land), transition from "Other" to certain activities is temporarily used for such a case in this table.

¹ Those RV practices are occurred in Settlements category (and Wetlands category for a small proportion of activities) of the LULUCF land use categories for conventional reporting.

/	то	Article 3.3	3 activities						
FROM		Afforestation and	Deforestation	Forest Management	Cropland Management	Grazing Land Management	Revegetation (if elected)	Other	Total
				(if elected)	(if elected)	(if elected)	(Il elected)		
					(kha)				
Article 3.3 activities	Afforestation and Reforestation	27.49	0.00						27.49
activities	Deforestation		294.42						294.42
	Forest Management (if elected)		IE	13071.75					13071.75
Article 3.4 activities	Cropland Management ⁽⁴⁾ (if elected)	-	-		-	-	-		0.00
activities	Grazing Land Management ⁽⁴⁾ (if elected)	-	-		-	-	-		0.00
	Revegetation ⁽⁴⁾ (if elected)	0.00			-	-	69.65		69.65
Other		0.05	6.68	570.40	-	-	2.33	23747.24	24326.70
Total are	a	27.54	301.10	13642.15	0.00	0.00	71.98	23747.24	37790.00

Table A11-5 Land Transition Matrix of Kyoto Protocol Activities (CRF-Table NIR 2)

11.3.2.2. Overview of the procedures to estimate emissions and removals

This section gives an overview of the procedures to estimate emissions and removals for AR, D and FM activities in Japan.

For AR and D activities, emissions and removals are estimated in AR and D areas which are firstly detected for each prefecture based on sample survey data.

For FM activity, emissions and removals are estimated by firstly subtracting those in AR land from those in all managed forests for each prefecture, and then applying FM ratio determined by sample survey to the remaining emissions and removals.

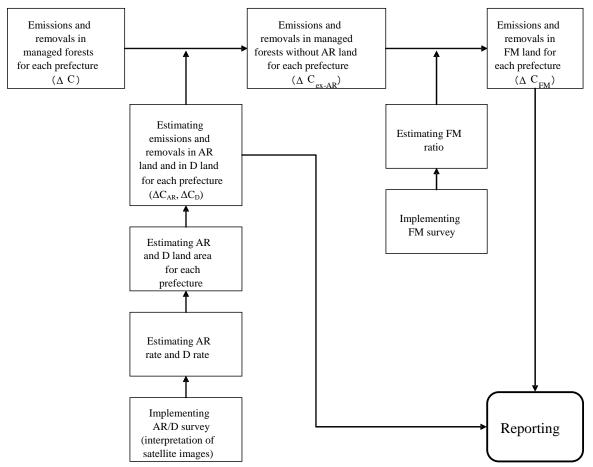


Figure A 11-1 The procedures to estimate emissions and removals for AR, D and FM activities

11.3.2.3. Afforestation/Reforestation and Deforestation

11.3.2.3.a. Procedure

Japan identifies change of forest cover in each sample plot by using orthophotos at the end of 1989 and recent satellite images, taking into account spatial assessment unit [0.3 ha]. Plots identified as non-forest land converted to forest land due to human-induced forestation practice are categorized as AR plot, and plots identified as forest land converted to non-forest land are categorized as D plot (Hayashi et al., 2008). Satellite images of the country are updated and interpreted half-and-half in two years (e.g. satellite images of 2005 were interpreted in FY2006 and FY2007), and AR and D land areas are calculated based on the result of the interpretation. Detailed procedures are as follows:

- 1. Set the plot points on the whole country in a grid, interval of which is 500m (approximately 1,400 thousand plots).
- 2. Detect land conversion between forest and no-forest at each plot point. Plots which are difficult for interpretation due to some reasons will be excluded from "available sample plots" which are used for following estimation.
- 3. Estimate AR rate for FY1990-FY2008: AR plots number for FY1990-FY2007 is calculated by using orthophotos at the end of 1989 and satellite images of 2005 and 2007. AR plots number for FY2008 is estimated to be equal to half the AR plots number during FY2005-FY2007 (two years), which is the difference in results of the interpretation of orthophotos and satellite images of 2005 and 2007. AR rate for FY1990-FY2008 is estimated through dividing those two (FY1990-FY2007 and FY2008) AR plots numbers by "available sample plots" number in each time period and then summating.
- 4. Estimate D rate for FY1990-FY2008: D plots number for each fiscal year during FY1990-FY2007 is estimated by multiplying the total D plots number during FY1990-FY2007 which is obtained by using orthophotos at the end of 1989, the satellite images of 2005 and 2007 by land conversion ratio in each fiscal year provided by statistics. D plots number for FY2008 is estimated to be equal to half the number of D plots number during FY2005 to FY2007 (two years), which is the difference in results of the interpretation of orthophotos and satellite images of 2005 and 2007. D rate for FY1990-FY2008 is estimated through dividing the number of those two (FY1990-FY2007 and FY2008) D plots numbers by "available sample plots" number in each time period and then summating. The land use status after deforestation is analyzed at each plot point and this data is used for the estimation of new land use status in deforestation land.
- Calculate AR land area during FY1990-FY2008 by multiplying land area for each prefecture by AR rate. In the same way, calculate D land area for each prefecture during FY1990-FY2008 by multiplying land area for each prefecture by D rate.

Although Forest Registers are used as basic data source for reporting since forests under the forest planning system are considered as forests under the Kyoto Protocol in Japan, orthophotos and satellite images are used for AR and D detection. This is because that there are difficulties for data in Forest Registers in reconstructing the forest status during 1990-2005 and in distinguishing AR which are direct human-induced activities from forest expansion due to other causes.

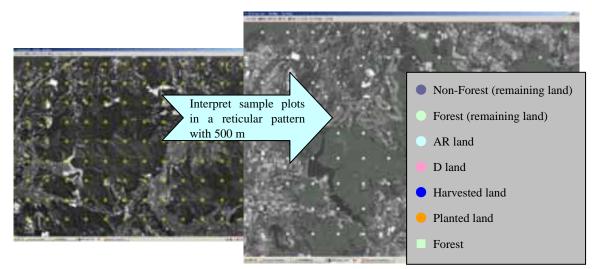


Figure A11-2 ARD land identification by interpreting remote sensing images

11.3.2.3.b. Data

Japan detected the ARD land area by using the following data.

	Resolution	Data format
Ortho air-photo (at the end of 1989)	1 [m]	Raster
SPOT-5/HRV-P(after 2005 and 2007)	2.5 [m]	Raster

11.3.2.3.c. Land-use change in deforested land

Japan determined the area of D land in accordance with the procedures mentioned in section 11.3.2.3.a. In addition, since these procedures do not cover continuous tracking of land-use change at D land, the following method is examined to complement tracking land-use change at D land.

Japan has compiled land-use mesh data "Digital National Land Information" continuously over time. Although this mesh data could not be used directly to monitor land-use change in the plots identified as D land because this mesh data is not consistent with the system mentioned in section 11.3.2.3.a. (e.g. definition, resolution and land identification method), it can detect overall tendency of land use transition at D plot. The result of the analysis of using this mesh data shows that deforestation land is hardly converted to other land use again. Therefore, Japan assumed that the status of land use after deforestation will continue to be the same and secondary land use change will not occur.

11.3.2.4. Forest Management

11.3.2.4.a. Procedure

Japan estimated FM land area for Ikusei-rin forests and Tennensei-rin forests according to the following procedures.

a) Ikusei-rin forests

1. Implement field survey in private forests and national forests to identify lands which have been subject to forest management activities (the number of sample plots are systematically distributed by tree species and regions; then, sample plots are selected randomly from the National Forest Resource Database).

Survey item: current status of forests (tree species, stand age, the number of trees, etc), status and contents of practices since 1990, etc.

2. Estimate ratio of these FM land area (FM ratio) according to the survey findings.

Sub-category	/ Tree species	Region	Private forest	National forest
	ī	Tohoku, Kita-kanto, Hokuriku, Tosan	0.64	0.78
T , 1	Japanese ceder	Minami-kanto, Tokai	0.54	0.75
Intensively		Kinki, Chugoku, Shikoku, Kyusyu	0.58	0.77
managed forest	Hinoki cypress	Tohoku, Kanto, Chubu	0.61	0.75
Totest	HIIIOKI Cypress	Kinki, Chugoku, Shikoku, Kyusyu	0.61	0.81
	Japanese larch	All	0.62	0.75
	Other	All	0.47	0.77
Semi-natur	al forest / All	All	0.22	0.50

 Table A11-7
 FM ratio for Ikusei-rin forests (private forests / national forests)

* Data at 31 March 2009. About 14,000 sample plots are located around the country.

* These regions are generally used broad boundaries which aggregated several prefectures.

3. After AR land area for each prefecture is subtracted from total forest area, the remaining forest area for each prefecture is multiplied by FM ratio for each tree species, regions and age class.

b) Tennensei-rin forests

For Tennensei-rin forests, identify forest lands subject to practices for protection or conservation of forests including controlling logging activities and land-use change which have been carried out by laws by using the National Forest Resources Database.

Protected / Conserved forest type	Private forest	National forest	Total
Protection Forest	2,461	4,194	6,656
Area for Conservation facility installation project	1	0	1
Protected Forest	0	625	625
Special Protected Zones in National Parks	56	100	155
Class I Special Zones in National Parks	53	138	191
Class II Special Zones in National Parks	170	188	358
Special Protected Zones in Quasi-National Parks	13	38	51
Class I Special Zones in Quasi-National Parks	42	104	146
Class II Special Zones in Quasi-National Parks	131	84	215
Special Zone in National Environment	0	9	9
Conservation Area			
Special Seed Forest	1	1	2
Total	2,928	5,480	8,409
Total	(2,612)	(4,235)	(6,847)

 Table A11-8
 Area of protected/conserved Tennensei-rin forests

* National Forest Resource Database (1st April 2009)

* This table includes forest with less standing trees.

* () means total land area excluding overlaps

11.3.2.4.b. Data

a) Yield tables developed by prefectures or Regional Forest Offices, and Forest Register

When forest plans are established for private and national forests (all forest lands are divided into 158 planning areas and forest plans are established by 1/5 of them [about 30 planning areas] each year), field surveys are conducted in these forests to develop Forest Register, which include data on area, forest age, volume by tree species, etc.

When forest plans are established (private forests: by each prefecture, national forests: by Regional Forest Offices of National forests), Forest Registers are updated to reflect change in volume due to growth, cutting and disturbances.

In general, volume data described in the Forest Registers are estimated based on land area data and yield tables which provide stand growth in the case that typical forest practices are implemented for each region, tree species and site class (yield tables show relationship between forest age or age class and volume per area).

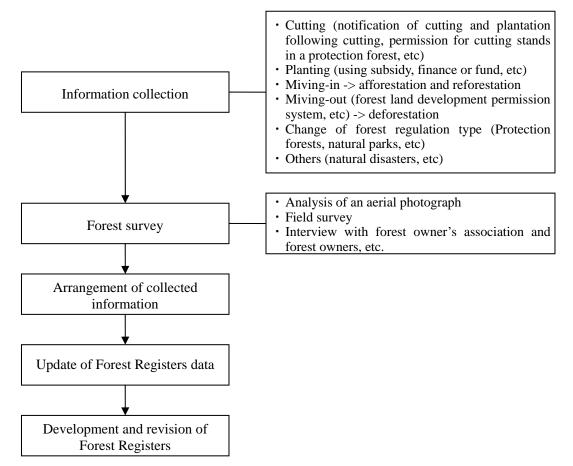


Figure A11-3 Procedures of Forest Registers development

b) Development of the National Forest Resources Database

To estimate emissions from or removals by forest, Forestry Agency has developed National Forest Resources Database (NFRDB). In the NFRDB, Forest Registers which are the basic data source for estimating and reporting, administrative information including Forest Planning Map, Forest Resource Monitoring survey as forest stand information and geographical location information including orthophotos and satellite images like Landsat-TM and SPOT are archived.

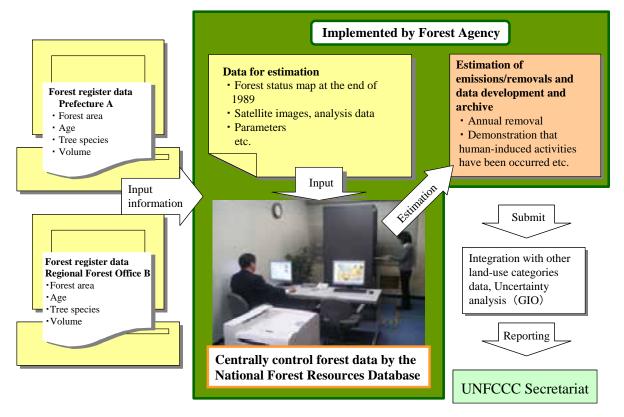


Figure A11-4 Summary of the National Forest Resources Database

11.3.2.5. Revegetation

11.3.2.5.a. Procedure

Japan estimated RV land area by types of urban green area according to the following procedures.

a) Urban parks

- 1. Rearrange the information on the notification date and the establishment area as of 31st March 2009 for all urban parks which are installed in our country.
- Extract urban parks which have been notified since 1st January 1990 and its establishment area is 500 m² or more.
- 3. Rearrange urban parks extracted in Step 2 depending upon the address and count the establishment area depending upon geographical boundary (prefecture).
- 4. Separate establishment area into settlements and wetlands by using area ratio of urban parks occupied in river zone [wetlands].

- 5. Calculate area of land which was qualified as forest land on 31st December 1989 by multiplying establishment area estimated in Step 4 by "area ratio of land has been converted from forest land to settlements or wetlands for the past 20 years". This area is excluded from establishment area because it qualified as deforestation. Remaining area is considered as RV land area (Accurately, it means that RV land area in FY1988 is estimated (not 31st December 1989) because calculation is based on FY2008 data. However, it is considered to be conservative because it does not lead over-estimation of RV land area).
- 6. Calculate area of "Remaining land (Settlements remaining Settlements, Wetlands remaining Wetlands)" and "Land converted to other land-use category (Cropland / Grassland / Wetlands / Other land converted to Settlements, Cropland / Grassland / Settlements / Other land converted to Wetlands) by multiplying land area estimated in Step 5 by "area ratio of land converted to Settlements or Wetlands in the single year (FY2007-FY2008)".

b) Green area on road

- 1. Calculate the number of tall trees for each geographic boundary (prefecture) on 31st March 2009 based on "Road Tree Planting Status Survey" which was implemented in FY2009.
- 2. Calculate the number of tall trees on 31st March 1990 by using linear interpolations of two surveyed data (1986 and 1991) from "Road Tree Planting Status Survey". Then, calculate the number of tall trees for each prefecture on 31st March 1990 by multiplying these values by the ratio of the number of tall trees for each prefecture on 31st March 2007. The number of tall trees on 31st March 1990 is fixed to the value on 31st March 2007.
- 3. Calculate the number of tall trees which have been planted since 1st April 1990 by subtracting value estimated in Step 1 from one in Step 2 (Revegetation is considered to be an activity which takes place after 1st January 1990. However, Japan considers revegetation as an activity after 1st April 1990 because "Road Tree Planting Status Survey" has been implemented on fiscal year basis).
- 4. Estimate the ratio of the number of tall trees planted on the road which planted area is less than 500 m² by using data (general road: 1.00%, expressway: 0.00%, significant level: 95%) from sampling survey implemented in 2006.
- 5. Estimate land area per tall tree by using modeled data (general road: 0.0062 [ha/tree], expressway: 0.0008 [ha/tree], significant level: 95%) from sampling survey implemented in 2006 (These modeled data are calculated by dividing randomly sampled RV land area by the number of tall trees planted on the land).
- 6. Calculate area of tall tree planted land which is 500 m² or more by multiplying values estimated in Step 4 & 5 by the number of tall trees for each geographical boundary (prefecture) estimated in Step 3.

Area of land which have been planted since 1st April 1990 and its area is 500 m^2 or more (ha)

= 3. the number of tall trees which have been planted since 1st April 1990 (tree)

* 4. Ratio of the number of tall trees planted on the land which is 500 m^2 or more (%)

- * 5. Land area per tall tree (ha/tree)
- 7. Calculate area of land which was qualified as forest land on 31st December 1989 by multiplying

area estimated in Step 6 by "area ratio of land has been converted from Forest land to Settlements or Wetlands for the past 20 years". This area is excluded because it qualified as deforestation. Remaining area is considered as RV land area (Accurately, it means that RV land area in 1987 is estimated (not 31st December 1989) because calculation is based on FY2008 data. However, it is considered to be conservative because it does not lead over-estimation of RV land area).

 Calculate area of "Remaining land (Settlements remaining Settlements)" and "Land converted to other land-use category (Cropland / Grassland / Wetlands / Other land converted to Settlements) by multiplying land area estimated in Step 7 by "area ratio of land converted to Settlements in the single year (FY2007-FY2008)".

c) Green area on port

- 1. Extract green area on port which have been established since 1st January 1990 and its service area is 500 m² or more. Then, rearrange its area depending on geographic boundaries (All green area on port could be reported because it is considered not to be qualified as forest land on 31st December 1989).
- Calculate area of "Remaining land (Settlements remaining Settlements)" and "Land converted to other land-use category (Cropland / Grassland / Wetlands / Other land converted to Settlements) by multiplying land area estimated in Step 1 by "area ratio of land converted to Settlements in the single year (FY2007-FY2008)".

d) Green area around sewage treatment facility

- 1. Extract green area around sewage treatment facility which have been established since 1st January 1990 and its greening area are 500 m² or more. Then, rearrange its area depending on geographic boundaries.
- 2. Calculate area of land which was qualified as forest land on 31st December 1989 by multiplying greening area estimated in Step 1 by "area ratio of land has been converted from Forest land to Settlements for the past 20 years". This area is excluded because it qualified as deforestation. Remaining area is considered as RV land area (Accurately, it means that RV land area in FY1988 is estimated (not 31st December 1989) because calculation is based on FY2008 data. However, it is considered to be conservative because it does not lead over-estimation of RV land area).
- 3. Calculate area of "Remaining land (Settlements remaining Settlements)" and "Land converted to other land-use category (Cropland / Grassland / Wetlands / Other land converted to Settlements) by multiplying land area estimated in Step 2 by "area ratio of land converted to Settlements in the single year (2007-2008)".

e) Green area by greenery promoting system for private green space

- Extract green area by greenery promoting system for private green space which greening area is 500 m² or more and rearrange their area depending on geographic boundaries. All of them are activities which takes place after 1st January 1990 because greenery promoting system has implemented since May 2001.
- 2. All green areas by greenery promoting system for private green space to be reported are "Remaining land" because they were not qualified as Forest land on 31st December 1989 and

qualified as Settlements in recent year.

f) Green area along river and erosion control site

Extract greening works and erosion and sediment control works including hillside works in river zone which has been established since 1st January 1990 and which greening area is 500 m² or more (greening works: (1) – (8) in the following table, erosion and sediment control works: (9) – (11) in the following table). All works described in the following table are human-induced.

 Table A11-9
 RV projects in green area along river and erosion control site and definition of planted land area

1	
RV works in green area along river and erosion	definition of planted land area
control site	
(1) Planting in inspection passage of excavated	Area of land from levee wall shoulder to private
channel	land
(2) Planting in face of river bank of excavated	Area of land from levee wall shoulder to private
channel	land
(3) Planting in backslope banquette	Area of embanked land
(4) Planting in levee marginal strip (second-class	Area of marginal strip which is subject to
and third-class)	greening works
(5) Planting in high water shannel	Area of land from low-flow channel shoulder to
(5) Planting in high water channel	foot of levee slope
(6) Planting in retarding basin	Area of retarding basin
(7) Planting in Jaka foreshore	Area of land from low-flow channel shoulder to
(7) Planting in lake foreshore	foot of levee slope
(8) Planting in super levee	(Same as planting in excavated channel)
(9) Greening under erosion and sediment control	Area of land which is subject to billside works
works	Area of land which is subject to hillside works
(10) Greening under landslide control works	Area of land which is subject to hillside works
(11) Greening under steep slope failure prevension	Area of land which is subject to billoide works
works	Area of land which is subject to hillside works

- 2. Calculate planted land area in green area along river and erosion control site for each geographic boundary (prefecture) extracted in Step 1. Double-counting between RV land and D land is prevented because forested land (on 1st January 1990) is not included in Step 1.
- 3. Calculate land area of "Wetlands remaining wetlands" and "Land converted to Wetlands (excluding Forest land converted to Wetlands)" by multiplying land area estimated in Step 2 by "area ratio of land converted to Wetlands (excluding Forest land converted to Wetlands) in the single year (2007-2008)".

g) Green area around government buildings

- 1. Extract green area around government buildings which has been established since 1^{st} January 1990 and which RV land area (= total land area building area) is 500 m² or more.
- 2. Calculate RV land area for each geographic boundary (prefecture) extracted in Step 1.
- 3. Calculate area of land which was qualified as forest land on 31st December 1989 by multiplying land area estimated in Step 2 by "area ratio of land has been converted from Forest land to Settlements for the past 20 years". This area is excluded because it qualified as deforestation. Remaining area is considered as RV land area (Accurately, it means that RV land area in 1988 is estimated (not 31st December 1989) because calculation is based on 2008 data. However, it is considered to be conservative because it does not lead over-estimation of RV land area).

4. Calculate area of "Remaining land (Settlements remaining Settlements)" and "Land converted to other land-use category (Cropland / Grassland / Wetlands / Other land converted to Settlements) by multiplying land area estimated in Step 3 by "area ratio of land converted to Settlements in the single year (2007-2008)".

h) Green area around public rental housing

- 1. Extract green area around public rental housing which has been established since 1st January 1990 and which RV land area (= total land area building area) is 500 m² or more.
- 2. Calculate RV land area for each geographic boundary (prefecture) extracted in Step 1.
- 3. Calculate area of land which was qualified as forest land on 31st December 1989 by multiplying land area estimated in Step 2 by "area ratio of land has been converted from Forest land to Settlements for the past 20 years". This area is excluded because it qualified as deforestation. Remaining area is considered as RV land area (Accurately, it means that RV land area in 1988 is estimated (not 31st December 1989) because calculation is based on 2008 data. However, it is considered to be conservative because it does not lead over-estimation of RV land area).
- 4. Calculate area of "Remaining land (Settlements remaining Settlements)" and "Land converted to other land-use category (Cropland / Grassland / Wetlands / Other land converted to Settlements) by multiplying land area estimated in Step 3 by "area ratio of land converted to Settlements in the single year (FY2007-FY2008)".

11.3.2.5.b. Data

Data applied in estimating RV land area is shown below.

	dolo 1111 10 Dulu upplieu	8
Sub-division	Data type	Method for data collection
Urban parks	• Area for each urban park	• Urban Parks Status Survey (FY2008)
Green area on road	• Number of tall trees	 Road Tree Planting Status Survey (FY:1987, 1992, 1997, 2002, 2007, 2008, 2009)
	• Land area per tall tree	Basic Data Collection Survey on Tall Tree Planting on the Road (February, 2007)
Green area on port	Service area	Complete census for FY2008
Green area around	• Green area	Sewage treatment Facility Status Survey
sewage treatment facility		(FY2008)
Green area by greenery	 Greening area 	• Application form for greenery promoting
promoting system for	Wall greening area	system for private green space
private green space	• The number of tall trees	 Urban Greening Status Survey (FY2008)
Green area along river and erosion control site	Planted land area	• Survey on carbon dioxide absorption at source in river works (FY2008)
Green area around	• Total land area and	Complete census for FY2008
government buildings	building area	-
Green area around public	• Total land area and	• Progress survey on tree planting for public
rental housing	building area	rental housing (FY2008)

Table A11-10Data applied in estimating RV land area

11.3.2.6. Maps and/or database to identify the geographical locations, and the system of identification codes for the geographical locations

Page 4.24, Section 4.2.2.2 of GPG-LULUCF, shows two methods for identifying and reporting of unit of land subject to Article 3.3 activities and lands subject to Article 3.4 activities. Reporting Method 1 entails delineating areas that include multiple land units subject to Article 3.3 and 3.4 activities by using legal, administrative, or ecosystem boundaries. Reporting Method 2 is based on the spatially explicit and complete geographical identification of all units of land subject to Article 3.3 activities and all lands subject to Article 3.4 activities.

Japan elects Reporting Method 1 in accordance with the decision tree indicated in Figure 4.2.4 in chapter 4 of GPG-LULUCF, which means that the entire national land is stratified by using the geographic boundary of prefectures, and total area of each "unit of land" subject to properly each Article 3.3 activity and each "lands" subject to each Article 3.4 activity is reported within each boundary. Identification codes are determined for each prefecture as shown in the following map. Each activity under Article 3.3 and 3.4 is detected as described in sections 11.3.2.3-11.3.2.5, and units of land or lands subject to it are identified within prefectural boundary in accordance with Reporting Method 1.

Figure A11-5 Japan's determination of identification codes

Table ATT-TT Relation between identification codes and prefectures					
ID code	Prefecture	ID code	Prefecture	ID code	Prefecture
01	Hokkaido	17	Ishikawa	33	Okayama
02	Aomori	18	Fukui	34	Hiroshima
03	Iwate	19	Yamanashi	35	Yamaguchi
04	Miyagi	20	Nagano	36	Tokushima
05	Akita	21	Gifu	37	Kagawa
06	Yamagata	22	Shizuoka	38	Ehime
07	Fukushima	23	Aichi	39	Kochi
08	Ibaraki	24	Mie	40	Fukuoka
09	Tochigi	25	Shiga	41	Saga
10	Gunma	26	Kyoto	42	Nagasaki
11	Saitama	27	Osaka	43	Kumamoto
12	Chiba	28	Hyogo	44	Oita
13	Tokyo	29	Nara	45	Miyazaki
14	Kanagawa	30	Wakayama	46	Kagoshima
15	Niigata	31	Tottori	47	Okinawa
16	Toyama	32	Shimane		

Table A11-11 Relation between identification codes and prefectures

11.4. Activity-specific information

11.4.1. Methods for carbon stock change and GHG emission and removal estimates

11.4.1.1. Description of the methodologies and the underlying assumptions used

11.4.1.1.a. Afforestation/Reforestation

a) Above-ground biomass, Below-ground biomass

Methodology

Carbon stock change in living biomass in AR land is calculated, using Tier 2 stock change method in accordance with GPG-LULUCF. In this method, biomass stock change is estimated by subtracting biomass stock change due to land conversion from the difference between total amount of biomass at two times.

 $\Delta C_{LB} = \Delta C_{SC} - \Delta C_L$

 ΔC_{LB} : Annual carbon stock change in living biomass [t-C/yr]

- ΔC_{SC} : Annual carbon stock change due to biomass growth, felling, fuelwood gathering, disturbance after land conversion [t-C/yr]
- ΔC_L : Annual carbon stock change due to land conversion [t-C/yr]

Carbon stock change due to biomass growth, felling, fuelwood gathering and disturbance after land conversion

$$\Delta C_{SC} = \sum_{k} \left\{ (C_{t2} - C_{t1}) / (t_2 - t_1) \right\}_{k}$$

 ΔC_{SC} : Annual carbon stock change in living biomass [t-C/yr]

 t_1, t_2 : Time point of carbon stock measurement

- C_{tl} : Total carbon in biomass calculated at time t₁ [t-C]
- C_{t2} : Total carbon in biomass calculated at time t₂ [t-C]
- *k* : Type of forest management

The carbon stocks in living biomass is calculated from the volume for each tree species multiplied by wood density, biomass expansion factor, root-to-shoot ratio and carbon fraction.

$$C = \sum_{j} \left\{ \left[V_{j} \times D_{j} \times BEF_{j} \right] \times (1 + R_{j}) \times CF \right\}$$

- *C* : Carbon stock in living biomass [t-C]
- V : Volume [m3]
- D : Wood density [t-dm/m³]
- BEF : Biomass expansion factor [dimensionless]
- *R* : Root-to-shoot ratio [dimensionless]
- CF : Carbon fraction (= 0.5[t-C/t-dm])
- j : Tree species

Carbon stock change due to land conversion

Carbon stock change due to land conversion has been calculated as below, in accordance with GPG-LULUCF.

$$\Delta C_L = \sum_i \left\{ A_i \times (B_a - B_{b,i}) \times CF \right\}$$

- ΔC_L : Annual biomass carbon stock change in land that has been converted from other land use type to forest [t-C/yr]
- A_i : Annual increase of land area that has been converted from land use type *i* to forest [ha/yr]
- Ba : Dry matter weight immediately after conversion to forest [t-dm/ha]
- Bb,i: Dry matter weight before conversion from land use type *i* to forest [t-dm/ha]
- *CF* : Carbon fraction of dry matter [t-C/t-dm]
- *i* : Type of land use

• Parameters

Data such as volume, biomass expansion factor, root-to-shoot ratio, wood density and carbon fraction are the same as those for reporting of LULUCF under the Convention. Detailed information is provided in Chapter 7, section 7.3.1 of this report.

Biomass stock data for each land use category which is used for estimation of biomass stock change due to land conversion are also the same as those for reporting of LULUCF under the Convention. Detailed information is provided in Chapter 7, table 7-21 of this report.

• Activity data

Activity data is AR land area which were calculated by using the procedure described in section 11.3.2.3 of this report.

b) Dead wood, Litter and Soils

• Methodology

Carbon stock change in dead wood and litter in AR land was calculated in accordance with the basic stock change method provided by GPG-LULUCF under the assumption that carbon stocks would change linearly over 20 years from those in non-forest land to those in forest land at the age of 20. The calculation is conducted by using average carbon stocks derived from CENTURY-jfos model, and carbon stocks in dead wood and litter before land conversion are assumed zero.

$$\Delta C_{DW} = \sum_{i} \left\{ A_{i} \times (C_{DW20} - C_{DW,i}) / 20 \right\}$$
$$\Delta C_{LT} = \sum_{i} \left\{ A_{i} \times (C_{LT20} - C_{LT,i}) / 20 \right\}$$

 ΔC_{DW} : Annual carbon stock change in dead wood [t-C/yr] ΔC_{LT} : Annual carbon stock change in litter [t-C/yr] A_i : Afforested of reforested land area converted from land use *i* [ha] C_{DW20} : Average carbon stocks in dead wood of 20-year-old forests [t-C/ha] C_{LT20} : Average carbon stocks in litter of 20-year-old forests [t-C/ha] $C_{DW,i}$: Average carbon stocks in dead wood in land use *i* [t-C/ha] (assumed to be zero) $C_{LT,i}$: Average carbon stocks in litter in land use *i* [t-C/ha] (assumed to be zero)

i : Type of land use (cropland, grassland, wetlands, settlements and other land)

Carbon stock change in soils in AR land was calculated in accordance with the basic stock change method provided by GPG-LULUCF under the assumption that carbon stocks would change linearly over 20 years from those in non-forest land to those in forest land at the age of 20. This calculation is conducted by using average carbon stocks derived from CENTURY-jfos model.

$$\Delta C_{Soil} = \sum_{i} \left\{ A_i \times (C_{Soil20} - C_{Soil,i}) / 20 \right\}$$

 ΔC_{Soil} : Annual carbon stock change in soils [t-C/yr]

 A_i : Afforested or reforested land area converted from land use *i* [ha]

C_{Soil20} : Average carbon stocks in soils of 20-year-old forests [t-C/ha]

 $C_{Soil,i}$: Average carbon stocks in soils in land use *i* [t-C/ha]

i : Type of land use (cropland, grassland, wetlands, settlements and other land)

• Parameters

Parameters were determined based on CENTURY-jfos model and relevant literature.

Activity data

AR land area was calculated by using the procedure described in section 11.3.2.3 of this report.

c) Other gases

1) Direct N_2O emissions from N fertilization

It is assumed that amount of nitrogen-based fertilizer applied in Forest land is counted in Agriculture sector. Therefore, this category has been reported as "IE".

2) CO_2 emissions from agricultural lime application

It is considered that lime application in Forest land is not common practice in Japan, however, sufficient information on actual condition is not available at present. Therefore, this category has been reported as "NE".

3) Biomass burning

• Methodology

For CH₄ and N₂O emissions due to biomass burning, Tier 1 method is used.

 $bbGHG_{f} = L_{forestfires} \times ER$ (CH₄) $bbGHG_{f} = L_{forestfires} \times NCratio \times ER$ (N₂O)

bbGHG_f : GHG emissions due to biomass burning in forest

 $L_{forest fires}$: Carbon released due to forest fires [t-C/yr]

ER : Emission ratio

NCratio : Nitrogen / Carbon ratio

• Parameters

> Emission ratio

The following values are applied to emission ratios for non-CO₂ gases due to biomass burning. $CH_4: 0.012, N_2O: 0.007$ (default value stated in GPG-LULUCF, Table 3A.1.15)

> NC ratio

The following values are applied to NC ratio. NC ratio: 0.01 (default value stated in GPG-LULUCF, Page 3.50)

• Activity data

Activity data is carbon released due to fire in AR land which is calculated by multiplying carbon released due to fire for all forest land by the ratio of AR land area to all forest land area. Carbon released due to fire for all forest land (national forest and private forest) is estimated by multiplying the damaged timber volume due to fire by wood density, biomass expansion factor and carbon fraction of dry matter.

With regard to national forest, volume of standing trees damaged due to fires in national forests in Handbook of Forestry Statistics is used as the damaged timber volume due to fire.

With regard to private forest, the damaged timber volume due to fires is estimated from actual damaged area and damaged timber volume by age class (surveyed by Forestry Agency) with some assumption. Damaged timber volume due to fire for age class equal to or under 4 is estimated by multiplying the cumulative volume of standing trees per area of age class equal to or under 4 from the Forestry Status Survey by the loss ratio (the ratio of damaged timber volume due to fire to total volume of standing trees) of age class equal to or over 5 in private forests, on the assumption that the loss ratio is constant regardless of age classes.

The values for wood density and biomass expansion factors for national forest and private forest are determined respectively by means of weighted average using the ratios of intensively managed forest and semi-natural forests.

$$L_{forestfires} = \Delta C_{fn} + \Delta C_{fp}$$

$L_{\it forestfires}$: Carbon released due to fires [t-C/yr]
ΔC_{fn}	: Carbon released due to fire in national forest [t-C/yr]
ΔC_{fp}	: Carbon released due to fire in private forest [t-C/yr]

> National forest

 $\Delta C_{fn} = V f_n \times D_n \times B E F_n \times C F$

 ΔC_{fn} : Carbon released due to fire in national forest [t-C/yr]

 $V f_{fn}$: Damaged timber volume due to fire in national forest [m³/yr]

 D_n : Wood density for national forest [t-dm/m³]

 BEF_n : Biomass expansion factor for national forest

CF : Carbon fraction of dry matter [t-C/t-dm]

$$Private forest \Delta C_{fP} = Vf_p \times D_P \times BEF_P \times CF$$

 ΔC_{fp} : Carbon released due to fire in private forest [t-C/yr]

 Vf_p : Damaged timber volume due to fire in private forest [m³/yr]

 D_p : Wood density for private forest [t-dm/m³]

*BEF*_p: Biomass expansion factor for private forest

CF : Carbon fraction for dry matter [tC/t-dm]

Туре	Wood density [t-dm/m ³]	BEF
National forest	0.49	1.61
Private forest	0.46	1.61

Source: Estimated based on Forestry Agency data

• Note

In estimating GHG emissions from biomass burning, Japan uses different methods between national forests and private forests. It is because different procedures for national forest and private forest are established for reporting fires. Fires in all forest in Japan are covered by the set of data on fire in national forest and on fire in private forest, thus they are appropriately reflected to calculated emissions.

d) Results

	2008	
	[Gg-CO2]	[Gg-C]
AR	-391.95	106.90
Above-ground biomass	-224.54	61.24
Below-ground biomass	-58.34	15.91
Dead wood	-65.69	17.91
Litter	-28.49	7.77
Soils	-14.91	4.07
Other gases	0.03	-0.01

* CO2)+: Emission, -: Removal

C...+: Removal, -: Emission

11.4.1.1.b. Deforestation

a) Above-ground biomass, Below-ground biomass

• Methodology

Carbon stock change of living biomass (above-ground biomass and below-ground biomass) in deforestation (D) land is estimated by adding forest living biomass loss due to land conversion and carbon stock change due to growth of living biomass in D land after land conversion, in accordance with GPG-LULUCF

Forest living biomass loss due to land conversion is estimated from data in the NFRDB taking into account the status of D land such as tree species and forest, and all loss is allocated as emissions for the year of land conversion.

Carbon stock change due to growth of living biomass is estimated as follows for D land converted to grassland and for D land converted to settlements subject to revegetation practices. The latter is the land subject to both Article 3.3 and 3.4 activities, therefore the carbon stock change in this land is reported under D activity.

ΔC_{D-LB}	$= A_{5,DG} \times C_{G-LB} + \Delta C_{DS-LB}$
ΔC_{DS-LL}	$_{B} = \Delta C_{RV-LB} \times A_{RVD} / A_{DS}$
ΔC_{D-LB}	: Annual carbon stock change due to living biomass growth after D activity [t-C/yr]
$A_{5,DG}$: Area of grassland subject to D activity within the past 5 years [ha]
C_{G-LB}	: Carbon stock change per area in grassland [t-C/ha]
ΔC_{DS-LB}	: Carbon stock change in living biomass in settlements subject to both D and RV activities
[t-C/yr]	
ΔC_{RV-LB}	: Carbon stock change in living biomass due to RV activity [t-C/yr] (see section 11.4.1.1.d)
RA_{RVD}	: Area of settlements subject to both D and RV activities
RA_{DS}	: Area of settlements subject to D activity

• Parameters

Information relating to forest biomass loss is obtained from the NFRDB. The parameter in Table A11-13 is used for estimating carbon stock change due to living biomass growth after D activity in grassland. The parameters for estimating carbon stock change due to revegetation practices are the same as those used for RV activity.

Land use category	Change in biomass stocks	Note	
	[t-dm/ha]		
Grassland	2.7	 GPG-LULUCF Table3.4.2 warm temperate wet GPG-LULUCF Table3.4.3 warm temperate wet * The biomass growth is assumed to be completed during the first five years after the land use conversion. After then, carbon stock change is assumed to be zero. 	

Table A11-13	Change in biomas	s stocks for each	land use category
--------------	------------------	-------------------	-------------------

• Activity data

Land area on which D activity had occurred was calculated by the method described in 11.2.2.3. D land area where RV practices had taken place was calculated by the method described in 11.4.1.1.d.

b) Dead wood, Litter and Soils

Carbon stock change in dead wood, litter and soils associated with deforestation is calculated in accordance with Tier 2 method in GPG-LULUCF. Japan assumed that all carbon stocks in dead wood and litter would be emitted at the time point when deforestation activities occurred. Carbon stock change in soils was calculated under the assumption that soil carbon stocks would change linearly over 20 years to those in non-forest land. Carbon stocks before and after conversion were established based on the data in Table 7-12 and Table 7-13 and Tale 7-23 in Chapter 7 of this report, and data obtained from CENTURY-jfos model.

c) Other gases

1) N_2O emissions from disturbance associated with land-use conversion to cropland

• Methodology

According to GPG-LULUCF, Tier 1 method is used.

 $N_2O-N_{conv} = N_2O_{net-min}-N=EF \times N_{met-min}$

 $N_{net-min} = C_{released} \times 1/C : N_{ratio}$

N_2O-N_{conv}	: N_2O emission as a result of disturbance associated with land-use conversion to cropland
	(kg N ₂ O-N)

 $N_2O_{net-min}-N$: Additional emissions arising from the land-use change (kg N₂O-N/yr)

$N_{net-min}$: N released annually by soil organic matter mineralization as a result of the disturbance
	(kg N/yr)

EF	: emission factor (kgN ₂ O-N/kgN)
C:N _{ratio}	: The ratio by mass of C to N in the soil organic matter (kgC/kgN)
$C_{released}$: Amount of soil carbon mineralized annually (kgC/yr)

• Parameters

- C:N ratio for soils: 11.3 (Country specific data [Undisclosed])

- N-N₂O emission factor for soils: 0.0125 [kg-N₂O-N/kg-N] (default value stated in GPG-LULUCF, Page 3.94)

• Activity Data

Area of land converted from Forest land to Cropland since 1990 and carbon emissions from soils due to this conversion are used.

2) CO_2 emissions from agricultural lime application

• Methodology

In accordance with GPG-LULUCF, Tier 1 method is applied to estimate CO_2 emission from lime application. Japan did not elect "Cropland Management (CM)" under Article 3.4 of the Kyoto Protocol, then CO_2 emissions from agricultural lime application to be reported under the Kyoto Protocol are only those in Cropland converted from Forest land since 1990 (identified as D land). However, it is difficult to directly determine the amount of lime and dolomite applied in such lands. Therefore it is assumed that lime application is conducted uniformly in all Cropland.

$$\Delta C_{\textit{Lime}} = M_{\textit{D-Limeston}} \times EF_{\textit{Limestone}} + M_{\textit{D-Dolomite}} \times EF_{\textit{Dolomite}}$$

$$M_{D-Limestone} = M_{Limestone} \times (A_{D-C} / A_C)$$

$$M_{D-Dolomite} = M_{Dolomite} \times (A_{D-C} / A_C)$$

 ΔC : Annual CO₂ emissions from agricultural lime application (t-CO₂/yr)

 $M_{D-Limestone}$: Annual amount of calcic limestone (CaCO₃) applied in land subject to D activity (t/yr)

 $M_{D-Dolomite}$: Annual amount of dolomite (CaMg(CO₃)₂) applied in land subject to D activity(t/yr)

*EF*_{Limestone} : Emission factor of calcic limestone (CaCO₃) (t-C/t)

 $EF_{Dolomite}$: Emission factor of dolomite (CaMg(CO₃)₂) (t-C/t)

 $M_{Limestone}$: Amount of calcic limestone applied (t/yr)

 $M_{Dolomite}$: Amount of dolomite applied (t/yr)

 A_{D-C} : Area of cropland subject to D activity (ha)

 A_C : Area of cropland subject to D activity (ha)

• Parameters

Default values provided in GPG-LULUCF are used.

- Calcic limestone (CaCO₃): 0.120 [t-C/t]

- Dolomite (CaMg(CO₃)₂): 0.122 [t-C/t]

• Activity data

Activity data were calculated by summing up the amount of production and the amount of import for each fertilizer type as listed in the Yearbook of Fertilizer Statistics (Pocket Edition) published by the Ministry of Agriculture, Forestry and Fisheries of Japan. All of the "Calcium carbonate fertilizer" and

 $70\%^2$ of "Fossil seashell fertilizer", "Crushed limestone" and "Seashell fertilizer" listed in the Yearbook was classified as calcic limestone (CaCO₃), and all of the "Magnesium carbonate fertilizer" and $74\%^3$ of "Mixed magnesium fertilizer" as dolomite (CaMg(CO₃)₂).

3) Biomass burning

Prescribed fire associated with deforestation activity is very rarely performed in Japan because of severe restriction imposed by the "Waste Management and Public Cleansing Law" and the "Fire Defense Law". Therefore, CH₄, CO, N₂O, and NOx emissions are reported as "NO".

	2008		
	[Gg-CO2]	[Gg-C]	
D	2,431.08	-663.02	
Above-ground biomass	1,268.04	-345.83	
Below-ground biomass	332.98	-90.81	
Dead wood	434.84	-118.59	
Litter	173.56	-47.33	
Soils	215.12	-58.67	
Other gases	6.52	-1.78	

d) Results

* CO2)+: Emission, -: Removal C...+: Removal, -: Emission

11.4.1.1.c. Forest Management

a) Above-ground biomass, Below-ground biomass

Methodology

- 1. Estimate emissions/removals in all forest land by using biomass stock data stored in the National Forest Resources Database (based on stock change method).
- 2. Subtract emissions/removals relating to ARD activities from emissions/removals in all forest land. For Ikusei-rin forest, estimate emissions/removals in FM land by applying FM ratio for each tree species, region and age class. For Tennensei-rin forest, identify area of forest land with standing trees subject to practices for protection or conservation of forests including controlling logging activities and land-use change which have been implemented under laws, by using the National Forest Resources Database, and estimate emissions/removals.

• Parameters

Parameters are the same as those used for AR.

² Based on expert judgment.

³ Assumed as 74% by excluding the ratios of citrate soluble bitter salts component (23%) and water soluble bitter salts component (more than 3%) in mixed magnesium fertilizer. This assumption is considered conservative estimation because the ratio of dolomite fertilizer in mixed magnesium fertilizer is not this large in actuality.

b) Dead wood, Litter and Soils

• Methodology

Carbon stock change in each pool is estimated by Tier 3 model method. It is estimated by multiplying carbon emissions/removals per area in each pool, which are calculated by CENTURY-jfos model for each type of forest management, by land area of each type of forest management and then summating.

$$\Delta C_{dls} = \sum_{k,m,j} (A_{k,m,j} \times (d_{k,m,j} + l_{k,m,j} + s_{k,m,j}))$$

 ΔC_{dls} : Carbon stock change in dead wood, litter and soil [t-C/yr]

- A : Area [ha]
- D : Average carbon stock change in dead wood per area [t-C/yr]
- L : Average carbon stock change in litter per area [t-C/yr]
- S : Average carbon stock change in soils per area [t-C/yr]
- *k* : Type of forest management
- *m* : Age class or forest age
- *j* : Tree specie

• Parameters

Average carbon stock changes per unit area for dead wood, litter and soils are calculated by CENTURY-jfos model, which was modified CENTURY model (Colorado State University) to follow Japanese climate, soil, and vegetation conditions. Detailed explanation of CENTURY-jfos model is provided in section 7.3.1.b).1, Chapter 7 of this report.

c) Other gases

1) Direct N_2O emissions from N fertilization

It is assumed that amount of nitrogen-based fertilizer applied in Forest land is included in the amount of nitrogen-based fertilizer counted in Agriculture sector. Therefore, this category is reported as "IE".

2) N_2O emissions from drainage of soils

Based on expert judgment, N_2O emissions are extremely low, because the soil drainage activities are very rarely conducted in Japan. Therefore, this category is reported as "NO".

3) CO_2 emissions from agricultural lime application

It is considered that lime application in Forest land is not common practice in Japan, however, sufficient information on actual condition is not available at present. Therefore, this category has been reported as "NE".

4) Biomass burning

Emissions due to biomass burning are estimated in the same way as in the case of AR.

d)	Results
----	---------

	2008		
	[Gg-CO2]	[Gg-C]	
FM	-45,388.90	12,378.79	
Above-ground biomass	-34,747.68	9,476.64	
Below-ground biomass	-8,758.73	2,388.75	
Dead wood	134.69	-36.73	
Litter	-472.06	128.74	
Soils	-1,559.02	425.19	
Other gases	13.91	-3.79	

* CO2)+: Emission, -: Removal

C...+: Removal, -: Emission

11.4.1.1.d. Revegetation

Methodologies for estimating GHG emissions and removels from RV activity are described in two cases: RV activity is performed 1) on the land where no land conversion has been happened (remaining land) and 2) on the land where land conversion has been happened (Conversion Land).

a) Remaining land: Above-ground biomass, Below-ground biomass

In this category, Japan estimates carbon stock change in above-ground biomass and below-ground biomass of tall trees planted in RV lands. Tall trees are consistent with definition in "Standards on quality and size of planted trees for public (draft)".

Methodology

$$\Delta C_{RVLB} = \sum_{i} \left(\Delta C_{LBG,i} - \Delta C_{LBL,i} \right)$$
$$\Delta C_{LBG,i} = \Delta B_{LBG,i}$$
$$\Delta B_{LBG,i} = \sum_{i} \left(NT_{i,i} \times C_{Ratei,i} \right)$$

ΔC_{RVLB}	: Annual change in carbon stocks in living biomass in remaining revegetation land [t-C/yr]
ΔC_{LBG}	: Annual change in carbon stocks due to growth in living biomass in remaining
	revegetation land [t-C/yr]
ΔC_{LBL}	: Annual change in carbon stocks due to loss of living biomass in remaining revegetation
	land [t-C/yr]
ΔB_{LBG}	: Annual biomass growth in revegetation land [t-C/yr]

C_{Rate} : Annual biomass growth per tree [t-C/tree/yr]
 NT : number of trees
 i : Land use type (urban parks, green area on road, green area on port, green area around sewage treatment facility and green area by greenery promoting system for private green space, Green area along river and erosion control site, green area around public rental

housing and green area around government buildings)

j : Tree species

Parameters⁴

> Urban parks

As a result of tree survey for sample urban parks⁵, it could be assumed that the average age of tree population is less than or equal to 20 years and carbon stock change due to living biomass loss in urban parks is determined to be zero. Annual biomass growth in urban parks is calculated by using default values (0.0084-0.0142[t-C/tree/yr]) provide in GPG-LULUCF (Page 3.297, Table 3A.4.1) and distribution ratio of tree types in sample urban parks⁶. For ratio of above-ground biomass/below-ground biomass, default value provided in the 2006 IPCC Guidelines (root-to-shoot ratio: 0.26) is applied (see Page 8.9).

Green area on road

Japan calculated the average age of tree population by using data on the age of planted trees in sample roads which had been extracted randomly. As a result of its calculation, it could be assumed that the average age of tree population is less than or equal to 20 years and carbon stock change due to living biomass loss in green area on road is determined to be zero.

Annual biomass growth and ratio of above-ground biomass/below-ground biomass are calculated by using the same parameters as urban parks.

Green area on port, Green area around sewage treatment facility, Green area along river and erosion control site, Green area around public rental housing and Green area around government buildings

As in the case of urban parks, it could be assumed that carbon stock change due to living biomass loss in these green areas is zero because standard of planted trees, tree types and their distribution are applied in the same manner as urban parks.

Annual biomass growth and ratio of above-ground biomass/below-ground biomass are calculated by using the same parameters as urban parks.

Green area by greenery promoting system for private green space

It could be assumed that the average age of tree population is less than or equal to 20 years and carbon stock change due to living biomass loss in green area by greenery promoting system for private green space is determined to be zero because standard of planted trees is selected in the same manner as urban parks and all facilities has been certified since 2002.

Annual biomass growth and ratio of above-ground biomass/below-ground biomass are calculated by using the same parameters as urban parks.

• Activity data

> Urban parks

Area of land remaining urban parks is calculated by multiplying area of urban parks by area ratio of

⁴ In this reporting, Japan applied Tier 1b described in GPG-LULUCF. In the future, tier 2 method will be applied if country specific data on biomass growth is established.

⁵ Kanagawa Prefecture is located in Japan's typical climate zone and has many types of urban parks. Japan determined randomly 129 sample urban parks in Kanagawa which have been notified since 1st January 1990. In addition, Japan implemented same survey in 3 urban parks in Chiba Prefecture which park type is not existed in Kanagawa.

⁶ For Hokkaido, distribution ratio of tree types is calculated by using tree registers and plantation maps for all urban parks in Kushiro city and Yubari city. For other prefectures, distribution ratio of tree types is calculated by using tree registers and plantation maps for 321 urban parks extracted randomly.

land conversion for the whole country. Activity data for carbon stock change in living biomass in urban parks is the number of tall trees planted in urban parks which is calculated by multiplying area of urban parks obtained from "Urban Parks Status Survey" by the number of tall trees per area (Hokkaido: 340.1[tree/ha], the other prefectures: 203.3[tree/ha]).

In addition, the number of tall trees per area is calculated by using the number of tall trees and land area in sampling urban parks which significant level is 95%.⁷

	Percentage ⁸	Area (ha)
Urban parks which have been notified since 1^{st} January 1990 and its establishment area is 500 m ² or more	100.00%	50,772.60
Urban parks located in Settlements	90.85%	46,126.91
Urban parks located in Wetlands (they occupy the river section)	9.15%	4,645.69

Table A11-15 Area of land which was not qualified as forest land on 31st December 1989

		Land-use category	Area ratio of land has been converted for the past 20 years	Area (ha)	RV Qualification
	ban parks which have been notified since	Forest	6.76%	3,430.48	No
	January 1990 and its establishment area	Non-forest	93.24%	47,342.12	Yes
is 500 m ² or more		Total	100.00%	50,772.60	-
		Forest	7.31%	3,371.08	No
	Urban parks located in Settlements	Non-forest	92.69%	42,755.83	Yes
	-	Total	100.00%	46,126.91	-
	Urban parks located in Wetlands (they occupy the river section)	Forest	1.28%	59.40	No
		Non-forest	98.72%	4,586.29	Yes
		Total	100.00%	4,645.69	-

Table A11-16 Area of urban parks (remaining land / converted land)

	Land-use Category	Area ratio of land has been converted for the current year	Area (ha)	Activity data (tree) [the number of tall trees]
Urban parks which have been notified since 1 st January 1990 and its establishment area is 500 m ² or more	Converted (except land converted from forest land)	0.33%	157.77	34,574
	Remaining	99.67%	47,184.35	10,340,251
	Total	100.00%	47,342.12	10,374,825
Urban parks located in Settlements	Converted (except land converted from forest land)	0.36%	156.01	34,190
	Remaining	99.64%	42,599.82	9,335,569
	Total	100.00%	42,755.83	9,369,759
Urban parks located in Wetlands (they occupy the river section)	Converted (except land converted from forest land)	0.04%	1.75	384
	Remaining	99.96%	4,584.54	1,004,682
	Total	100.00%	4,586.29	1,005,066

⁷ The number of tall trees per area in urban parks was calculated by using data from tree register and planting map which was measured in some urban parks (Hokkaido: 176, other prefectures: 321). For Hokkaido, sample data was not sufficient because tree register has not been developed completely.

➤ Green area on road

Activity data (the number of tall trees) in "Remaining green area on road" is calculated by the following procedures.

- Calculate the number of tall trees in all green area on road in 31 March 1990 and 31 March 2009 by using data from "Road Tree Planting Status Survey" which had been implemented in FY1987, FY1992 and FY2009.
- 2. Calculate the number of tall trees which have been planted since 1st April 1990 by subtracting the number for FY1989 from one for FY2008 (Revegetation is a activity which takes place after 1st January 1990. However, Japan considers it a activity after 1st April 1990 because it is impossible to estimate the number of tall trees which have been planted between 1st April 1990 and 31st March 1990).
- 3. Multiply the number of tall trees calculated in Step 2 by the ratio of the number of tall trees planted on the road which planted area is less than 500 m^2 .
- 4. Multiply the number of tall trees calculated in Step 3 by the area ratio of green area on road which was qualified as Forest land in 31th December 1989.
- 5. Multiply the number of tall trees calculated in Step 4 by the area ratio of land remaining Settlements.

Area of green area on road per tall tree [ha/tree]	The number of planted tall tree [tree]			Area ratio of planted	Area ratio of land which	Area of green area	
	on road per tall tree	31th March 1990	31th March 2009	FY1990 - FY2008	land which is 500 m ² or more [%]	was qualified as forest land on 31 st December 1989 ⁹ [%]	on road which was qualified as RV [ha]
	А	b	с	c-b	d	e	a*(c-b)*d/ 100*(100- e)/100
General road (managed by Ministry of Land, Infrastructure and Transport, Prefectures, local authority, public corporation)	0.006237	4,342,070	6,725,624	2,383,554	99.00%	7.31%	13,642
Highway (managed by now-defunct public corporation)	0.000830	1,096,380	8,054,960	6,958,580	100.00%	7.31%	5,353
Total	_	5,438,450	14,780,584	9,342,134	_	_	18,994

Table A11-17 Area of green area on road which has been qualified as RV

⁸ Measured value on 31 March 2007 from "Urban Parks Status Survey"(2006)

⁹ Apply area ratio of land has been converted from Forest land to Settlements for the past 20 years.

Table A11-18 The number of tail frees quanties as KV (Activity data)						
	The number of tall trees which have been planted since 1990 [tree]	Area ratio of planted land which is 500 m ² or more [%]	Area ratio of land has been converted from Forest land for the past 20 years [%]	Activity data (The number of tall trees) [tree]		
	c-b	d	e	(c-b)*d/100* (100-e)/100		
General road (managed by Ministry of Land, Infrastructure and Transport, Prefectures, local authority, public corporation)	2,383,554	99.00%	7.31%	2,187,190		
Highway (managed by now-defunct public corporation)	6,958,580	100.00%	7.31%	6,450,028		
Total	9,342,134	_	_	8,637,219		

Table A11-18 The number of tall trees qualifies as RV (Activity data)

Table A11-19 Area of green area on road and activity data [the number of tall trees]

	Land-use category	Area ratio of land has been converted for the current year	Activity data (the number of tall trees)	Area (ha)
Greenarea on road which have been	Converted	0.36%	31,517	69.31
notified since 1 st January 1990 and	Remaining	99.64%	8,605,702	18,925.09
its establishment area is 500 m ² or more	Total	100.00%	8,637,219	18,994.40
	Converted	0.36%	7,981	49.78
General road	Remaining	99.64%	2,179,209	13,591.73
	Total	100.00%	2,187,190	13,641.50
	Converted	0.36%	23,536	19.53
Highway	Remaining	99.64%	6,426,493	5,333.36
	Total	100.00%	6,450,028	5,352.90

(remaining land / converted land)

Green area on port

Activity data for carbon stock change in living biomass in green area on port is the number of tall trees planted in green area on port, which is calculated by multiplying service area obtained from complete census by the number of tall trees per urban parks (Hokkaido: 340.1[tree/ha], the other prefectures: 203.3[tree/ha], these values are applied because of the similarities between urban parks and green area on port as mentioned above).

In addition, it has been assumed that all green area on port has been located in Settlements and not qualified as Forest land in 31 December 1989.

Table A11-20	Area of green area on port a	nd activity data (remaining land	/ converted land)

Land-use Category	Area ratio of land has been converted for the current year	Area (ha)	Activity data (the number of tall trees)
Converted	0.36%	4.80	1,014
Remaining	99.64%	1,310.67	276,759
Total	100.00%	1,315.47	277,773

Green area around sewage treatment facility

Area of land remaining green area around sewage treatment facility is calculated in the same manner as urban parks. Activity data for carbon stock change in living biomass in green area around sewage treatment facility is obtained from "Sewage treatment Facility Status Survey" implemented in January 2008. The number of tall trees planted in green area around sewage treatment facility is calculated by multiplying greening area by the number of tall trees per greening area (Hokkaido: 129.8[tree/ha]), the other prefectures: 429.2[tree/ha]). The number of tall trees per greening area is determined from the number of tall trees and greening area for 59 facilities.¹⁰

In addition, all green area around sewage treatment facility has been located in Settlements.

Table A11-21Green area around sewage treatment facility which was not qualified as Forestland in 31th December 1989

L and use enterory	Area ratio of land has been	Area (ha)	RV			
Land-use category	converted for the past 20 years	(green area)	Qualification			
Forest	7.31%	47.71	No			
Non-forest	92.69%	605.12	Yes			
Total	100.00%	652.83	-			

Table A11-22 Area and activity data [the number of tall trees] (remaining land / converted

land)
1anu)

Land-use category	Area ratio of land has been converted for the current year		
Converted	0.36%	2.21	892
Remaining	99.64%	602.91	243,548
Total	100.00%	605.12	244,440

Green area by greenery promoting system for private green space

Activity data (the number of tall trees) is available for each facility. Therefore, total number of tall trees is used as activity data.

Table A11-23 Activity data and area of green area by greenery promoting system for private green space

			Breako	lown of are	$a(m^2)$	Area	Activity data
Certificatio n Year	Location	Area (m ²)	Ground	Roof	Wall	Wall green area by greenery promoting system for private green space (m ²)	The number of tall trees (tree)
2002	Minato-ku, Tokyo	17,244	1,314	2,042	106	3,356	335
2002	Minato-ku, Tokyo	19,708	3,285	736		4,021	147
2002	Minato-ku, Tokyo	52,766	10,679			10,679	672
2002	Minato-ku, Tokyo	84,780	8,846	7,493		16,339	813
2003	Minato-ku, Tokyo	5,519	1,654			1,654	167
2003	Osaka City	22,282	1,527	3,164	110	4,691	500
2005	Kawaguchi City	1,995	586	164	18	750	153
2006	Kyoto City	3,857	1,271			1,271	90
2006	Hiroshima City	4,453	130	783		913	1
2007	Hiroshima City	14,353	4,058			4,058	261
2007	Fukuoka City	5,689	602	799		1,401	19
2008	Ishikawa Prefecture	7,281	682	1,411		2,093	26
	Total	239,972	34,634	16,591	234	51,225	3,177

¹⁰ The number of tall trees per area for green area around sewage treatment facility was established by using data on the number of tall trees and greening area measured in 59 green areas.

Green area along river and erosion control site

Area of land remaining green area along river and erosion control site is calculated by multiplying area of this green area by area ratio of land conversion for the whole country (all green area along river and erosion control site are assumed to be located in wetlands). Activity data for living biomass (the number of tall trees) is calculated by multiplying this area by the number of tall trees per area (Hokkaido: 1470.8 [tree/ha], the other prefectures: 339.0 [tree/ha]).¹¹

Forested lands (at measurement time) are not qualified as green area along river and erosion control site. Therefore, land conversion from Forest land is not included in estimating activity data.

Table 741-24 Area and activity data (remaining rand / converted rand)						
	Land-use category	Area ratio of land has been converted for the current year	Area (ha)	Activity data (the number of tall trees)		
Green area along river and erosion control	Converted	0.04%	0.53	315		
site which has been established since 1 st	Remaining	99.96%	1,388.04	823,724		
January 1990 and its establishment area is 500 m ² or more	Total	100.00%	1,388.57	824,039		

 Table A11-24
 Area and activity data (remaining land / converted land)

Green area around government buildings

Area of land remaining green area around government buildings is calculated by multiplying area of this green area by area ratio of land conversion for the whole country. Activity data for living biomass (the number of tall trees) is calculated by multiplying this area by the number of tall trees per area (all prefecture: 112.1 [tree/ha]).¹²

It is assumed that all green area around government buildings is located in Settlements because these areas are not located in the river zone.

Table A11-25Green area around government buildings which was not qualified as Forest
land in 31th December 1989

	Land-use category	Area ratio of land has been converted for the past 20 years	Area (ha) (green area)	RV Qualification
Green area around government buildings which	Forest	7.31%	21.33	No
has been established since 1st January 1990 and	Non-forest	92.69%	270.47	Yes
its establishment area is 500 m ² or more	Total	100.00%	291.80	-

¹¹ For green area along river and erosion control site, the number of tall trees was measured in approximately 95% land of this green area. Based on this data, the number of planted trees per area was estimated in order to simplify the estimation of the number of tall trees in all green area.

¹² For green area around government buildings, the number of tall trees per area was estimated by dividing the number of tall trees by "total land area – building area" (these data were based on 20 facilities [planting maps were available]). Japan established same data for Hokkaido and other prefectures because sample data is no sufficient.

Tuble TTT 20 Thea and activity data (remaining land / converted land)					
	Land-use category	Area ratio of land has been converted for the current year	Area (ha)	Activity data (the numbet of tall trees)	
Green area around government buildings which		0.36%	0.99	111	
has been established since 1 st January 1990 and	Remaining	99.64%	269.49	30,210	
its establishment area is 500 m ² or more (qualified as RV)	Total	100.00%	270.47	30,321	

Table A11-26 Area and activity data (remaining land / converted land)

Green area around public rental housing

Area of land remaining green area around public rental housing is calculated by multiplying area of this green area by area ratio of land conversion for the whole country. Activity data for living biomass (the number of tall trees) is calculated by multiplying this area by the number of tall trees per area (all prefecture: 262.4 [tree/ha]).¹³

It is assumed that all green area around public rental housing is located in Settlements because these areas are not located in the river zone.

Table A11-27Green area around public rental housing which was not qualified as Forestland in 31th December 1989

	Land-use category	Area ratio of land has been converted for the past 20 years	Area (ha) (green area)	RV Qualification
Green area around public rental housing which	Forest	7.31%	162.39	No
has been established since 1 st January 1990	Non-forest	92.69%	2,059.65	Yes
and its establishment area is 500 m ² or more	Total	100.00%	2,222.04	-

 Table A11-28
 Area and activity data (remaining land / converted land)

	Land-use category	Area ratio of land has been converted for the current year	Area (ha)	Activity data (the numbet of tall trees)
Green area around public rental housing which	Converted	0.36%	7.52	1,972
has been established since 1st January 1990	remaining	99.64%	2,052.13	538,479
and its establishment area is 500 m^2 or more (qualified as RV)	Total	100.00%	2,059.65	540,451

b) Remaining land: Dead wood

Urban parks

The number of tall trees per land area used in estimation of activity data for living biomass includes trees which have been died and planted since park establishment, thus carbon stock change in dead wood is included in carbon stock change in living biomass. Therefore, this category is reported as "IE".

Green area on road

¹³ For green area around public rental housing, the number of tall trees per area was estimated by dividing the number of tall trees by "total land area – building area" (these data were based on 28 facilities [planting maps were available]). Japan established same data for Hokkaido and other prefectures because sample data is no

The number of tall trees used in estimation of activity data for living biomass is surveyed every 5 years (implemented every year since 2007). This data includes effects of dead wood and planting, thus carbon stock change in dead wood is included in carbon stock change in living biomass. Therefore, this category is reported as "IE".

Green area on port, Green area around sewage treatment facility and Green area by greenery promoting system for private green space, Green area along river and erosion control site, Green area around public rental housing and Green area around government buildings

This category is reported as "IE" based on the same assumption as urban parks.

c) Remaining land: Litter

Japan estimates carbon stock change in litter in urban parks and green area on port only. In other sub-categories, it is difficult to obtain detailed information on various managements (such as cleaning) actually taken place and estimate carbon stock change accurately. However, it is clear that litter and dead roots are generated every year and those organic materials are accumulated on sites although a part of litter and dead roots are removed to outside. This situation definitely produces increase of carbon stocks every year. Therefore, these sub-categories are not sources of greenhouse gases and not included in the reporting (exclusion of these sub-categories is assumed to be conservative).

Methodology

 $\varDelta C_{RVLit} = \Sigma (A_i \times L_{iti})$

ΔC_{RVLit}	: Annual change in carbon stocks in litter in remaining revegetation land [t-C/yr]
Α	: Area of remaing revegetation land [ha]
L_{it}	: Annual change in carbon stocks in litter per revegetation land [t-C/ha/yr]
i	: Land use type (urban parks and green area on port)
	: Annual change in carbon stocks in litter per revegetation land [t-C/ha/yr]

• Parameters

> Urban parks and Green area on port

For litter, Japan estimates carbon stock change only in branches and leaves dropped naturally from tall trees. Carbon stock change in litter per urban park area is calculated by using annual accumulation of litter per a tall tree (Hokkaido: 0.0006 [t-C/tree/yr], other prefectures: 0.0009 [t-C/tree/yr]) based on results of field survey in urban parks¹⁴, the number of tall trees per area and ratio of litter moved to off-site due to management including cleaning (54.4%). As a result of calculation, carbon stock change in litter per urban park area is 0.0984 [t-C/ha/yr] for Hokkaido and 0.0830 [t-C/ha/yr] for other prefectures. In addition, carbon fraction in litter is assumed to be 0.05 [t-C/t-dm] which is a default

sufficient.

¹⁴ Annual accumulation of litter dropped naturally was measured for some tree types by using litter traps installed in Takino Suzuran Kyuryo National Government Park (Hokkaido) and Showa Kinen National Government Park (Tokyo). Litter is defined as branches and leaves dropped on the surface. In selection of surveyed parks, large-sized and intensively managed national government parks in which continuous monitoring is available and different types trees have been planted are considered to be satisfied with measurement requirements. In addition, it is also considered that tree type distribution differs between Hokkaido and other prefectures. Therefore, Japan selected two surveyed parks, one for Hokkaido and the other for typical climate zone excluding Hokkaido.

value provided in GPG-LULUCF¹⁵.

Green area on road, Green area around sewage treatment facility, Green area by greenery promoting system for private green space, Green area along river and erosion control site, Green area around public rental housing and Green area around government buildings

Litter in these sub-categories includes branches and leaves dropped naturally and dead roots. A part of litter is remained on-site and leads to increase carbon stocks, although other litter is moved to off-site due to managements such as cleaning (such litter is dropped from trees planted after green area establishment). Dead roots also lead to increase carbon stocks because they are not moved to off-site.

Carbon stock change in these sub-categories could not be estimated accurately because it is difficult to obtain detailed information on various managements (such as cleaning). However, it is clear that input of litter and dead roots increases carbon stocks. Therefore, these sub-categories are not sources of greenhouse gases and not included in the reporting (exclusion of these sub-categories is assumed to be conservative).

• Activity data

It is similar to living biomass.

d) Remaining land: Soils

> Urban parks

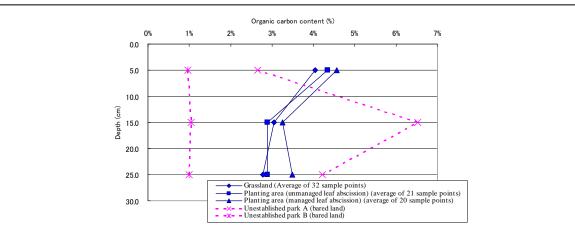
As results of field soil survey implemented in Kanto region, it is demonstrated that carbon stocks in urban parks increase for at least 20 years after their establishment. Therefore, these pools are assumed to be a sink. These results represent whole of country because soil carbon stock change in urban parks depends on land cover and their establishment procedures (regional variations are insignificant).

However, at this time, Japan could not estimate soil carbon stock change in all urban parks because relevant data is not available. Therefore, this category is reported as NR (not include in reporting).

[Results of soil survey in urban parks]

(The number of surveyed parks) 10 (in Kanto region)

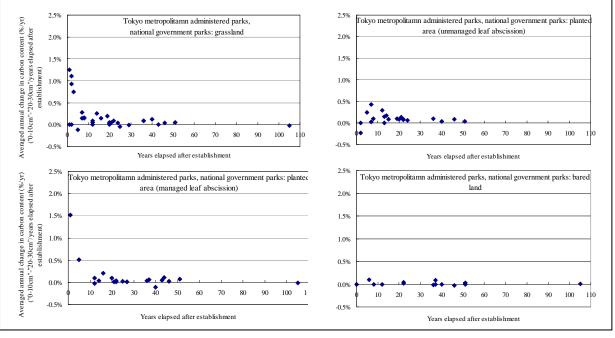
(Period) FY 2007


(Measurement item) organic carbon content of soils (surface-10 cm, 10-20 cm, 20-30 cmm)

It was assumed that organic carbon distribution of soils (0-30 cm depth) in urban parks immediately following new establishment is uniform (carbon is not stored in surface layer) regardless of embankment or cut earth. It was supported by the results of trial pit soil sampling (implemented in 5 parks in 2007) which demonstrate that soil properties for 0-30 cm depth is uniform. Some urban parks (converted from forest land) are covered by soils which have similar properties to forest land. Such parks are qualified as deforestation, not revegetation.

However, it is assumed that input of organic matter (from roots and litter to soils) in lawn and tall trees planted land leads carbon storage after new establishment of urban parks.

For example, it is expected that organic carbon stock for 10-30 cm depth fluctuate slowly, although carbon stock for surface layer fluctuate significantly. Most carbon is supplid to surface layer and the amount of carbon supplied to other layers is very few. In addition, microorganism decomposition is not active in other layers because they are subjected to pressure and be under anerobic condition.


¹⁵ According to the GPG-LULUCF, this default value is originally provided for living biomass. However, Japan applies it to litter because it is assumed that carbon fraction in litter is similar to one in living biomass.

In this context, Japan assumes that organic carbon content for 10-30 cm depth is almost constant and defines "organic carbon content for surface-10 cm depth - organic carbon content for 20-30 cm depth" is equal to soil carbon stock change after establishment of parks. Following graphs show values calculated by dividing soil carbon stock change by years elapsed after establishment of parks.

These graphs show annual variation of organic carbon content. They indicate that annual carbon accumulation in parks immediately following new establishment is large and accumulation continues for more than 20 years after establishment regardless of land cover.

Consequently, soils in urban parks which have been established since 1990 and qualified as RV are assumend to be a sink.

Green area on road

Green area on general road is established and managed in the same manner as urban parks. Therefore, soil in green area on general road is assumed to be a sink. Expressway slopes are also assumed to be a sink because field survey demonstrates that carbon stocks increase for at least 20 years after establishment, although they are subject to planting in the different manner.

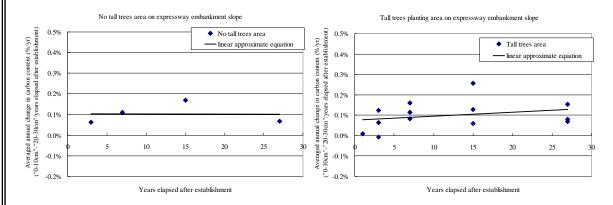
However, at this time, Japan could not estimate soil carbon stock change in all green area on road because relevant data is not available. Therefore, this category is reported as NR (not include in reporting).

[Results of soil survey in green area on road (Green slopes of expressways)]

(The number of surveyed roads) 5 (in Kanto region)

(Period) 2007

(Measurement item) organic carbon content of soils (surface-10 cm, 10-20 cm, 20-30 cmm)


In most cases, embankment structure sections in expressways are qualified as RV (most of cut earth sections are qualified as deforestation). Therefore, surveys were implemented for different embankment structure sections. As in urban parks, it was assumed that organic carbon distribution of soils (0-30 cm depth) in empankment structure sections immediately following new establishment is uniform (carbon is not stored in surface layer).

However, this survey also demonstrates that input of organic matter (from roots and litter to soils) leads carbon storage in surface layers after planting and generation of ground cover plants.

In addition, it is assumed that organic carbon for 10-30 cm depth fluctuate slowly for the same reason as urban parks (such as soil compaction).

In this context, Japan assumes that organic carbon content for 10-30 cm depth is almost constant and defines "organic carbon content for surface-10 cm depth - organic carbon content for 20-30 cm depth" is equal to soil carbon stock change after planting. Following graphs show values calculated by dividing soil carbon stock change by years elapsed after planting.

These graphs show annual variation of organic carbon content. They indicate that annual carbon is accumulated continuously regardless of land cover (even if the land is only covered by ground cover plants). Consequently, soils in green slopes of expressways which have been established since 1990 and qualified as RV are assumend to be a sink.

* Deference between urban parks and expressways

Annual carbon stock change in expressway slopes keeps constant in time series, although urban parks accumulate relatively large carbon immediately following thier establishment. Annual carbon stock change depends on balance between carbon supply and its decomposition.

In urban parks immediately following thier establishment, carbon supply may exceed its decomposition because litter supply from planted tall trees is relatively large and urban parks are covered by immature soils. After that, soils reach maturity and decomposition rate overtake carbon supply.

In expressways, little carbon is supplied immediately after seeding. After that, annual carbon stock change keeps constant because soils reach maturity according to increase of litter supply.

Green area on port, Green area around sewage treatment facility, Green area by greenery promoting system for private green space, Green area along river and erosion control site, Green area around public rental housing and Green area around government buildings

It is assumed that patterns of soil carbon stocks in these green areas are similar to urban parks and green area on road because planting, establishment and management in these green areas are implemented in the same manner as urban parks and green area on road. Therefore, Japan assumes that these pools are not sources and not included in the reporting (NR). If methodologies on urban parks will be developed in the future, estimating and reporting by using these methodologies will be considered.

e) Remaining land: Other gases

1) Direct N_2O emissions from N fertilization

It is assumed that volume of nitrogen-based fertilizer applied to urban parks is included in demand for nitrogen-based fertilizers in Agriculture sector, although fertilization application in urban parks has been conducted in Japan. Therefore, these sources have been reported as "IE".

2) Carbon emissions from lime application

Japan estimates carbon emissions from lime application in all sub-categories. For urban parks and green area on road (lime application is implemented only in green area on general road), the amount of lime applied per area is estimated. For other sub-categories, the amount of lime applied per area for urban parks is applied.

Estimation of carbon emissions is implemented for all RV land together because estimation method is similar regardless of remaining land or converted land.

Methodology

 $C_{RVLm} = C_{RVCaCO3} + C_{RVCaMg(CO3)2}$ $C_{RVCaCO3} = \sum_{i} (A_{i} \times \Delta C_{RVCaCO3} \times 12.01/100.09)$ $C_{RVMg(CO3)2} = \sum_{i} (A_{i} \times \Delta C_{RVMg(CO3)2} \times 12.01/184.41)$

C_{RVLm}	: Annual carbon emissions in RV lands due to lime application [t-C/yr]
$C_{RVCaCO3}$: Carbon emissions in RV lands due to CaCO ₃ application
$C_{RVCaMg(CO3)2}$: Carbon emissions in RV lands due to dolomite application
Α	: Land area for RV lands (total of remaining land and converted land)
$\Delta C_{RViCaCO3}$: Amount of CaCO ₃ application to RV lands (land type i) per area
$\Delta C_{RViCaMg(CO3)2}$: Amount of dolomite application to RV lands (land type i) per area
12.01/100.09	: Ratio of molecular weight in CaCO ₃
12.01/184.41	: Ratio of molecular weight in dolomite
i	: Land type (urban parks, green area on road [general road])

• Parameters

Urban parks

Amount of $CaCO_3$ application per area is established as 298.4 [g/ha/yr] based on the results of questionnaire survey carried out for 11,274 urban parks. Amount of $CaMg(CO_3)_2$ application per area is established as 1,088.4 [g/ha/yr] based on the results of questionnaire survey carried out for 9,346 urban parks.

In estimating carbon emissions, it is assumed that all carbon included in applied $CaCO_3$ and $CaMg(CO_3)_2$ are released to the atmosphere within the application year.

Green are on road

The amount of $CaCO_3$ application per tall tree is established as 0.3311 [g/tree/yr] based on the results of questionnaire survey implemented for 40 road managers. The amount of $CaMg(CO_3)_2$ application per tall tree is established as 1.5431 [g/tree/yr] based on the results of questionnaire survey implemented for 40 road managers above-mentioned.

In estimating carbon emissions, it is assumed that all carbon included in applied $CaCO_3$ and $CaMg(CO_3)_2$ are released to the atmosphere within the application year.

Green area on port, Green area around sewage treatment facility, Green area by greenery promoting system for private green space, Green area along river and erosion control site, Green area around public rental housing and Green area around government buildings

Parameter values for urban parks are applied because lime application in these green areas is implemented in the same manner as urban parks (application pattern and frequency).

• Activity data

Area of all RV lands (regardless of remaining land or converted land) is used as activity data.

3) Biomass burning

In settlements or wetlands subjected to RV activities, burning of residues are essentially prohibited by the Law for waste treatment and cleaning. In addition, wild fires do not usually occur in lands subjected to RV activities because these lands are managed. Therefore, biomass burning activities which lead carbon emissions do not occur and Japan reports this category as "NO".

f) Land converted from other land-use category: Above-ground biomass, Below-ground biomass

• Methodology

For RV activities, land conversion occurs due to establishment or building of "facilities" and all living biomass are basically replaced for one year (In the case of urban parks converted from cropland, new planting in urban parks are carried out after removal of trees in cropland).

In Japan's basic estimation principles for land converted to RV land, facilities established newly by land conversion in the reporting year are defined as "Land converted to RV land". Estimation methods are shown below.

$$\begin{split} \Delta C_{RVLUC} &= \sum_{i} \left\{ A_{i} \times \left(C_{AfterLBi} - C_{BeforeLBi} \right) + \left(\Delta C_{RVLUCGi} - \Delta C_{RVLUCLi} \right) \right\} \\ \Delta C_{RVLUCGi} &= \Delta B_{RVGi} \\ \Delta B_{RVGi} &= \sum_{j} \left(NT_{i,j} \times C_{Ratei,j} \right) \end{split}$$

 ΔC_{RVLUC} : Annual change in carbon stocks in living biomass in converted revegetation land [t-C/yr]A: Annual area of converted revegetation land [ha/yr] $C_{AfterLB}$: Carbon stock in living biomass immediately following land conversion [t-C/ha]

 $C_{BeforeLB}$: Carbon stock in living biomass immediately before land conversion [t-C/ha]

- ΔC_{RVLUCG} : Annual change in carbon stocks in converted revegetation land due to growth in living biomass [t-C/yr]
- ΔC_{RVLUCL} : Annual change in carbon stocks in converted revegetation land due to loss of living biomass [t-C/yr]
- ΔB_{RVG} : Annual biomass growth in revegetation land [t-C/yr]
- C_{Rates} : Annual biomass growth per tree [t-C/tree/yr]
- *NT* : Number of trees
- *i* Land use type (Urban parks, Green area on road, Green area on port, Green area around sewage treatment facility, Green area by greenery promoting system for private green space, Green area along river and erosion control site, Green area around public rental housing and Green area around government buildings)
- *j* : Tree species

• Parameters¹⁶

> Urban parks

Carbon stocks in living biomass immediately before conversion [t-C/ha] are the same as the one for Grassland, Cropland, Wetlands and Other land. Carbon stocks in living biomass immediately following conversion are assumed to be zero (When urban parks qualified as RV land were established, planting activities have been occurred and living biomass has been stocked. Japan assumes that these biomass stocks are zero because they were carried from other fields and they have not been grown by RV activities). In addition, it is assumed that living biomass before conversion is emitted due to RV land establishment.

The other parameters are assumed to be the same as ones for "Remaining urban parks".

Green area on road, Green area on port, Green area around sewage treatment facility, Green area along river and erosion control site, Green area around public rental housing and Green area around government buildings

Carbon stocks in living biomass immediately following and before conversion [t-C/ha] is the same as the one for urban parks converted from other land-use.

The other parameters are assumed to be the same as ones for "Remaining green area on road", "Remaining green area on port", "Remaining green area around sewage treatment facility", "Remaining green area along river and erosion control site", "Remaining green area around public rental housing" and "Remaining green area around government buildings".

Activity data

> Urban parks

Area of land converted to urban parks is calculated by multiplying area of urban parks by area ratio of land conversion for the whole country. Activity data for living biomass (the number of tall trees) is estimated in the same manner as "Remaining urban parks".

⁶ In this reporting, Japan applied Tier 1b described in GPG-LULUCF. In estimating carbon stock change from RV activities, higher tier should be applied because RV activity was qualified as key. However, Japan used default value because country specific data on biomass growth has not been established. In next submission, Japan will apply Tier 2 method.

Table A11-29 Afea of urban parks and activity data (remaining fand / converted fand)						
	Land use category befor conversion	Area ratio of land has been converted for the current year	Area [ha]	Activity data [tree] (The number of tall trees)		
Urban parks which have	Remaining land	99.64%	42,599.82	9,335,569		
been notified since 1 st	Cropland	0.32%	135.94	29,792		
January 1990 and its	Grassland	0.05%	20.07	4,398		
establishment area is 500 m ²	Wetlands	IE	IE	IE		
or more (located in Settlements)	Other land	IE	IE	IE		
	Total	100.00%	42,755.83	9,369,759		
Urban parks which have	Remaining land	99.96%	4,584.54	1,004,682		
been notified since 1 st January 1990 and its establishment area is 500 m ² or more (located in Wetlands [they occupy the	Cropland	0.01%	0.62	135		
	Grassland	0.00%	0.10	22		
	Settlements	0.00%	0.03	8		
	Other land	0.02%	1.00	220		
river section])	Total	100.00%	4,586.29	1,005,067		

Table A11-29Area of urban parks and activity data (remaining land / converted land)

Green area on road

Area of land converted to green area on road is calculated by multiplying area of green area on road by area ratio of land conversion for the whole country. Activity data for living biomass (the number of tall trees) is estimated in the same manner as "Remaining green area on road".

Table A11-30Area of green area on road and activity data for each land-use category

	Land use category befor conversion	Area ratio of land has been converted for the current year	Area (ha)	Activity data [tree]
Green area on road	Remaining land	99.64%	18,925.09	8,605,702
which have been	Cropland	0.32%	60.39	27,462
notified since 1 st	Grassland	0.05%	8.92	4,054
January 1990 and its	Wetlands	IE	IE	IE
establishment area is	Other land	IE	IE	IE
$500 \text{ m}^2 \text{ or more}$	Total	100.00%	18,994.40	8,637,219

➢ Green area on port

Area of land converted to green area on port is calculated by multiplying service area of green area on port by area ratio of land conversion for the whole country. Activity data for living biomass (the number of tall trees) is estimated in the same manner as "Remaining green area on port".

Tuble 711 51 Thea of green area on port and activity data for each faile use category				
Land use category befor conversion	Area ratio of land has been converted for the current year	Area (ha)	Activity data [tree] (the number of tall trees)	
Remaining land	99.64%	1,310.67	276,759	
Cropland	0.32%	4.18	883	
Grassland	0.05%	0.62	130	
Wetlands	IE	IE	IE	
Other land	IE	IE	IE	
Total	100.00%	1,315.47	277,772	

 Table A11-31
 Area of green area on port and activity data for each land-use category

Green area around sewage treatment facility

Area of land converted to green area around sewage treatment facility is calculated by multiplying green area around sewage treatment facility by area ratio of land conversion for the whole country. Activity data for living biomass (the number of tall trees) is estimated in the same manner as

"Remaining green area around sewage treatment facility".

	land-use category					
Land use category befor conversion	Area ratio of land has been converted for the current year	Area (ha)	Activity data [tree] (the number of tall trees)			
Remaining land	99.64%	602.91	243,548			
Cropland	0.32%	1.92	777			
Grassland	0.05%	0.28	115			
Wetlands	IE	IE	IE			
Other land	IE	IE	IE			
Total	100.00%	605.12	244,440			

 Table A11-32
 Area of green area around sewage treatment facility and activity data for each land-use category

Green area along river and erosion control site

Area of land converted to green area along river and erosion control site is calculated by multiplying planted land area by area ratio of land conversion for the whole country. Activity data for living biomass (the number of tall trees) is estimated in the same manner as "Remaining Green area along river and erosion control site".

 Table A11-33
 Area of green area along river and erosion control site and activity data for each

 land-use category

land-use category					
Land use category befor conversion	Area ratio of land has been converted for the current year	Area (ha)	Activity data [tree] (the number of tall trees)		
Remaining land	99.96%	1,388.04	823,724		
Cropland	0.01%	0.19	111		
Grassland	0.00%	0.03	18		
Wetlands	0.00%	0.01	6		
Other land	0.02%	0.30	180		
Total	100.00%	1,388.57	824,039		

Green area around government buildings

Area of land converted to green area around government buildings is calculated by multiplying "total land area – building area" by area ratio of land conversion for the whole country. Activity data for living biomass (the number of tall trees) is estimated in the same manner as "Remaining green area around government buildings".

Table A11-34Area of green area around government buildings and activity data for each

land-use category						
Land use category befor conversion	Area ratio of land has been converted for the current year	Area (ha)	Activity data [tree] (the number of tall trees)			
Remaining land	99.64%	269.49	30,210			
Cropland	0.32%	0.86	96			
Grassland	0.05%	0.13	14			
Wetlands	IE	IE	IE			
Other land	IE	IE	IE			
Total	100.00%	270.47	30,320			

Green area around public rental housing

Area of land converted to green area around public rental housing is calculated by multiplying "total land area – building area" by area ratio of land conversion for the whole country. Activity data for

living biomass (the number of tall trees) is estimated in the same manner as "Remaining green area around public rental housing".

land-use category					
Land use category befor conversion	Area ratio of land has been converted for the current year	Area (ha)	Activity data [tree] (the number of tall trees)		
Remaining land	99.64%	2,052.13	538,479		
Cropland	0.32%	6.55	1,718		
Grassland	0.05%	0.97	254		
Wetlands	IE	IE	IE		
Other land	IE	IE	IE		
Total	100.00%	2,059.65	540,451		

 Table A11-35
 Area of green area around public rental housing and activity data for each land-use category

g) Land converted from other land use category: Dead wood

When RV activity following land-use conversion is implemented, dead wood is removed to outside and supplemental planting is implemented before conversion because almost all of such lands are managed and trees are assumed to be "property". Therefore, dead wood is not left on the ground immediately before land-use conversion. Carbon stocks in dead wood immediately after conversion are assumed to be zero as a same as living biomass. Therefore, carbon stocks in dead wood before and after conversion are assumed to be zero.

Carbon stocks in dead wood accumulated for a year after conversion are reported as "IE" the same as "Remaining land".

h) Land converted from other land use category: Litter

Japan estimates carbon stock change in litter in urban parks and green area on port only (same as remaining land). On the other hand, other sub-categories (Green area on road, Green area around sewage treatment facility, Green area along river and erosion control site, Green area around public rental housing and Green area around government buildings) are not included in the reporting.

• Methodology

$$\Delta C_{LUCRVLit} = \sum_{i} \left\{ A_{i} \times \left(C_{AfterLiti} - C_{BeforeLiti} \right) + A_{i} \times Lit_{i} \right\}$$

*C*_{AfterLit} : Carbon stock in litter immediately following land conversion [t-C/ha]

 $C_{BeforeLit}$: Carbon stock in litter immediately before land conversion [t-C/ha]

 $\Delta C_{LUCRVLit}$: Annual change in carbon stocks in litter in land converted to revegetation land [t-C/yr]

A : Area of converted revegetation land [ha/yr]

Lit : Annual change in carbon stocks in litter in revegetation land per area [t-C/ha/yr]

i : Land use type (urban parks and green area on port)

• Parameters

Urban parks and Green area on port

When urban parks are converted from cropland, grassland or wetlands, soils before conversion are not moved to off-site (in general, these soils are used after conversion continuously or covered by additional soils). Therefore, litters and dead roots accumulated before conversion do not decrease due to land conversion.

In addition, litter in urban parks immediately following conversion is very little.

Therefore, carbon stock change in litter due to land conversion is assumed to be zero. The amount of carbon in litter accumulated for a year after conversion is estimated in the same manner as "Remaining urban parks".

Green area on road, Green area around sewage treatment facility, Green area along river and erosion control site, Green area around public rental housing and Green area around government buildings

Carbon stock change in litter due to land conversion is assumed to be zero for the same reason as urban parks.

The amount of carbon in litter accumulated for a year after conversion is not included in this reporting (same as "Remaining green area on road", "Remaining green area around sewage treatment facility", "Remaining green area along river and erosion control site", "Remaining green area around public rental housing" and "Remaining green area around government buildings").

Therefore, these sub-categories are not sources of greenhouse gases and not included in the reporting (NR).

• Activity data

Activity data is same as living biomass.

i) Land converted from other land use category: Soils

> Urban parks

As mentioned above (in litter section), when urban parks are converted from cropland, grassland or wetlands, soils before conversion almost never been moved to off-site (even if moved to off-site, carbon in these soils are not emitted due to combustion). In general, these soils are used after conversion continuously or covered by additional soils. Therefore, soil carbon stocks do not change due to land conversion (carbon stocks may increase due to additional soils. However, Japan assumes that soil carbon stocks do not change because additional soils do not lead carbon sequestration from atmosphere).

Soil carbon stock change for a year after conversion is not included in the reporting (NR) for the same reason as "Remaining urban parks", although soils are assumed to be a sink.

Green area on road, Green area on port, Green area around sewage treatment facility, Green area along river and erosion control site, Green area around public rental housing and Green area around government buildings

These sub-categories are not sources of greenhouse gases and not included in the reporting (NR) for the same reason as "Land converted to urban parks".

j) Land converted from other land use category: Other gases

1) Direct N_2O emissions from N fertilization

It is assumed that volume of nitrogen-based fertilizer applied to urban parks is included in demand for nitrogen-based fertilizers in Agriculture sector, although fertilization application in urban parks has been conducted in Japan. Therefore, these sources have been reported as "IE".

2) Carbon emissions from lime application

Estimation of carbon emissions from lime application is implemented based on methodologies described in "Remaining land: Other gases" for all RV land together because estimation method is similar regardless of remaining land or converted land.

3) Biomass burning

As in the case of "Remaining RV land", biomass burning activities which release carbon do not occur. Therefore, this category has been reported as "NO".

		1990		2008	8	2008-1990		
		[Gg-CO2]	[Gg-C]	[Gg-CO2]	[Gg-C]	[Gg-CO2]	[Gg-C]	
R٧	V	-45.51	12.41	-716.21	195.33	-670.70	182.92	
	Above-ground biomass	-32.87	8.97	-518.82	141.50	-485.95	132.53	
	Below-ground biomass	-11.55	3.15	-182.29	49.72	-170.74	46.57	
	Dead wood	IE	IE	IE	IE	IE	IE	
	Litter	-1.09	0.30	-15.12	4.12	-14.03	3.83	
	Soils	0.00	0.00	0.00	0.00	0.00	0.00	
	Other gases	0.00	0.00	0.02	-0.01	0.02	-0.01	

k) Results (to be updated)

CO2)+: Emission, -: Removal C...+: Removal, -: Emission

11.4.1.2. Justification when omitting any carbon pool or GHG emissions/removals from activities under Article 3.3 and elected activities under Article 3.4

Some carbon pools under RV activities (litter: Green area on road, Green area around sewage treatment facility, Green area along river and erosion control site, Green area around public rental housing and Green area around government buildings, soils: all sub-categories) are not included in the reporting. Some intermediate results of the ongoing research project relating to RV land by Ministry of Land, Infrastructure, Transport and Tourism show clear tendency that those carbon pools have been increasing although a little more research and analysis are necessary to quantify carbon stock change about these carbon pools.(Handa et al., 2008)This does not lead over-estimation of removals because these carbon pools are not sources of greenhouse gases.

11.4.1.3. Information on whether or not indirect and natural GHG emissions and removals have been factored out

Japan does not factor out indirect, natural and pre-1990 effects specified in paragraph 7 in the Annex to decision 15/CMP.1 in estimating emissions/removals from activities under Article 3.3 and 3.4.

11.4.1.4. Changes in data and methods since the previous submission (recalculations)

• Carbon stocks in soil under forest land

Carbon stocks in soil under forest land which are used for calculation for AR activity and D activity are improved based on investigation of data. This result was reflected to calculation under GHG inventory.

11.4.1.5. Uncertainty estimates

As a result of uncertainty assessment implemented by method provided in National Greenhouse Gases inventory Report of JAPAN, Annex 7, "7.1 Methodology of Uncertainty Assessment", uncertainty of total emissions/removals from activities under Article 3.3 and 3.4 has been assessed at 43%.

Greenhouse gas source and sink activities	GHGs	Emissions/Remov [Gg CO ₂ eq.]	als %	Emissions/Removals Uncertainty [%]	rank	Emissions/Removals Uncertainty as % of toral national emissions	rank
Article 3.3 activities Afforestation and Reforestation	CO_2 , N_2O , CH_4	▲ 392	-1%	6%	4	0%	3
Article 3.3 activities Deforestation	CO_2 , N_2O , CH_4	2,431	6%	11%	3	-1%	4
Article 3.4 activities Forest management	CO_2 , N_2O , CH_4	▲ 45,389	-103%	41%	2	43%	1
Article 3.4 activities Revegetation	CO_2 , N_2O , CH_4	▲ 671	-2%	84%	1	1%	2
Total		▲ 44,021	-100%	43%			

Table A11-36 Uncertainty of emissions/removals from activities under Article 3.3 and 3.4

11.4.1.5.a. Afforestation/Reforestation

Uncertainty of emissions/removals from afforestation/reforestation activities in 2008 has been assessed at 6%.

Table ATT-57 Orcertainty of emissions/removals from anticestation/reforestation activities									
Greenhouse ga	use gas source and sink activities		Emissions/	AD	EF/RF	Combined	rank	Combined	rank
			Removals	Uncertainty	Uncertainty	Uncertainty		Uncertainty	
			[Gg CO2eq.]	[%]	[%]	[%]		as % of toral	
								national	
								emissions	
								[%]	
Article 3.3	Change in carbon pool reported								
activities	Above-ground biomass	CO_2	▲ 225	-	-	10%	6	6%	1
	Below-ground biomass	CO_2	▲ 58	-	-	8%	7	1%	3
Afforestation	Litter	CO_2	▲ 28	-	-	11%	5	1%	4
and	Dead wood	CO_2	▲ 66	-	-	11%	4	2%	2
Reforestation	Soil	CO_2	▲ 15	-	-	19%	2	1%	5
	Greenhouse gas sources reported								
	Fertilization	N ₂ O	IE	-	-	-	-	-	-
	Drainage of soils under forest	N ₂ O	_					_	
	management	1120	-	_	_	_	_	-	-
	Disturbance associated with land-	N ₂ O							
	use conversion to croplands	1120	-	-	-	-	-	-	-
	Liming	CO_2	NE	NE	NE	NE	-	-	-
	Biomass burning	CO_2	IE	IE	IE	IE	-	-	-
		CH_4	0	-	-	13%	3	0%	7
		N ₂ O	0	-	-	22%	1	0%	6
	Total		▲ 392			6%			

Table A11-37 Uncertainty of emissions/removals from afforestation/reforestation activities

11.4.1.5.b. Deforestation

Uncertainty of emissions/removals from deforestation activities in 2008 has been assessed at 11%.

Greenhouse ga	as source and sink activities	GHGs	Emissions/ Removals [Gg CO2eq.]	AD Uncertainty [%]	EF/RF Uncertainty [%]	Combined Uncertainty [%]	rank	Combined Uncertainty as % of toral national emissions [%]	rank
Article 3.3	Change in carbon pool reported								
activities	Above-ground biomass	CO_2	1,268	-	-	21%	3	11%	1
	Below-ground biomass	CO_2	333	-	-	2%	7	0%	4
Dforestation	Litter	CO ₂	174	-	-	3%	6	0%	5
	Dead wood	CO ₂	435	-	-	4%	5	1%	3
	Soil	CO ₂	215	-	-	10%	4	1%	2
	Greenhouse gas sources reported								
	Fertilization	N ₂ O	-	-	-	-	-	-	-
	Drainage of soils under forest management	N ₂ O	-	-	-	-	-	-	-
	Disturbance associated with land- use conversion to croplands	N ₂ O	5	-	-	23%	2	0%	6
	Liming	CO ₂	2	-	-	70%	-	-	-
	Biomass burning	CO ₂	NO	NO	NO	NO	-	-	-
		CH_4	NO	NO	NO	NO	-	-	-
		N ₂ O	NO	NO	NO	NO	-	-	-
	Total		2,431			11%			

Table A11-38 Uncertainty of emissions/removals from deforestation activities

11.4.1.5.c. Forest Management

Uncertainty of emissions/removals from forest management activities in 2008 has been assessed at 41%.

	Greenhouse gas source and sink activities		Emissions/ Removals [Gg CO2eq.]	AD Uncertainty [%]	EF/RF Uncertainty [%]	Combined Uncertainty [%]	rank	Combined Uncertainty as % of toral national emissions [%]	rank
Article 3.4	Change in carbon pool reported								
activities	Above-ground biomass	CO_2	▲ 34,748		-	54%	2	41%	1
	Below-ground biomass	CO_2	▲ 8,759	-	-	2%	7	0%	3
Forest	Litter	CO_2	▲ 472	-	-	5%	6	0%	4
manafement	Dead wood	CO_2	135	-	-	69%	1	0%	7
	Soil	CO_2	▲ 1,559	-	-	15%	5	1%	2
	Greenhouse gas sources reported								
	Fertilization	N_2O	IE	IE	IE	IE	-	-	-
	Drainage of soils under forest management	N_2O	NE	NE	NE	NE	-	-	-
	Disturbance associated with land- use conversion to croplands	N_2O	-	-	-	-	-	-	-
	Liming	CO_2	NE	NE	NE	NE	-	-	-
	Biomass burning	CO_2	IE	IE	IE	IE	-	-	-
		CH_4	13	-	-	16%	4	0%	6
		N_2O	1	-	-	26%	3	0%	5
	Total		▲ 45,389			41%			

 Table A11-39
 Uncertainty of emissions/removals from forest management activities

11.4.1.5.d. Revegetation

Uncertainty of emissions/removals from revegetation activities in 2008 has been assessed at 84%.

Greenhouse ga	as source and sink activities	GHGs	Emissions/	AD	EF/RF	Combined	rank	Combined	rank
Greenhouse ga	as source and shik activities	01103	Removals		Uncertainty		Tank		Talik
				Uncertainty	2	Uncertainty		Uncertainty	
			[Gg CO2eq.]	[%]	[%]	[%]		as % of toral	
								national	
								emissions	
								[%]	
Article 3.4	Change in carbon pool reported								
activities	Above-ground biomass	CO_2	▲ 486	83%	60%	102%	3	74%	1
	Below-ground biomass	CO_2	▲ 171	104%	110%	151%	1	38%	2
Revegetation	Litter	CO_2	▲ 14	92%	108%	141%	2	3%	3
	Dead wood	CO_2	IE	IE	IE	IE	-	-	-
	Soil	CO_2	-	-	-	-	-	-	-
	Greenhouse gas sources reported								
	Fertilization	N ₂ O	IE	IE	IE	IE	-	-	-
	Drainage of soils under forest management	N ₂ O	-	-	-	-	-	-	-
	Disturbance associated with land- use conversion to croplands	N ₂ O	-	-	-	-	-	-	-
	Liming	CO ₂	0	2%	4%	5%	4	0%	4
	Biomass burning	CO ₂	NO	NO	NO	NO	-	_	-
		CH_4	NO	NO	NO	NO	-	-	-
		N ₂ O	NO	NO	NO	NO	-	-	-
	Total		▲ 671	66%	52%	84%			

 Table A11-40
 Uncertainty of emissions/removals from revegetation activities

11.4.1.6. Information on other methodological issues (method dealing with effects of natural disturbance¹⁷)

11.4.1.6.a. Afforestation/Reforestation and Deforestation

Effects of natural disturbance have been reflected in forest resources data when Forest Registers are updated every 5 years in each planning area.

¹⁷ Including fire, windthrow, insects, droughts, flooding and ice storms_{\pm} etc.

11.4.1.6.b. Forest Management

Effects of natural disturbance have been reflected in forest resources data when Forest Registers are updated every 5 years in each planning area.

11.4.1.6.c. Revegetation

It is considered that windstorm, flood and insects are natural disturbance which have a considerable impact on carbon stock change on RV land. However, all land qualified as RV is under human induced management by administration etc. In addition, when disappearance of tall trees and outflow of soils are occurred in RV land located in the Settlements, business budget is often appropriated and urgent restoration measure is administered from viewpoint with respect to safety and view.

Consequently, effects of natural disturbance are not considered in estimation because it looks that carbon stocks do not change. Furthermore, carbon stock change due to post-disaster restoration practices which are not implemented in the year disaster occur does not lead double-counting because it is not considered in this reporting.

11.4.1.7. The year of the onset of an activity, if after 2008

In this 2010 submission, all lands and units of land which start to be subject to activities under Article 3.3 or selected activities under Article 3.4 until 2008 are reported. Areas of such lands are shown below.

Table A11-41	Allorestation/Reforestation and	Deforestation
Afforestation/Reforestation	Defore	estation
(FY1990-FY2008)	FY1990-FY2008	FY2008
27.5 [kha]	301.1 [kha]	6.7 [kha]

Table A11-41 Afforestation/Reforestation and Deforestation

Ikusei-rin forest	Tennensei-rin forest	Total
6,795 [kha]	6,847 [kha]	13,642 [kha]

Table A11-43 Revegetation

Categories	Urban parks	Green area on road	Green area on port	Green area around sewage treatment facility	Green area by greenery promoting system for private green space
FY1990-FY2008	47,342[ha]	18,994[ha]	1,315[ha]	605[ha]	5[ha]
FY1990	3,343[ha]	1,442[ha]	138[ha]	42[ha]	0[ha]
Categories	Green area along river and erosion control site	Green area around government buildings	Green area around public rental housing	Total	
FY1990-FY2008	1,389[ha]	270[ha]	2,060[ha]	71,981[ha]	
FY1990	58[ha]	11[ha]	169[ha]	5,203[ha]	

11.5. Article 3.3

11.5.1. Information that demonstrates that activities under Article 3.3 began on or after 1 January 1990 and before 31 December 2012 and are direct human-induced

Japan detected change of the forest cover which has occurred since 1 January 1990 using orthophotos at the end of 1989 and recent satellite images. In doing so, AR and forest restoration through natural succession are distinguished through imagery interpretation whether each forest cover change are human-induced or not.

The following table is the results of AR land area detected by satellite images and the result of comparison between D land area and conversion area from forest obtained from existing statistical information (estimated based on conversion area from forest during 1990-2000 provided by *World Census of Agriculture and Forestry*). The result of the comparison shows consistency with each other, and indicates that the ARD detection is appropriate.

Table A11-44 Results of imagery interpretation of ARD land (March 2010)

Area of lands	Plots	AR rate	Area of lands qualified as AR
interpreted	qualified as AR	%	Total
[km ²]	(2008)	(1990-2008)	[kha] (1990-2008)
355,533	449	0.078%	27.5

Area of lands interpreted [km ²]	Plots qualified as D (1990-2008)	D rate % (1990-2008)	Area of lands qualified as D Total [kha] (1990-2008)	Forest land conversion area estimated from statistical information [kha] (1990-2008)
355,533	5,328	0.847%	301.1	288.4

11.5.2. Information on how harvesting or forest disturbance that is followed by the re-establishment of forest is distinguished from deforestation

In Japan, land conversion from forest land to other land use means exclusion of the land from forest plans. Therefore, as far as area of harvested forest would remain included in forest plans, the area would be considered to be subject not to deforestation but to temporary loss of biomass stock, and on Forest Registers, would be distinguished from deforestation which means conversion to other land use..

Japan identifies forest cover change as deforestation only in the case landform transformation or artificial construction are observed or obvious conversion to non-forest land such as cropland are detected through imagery interpretation using aerial photos and satellite images. By this methodology, deforestation is distinguished from temporary loss of biomass stock in forest land.

11.5.3. Information on the size and geographical location of forest areas that have lost forest cover but which are not yet classified as deforested

Total area of forest land that has temporarily lost forest cover due to harvesting or disturbance and

which are not classified as deforested but as "Forest with less standing trees" (cut-over forests, lesser stocked forests) in Forest Registers is about 1.17million [ha].

11.6. Article 3.4

11.6.1. Information that demonstrates that activities under Article 3.4 have occurred since 1 January 1990 and are human-induced

11.6.1.1. Forest Management

Status of FM activities since 1 January 1990 has been investigated since FY2007 by sample survey including field survey, interview with forest owner's association and detection of administrative information on subsidies forest practices, of Ikusei-rin forests throughout the country. Results of the survey have been used to estimate FM ratio.

11.6.1.2. Revegetation

Japan demonstrates that revegetation activities have occurred since 1990 and are human induced based on the following reasons.

	January 1990 and are numan induced
Sub-division	Information that demonstrates that revegetation activities have occurred since 1 st January 1990 and are human induced
Urban parks	Extraction of activities which have occurred since 1st January 1990 MLITT has implemented "Urban Parks Status Survey" and has collected data on the notificated year of urban parks. In the reporting, only urban parks which have been notified since 1 st January 1990 are included. Although some urban parks have established before the notificated year, Japan considers that RV activities have occurred since the notificated year under "Urban Park Act".
	Demonstrate that activities are human induced Activity data (the number of tall trees) is calculated based on the number of tall trees per land area (tree/ha) which is developed by using data on tall trees human-induced planted. Its calculation procedure ensures that Japan extracts human induced activities.
Green area on road	Extraction of activities which have occurred since 1st January 1990 MLITT has implemented "Road Tree Planting Status Survey" every 5 years (implemented every year since 2007) and has collected data on the number of planted tall trees. Activity data after 1990 is calculated by extrapolating or interpolating these data. Demonstrate that activities are human induced
	In "Road Tree Planting Status Survey", only human-induced planted tall trees have been measured. Its mesurement procedure ensures that Japan extracts human induced activities.
Green area on port	Extraction of activities which have occurred since 1st January 1990 MLITT has implemented complete census since 2006 and has collected relevant data (established year and service area) for green area on port which had been established since 1990.
Port	Demonstrate that activities are human induced Activity data (the number of tall trees) is calculated by using parameters of urban parks which are based on human-induced activities data.

Table A11-45Information that demonstrates that revegetation activities have occurred since 1stJanuary 1990 and are human induced

Green area around sewage treatment facility	 Extraction of activities which have occurred since 1st January 1990 MLITT has implemented "Sewage treatment Facility Status Survey" since 2006 and has collected relevant data (established year and greening area) for green area around sewage treatment facility which had been established since 1990. Demonstrate that activities are human induced Activity data (the number of tall trees) is calculated based on the number of tall trees per land area (tree/ha) which is developed by using data on tall trees human-induced planted. Its calculation procedure ensures that Japan extracts human induced activities.
Green area by greenery promoting system for private green space	 <u>Extraction of activities which have occurred since 1st January 1990</u> It is clear that all green area by greenery promoting system for private green space has been established since 1st January 1990 because greenery promoting system has been implemented since 2001. Existing green area (with tall trees) in some green area are reported when it is notified by local authority mayor. It is excluded from RV land area. <u>Demonstrate that activities are human induced</u> All green area by greenery promoting system for private green space has been human-induced established.
Green area along river and erosion control site	Extraction of activities which have occurred since 1st January 1990 MLITT has implemented "Survey on carbon dioxide absorption at source in river works" since 2007 and has collected relevant data (name, location, established year, planted land area [projected area] and the number of tall trees) for river works and erosion and sediment control works which had been implemented since 1990. Demonstrate that activities are human induced Activity data (the number of tall trees) is calculated based on the number of tall trees per land area (tree/ha) which is developed by using data on tall trees human-induced planted. Its calculation procedure ensures that Japan extracts human induced activities.
Green area around government buildings	Extraction of activities which have occurred since 1st January 1990 MLITT has implemented complete census since 2007 and has collected relevant data (name, location, established year, total land area and building area) for government buildings which had been established since 1990. Demonstrate that activities are human induced Activity data (the number of tall trees) is calculated based on the number of tall trees per land area (tree/ha) which is developed by using data on tall trees human-induced planted. Its calculation procedure ensures that Japan extracts human induced activities.
Green area around public rental housing	 <u>Extraction of activities which have occurred since 1st January 1990</u> MLITT has implemented "Progress survey on tree planting for public rental housing" since 2007 and has collected relevant data (name, location, established year, total land area and building area) for public rental housing which had been established since 1990. <u>Demonstrate that activities are human induced</u> Activity data (the number of tall trees) is calculated based on the number of tall trees per land area (tree/ha) which is developed by using data on tall trees human-induced planted. Its calculation procedure ensures that Japan extracts human induced activities.

11.6.2. Information relating to Revegetation for the base year

The base year net removals in Revegetation are those from RV area in 1990. The area where RV activity was taken place in 1990 is directly obtained by activity data in each subcategory of RV.

11.6.3. Information relating to Forest Management

11.6.3.1. The definition of forest for this category conforms with the definition in item 11.2 above

In Japan, area and carbon stock change on land subject to forest management activities are estimated by applying FM ratios to data of all forests which meet our country's forest definition. Therefore, the definition of land subject to forest management activities is consistent with our country's forest definition.

On the other hand, not all managed forest reported under the Convention is subject to forest management reported as Article 3.4 activity under the Kyoto Protocol in Japan, because FM forest consists of only the area where FM activities have been taken place since 1990 as described in section 11.3.2.4.

11.6.3.2. The definition of forest management confirms with the definition in paragraph 1 (f) of the annex to decision 16/CMP.1

Japan considers that forest management activities which are reported under the Kyoto Protocol should be of sustainable system and whether this is fulfilled or not is judged from whether appropriate forest practices have been carried out in Ikusei-rin forests or whether practices for protection or conservation of forests including controlling logging activities and land-use change have been carried out by laws. Therefore, Japan's definition of forest management is consistent with the definition provided in "Decision 16/CMP.1" (a system of practices for stewardship and use of forest land aimed at fulfilling relevant ecological, economic and social function of the forest in a sustainable manner).

11.6.3.3. Information on the extent GHG removals by sinks offsets the debit incurred under Article 3.3.

The amount that Forest management removals offset the debit incurred under Article 3.3 is 2,039 Gg-CO₂ e.q. in 2008. Related information is provided in section 11.2.

11.7. Other information

11.7.1. Key category analysis for Article 3.3 activities and any elected activities under Article 3.4

In accordance with GPG-LULUCF, Chapter 5, the activity which meets following requirements is considered as key.

-The associated category under the UNFCCC is identified as key. In addition, Emissions/removals from the activity are greater than the smallest category that is identified as key in the UNFCCC inventory (Tier 1 level assessment).

-Estimation method is changed from previous reporting.

• Corresponding with key categories under the UNFCCC

Japan's national inventory report states that LULUCF key categories under the UNFCCC for 2008 are as follows;

5.A.1. Forest land remaining Forest land (CO₂)

- 5.A.2. Land converted to Forest land (CO₂)
- 5.B.2. Land converted to Cropland (CO₂)
- 5.E.2. Land converted to Settlements (CO₂)
- 5.F.2. Land converted to Other land (CO₂)

In accordance with GPG-LULUCF, AR, D, FM may be identified as key under the Kyoto Protocol.

UNFCCC category under Convention	Kyoto Protocol category
5.A.1. Forest land remaining Forest land	FM
5.A.2. Land converted to Forest land	AR
5.B.1. Cropland remaining Cropland	
5.B.2. Land converted to Cropland	D
5.C.1. Grassland remaining Grassland	
5.C.2. Land converted to Grassland	D
5.D.1. Wetlands remaining Wetlands	RV
5.D.2. Land converted to Wetlands	D _N RV
5.E.1. Settlements remaining Settlements	RV
5.E.2. Land converted to Settlements	D _N RV
5.F.1. Other land remaining Other land	—
5.F.2. Land converted to Other land	D

Table A11-46 Relationship between UNFCCC categories and Kyoto-activities

The relationship between conventional categories and Kyoto categories in this table is based on GPG-LULUCF, Page 5.39, Table 5.4.4. and the definitions of Article 3.3 and 3.4 activities of Japan Yellow shade indicates key categories under the UNFCCC.

• Comparison with the smallest key category under the UNFCCC

The smallest category for the UNFCCC (Tier 1 level assessment) for 2008 was 2.A.2. Lime Production (CO₂) [7,798 Gg-CO₂]. As a result of comparison, only forest management activity was greater than this category.

• Qualitative Consideration

Land converted to Settlements (LS) category was identified as key under the UNFCCC reporting due to the large emissions from Forest land converted to Settlements. However, revegetation practices performed in D land are not considered as RV. So, it is not suitable to identify RV as key by reason that LS category was identified as key and LS and RV are relevant categories in table A11-46. On the other hand, RV is still considered as key category due to the qualitative analysis in line with GPG-LULUCF section 5.4.3. because the net removals in RV have been increasing every year.

Therefore, AR, D, FM and RV activities (CO₂) are identified as key for 2008.

11.7.2. Further improvement

Methodological issues relating to Article 3.3 and Article 3.4 are identified under the Committee for Greenhouse Gas Emissions Estimation Methods-LULUCF Break out Group. They are updated every

year taking into account the progress of the inventory-related work and issues identified by the Expert Review team. Many of improvement plans on LULUCF reporting under the Convention described in Chapter 7 of this report are closely linked to activities under Article 3.3 and Article 3.4 of the Kyoto Protocol. So, both the reporting under the Convention and the reporting under the Kyoto Protocol are discussed together. Major issues to be improved are as follows:

- Improvement of methodology to estimate carbon stock change in soil due to land-use conversion is under discussion in Japan.
- A default value of annual biomass growth was used for RV activity. Japan is planning to measure annual biomass growth in a tall tree planted in RV land and determine country-specific value for dominant tree types (a few types).
- Carbon stock change in soils is not included in the reporting because soils are not sources of greenhouse gases under RV activities. Japan will continue to collect fundamental information on soil carbon and consider about estimation method.
- Data on "area ratio of settlements or wetlands has been converted rom forest land for the past 20 years" and "area ratio of settlements or wetlands has been converted from forest land from the last year" are used as supplementary information to estimate RV area. The methodology to calculate area of land converted from forest land (deforestation) under the conventional reporting was altered in FY2009 from the previous submission in April 2009 (see further details in Chp.7) and this alternation has an effect on the ratios above. It is still underway to analyze adequacy of applying new ratios reflecting the new methodology which was used in the previous submission (2009) was also used in 2010 submission for RV area calculation, although Japan recognizes these area ratios for RV calculation should be apply consistently with the data used in conventional reporting in LULUCF sector. Japan is planning to improve the methodology in this area and ensure consistency when sufficient work of analyses will be completed.

11.8. Information relating to Article 6

Japan has not carried out any projects under Article 6 of the Kyoto Protocol. Therefore, a special indication of whether the boundary of the geographical location encompasses land subject to the Article 6 project is not prepared.

References

- 1. IPCC, Good Practice Guidance for Land Use, Land-Use Change and Forestry, 2003
- 2. IPCC, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 2007
- 3. FAO, Global Forest Resources Assessment 2005, 2006
- 4. Ministry of Land, Infrastructure, Transport and Tourism, *Basic Data Collection Survey on Tall Tree Planting on the Road*
- 5. Ministry of Land, Infrastructure, Transport and Tourism, Road Tree Planting Status Survey
- 6. Ministry of Land, Infrastructure, Transport and Tourism, Sewage Treatment Facility Status Survey
- 7. Ministry of Land, Infrastructure, Transport and Tourism, *Survey on Carbon Dioxide Absorption at Source in River Works*
- 8. Ministry of Land, Infrastructure, Transport and Tourism, *Progress Survey on Tree Planting for Public Rental Housing*
- 9. Ministry of Land, Infrastructure, Transport and Tourism, Urban Parks Status Survey
- 10. Ministry of Land, Infrastructure, Transport and Tourism, Urban Greening Status Survey
- 11. Ministry of Agriculture, Forestry and Fisheries, A move and conversion of Cropland
- 12. Ministry of Agriculture, Forestry and Fisheries, World Census of agriculture and Forestry
- 13. Ministry of Agriculture, Forestry and Fisheries, Yearbook of Fertilizer Statistics (Pocket Edition)
- 14. Forestry Agency, National Forest Resources Database (NFRDB)
- 15. Forestry Agency, Handbook of Forestry Statistics
- 16. UNFCCC, land use, land-use change and forestry (16/CMP.1) (FCCC/KP/CMP/2005/8/Add.3) , 2006
- 17. HAYASHI K., HORI S., AWAYA Y., MATSUMOTO M., IEHARA T., 'Evaluation of ARD monitoring method under Article 3.3 of the Kyoto Protocol', *Journal of the Japan Society of Photogrammetry and Remote Sensing*, 47-3, pp.48-58., 2008
- 18. Handa M., TONOSAKI K., IMAI K., GOTO S., 'A study to estimate the amount of Carbon astocks of soil and litter in revegetation areas', *Urban Green Technology*, No 69., 2008